The present disclosure relates generally to advanced image and video coding technologies and more particularly to encoding and/or decoding involving local warp motion modes.
AOMedia Video 1 (AV1) is an open video coding format designed for video transmissions over the Internet. It was developed as a successor to VP9 by the Alliance for Open Media (AOMedia), a consortium founded in 2015 that includes semiconductor firms, video on demand providers, video content producers, software development companies and web browser vendors. Many of the components of the AV1 project were sourced from previous research efforts by Alliance members. Individual contributors started experimental technology platforms years before: Xiph's/Mozilla's Daala already published code in 2010, Google's experimental VP9 evolution project VP10 was announced on 12 Sep. 2014, and Cisco's Thor was published on 11 Aug. 2015. Building on the codebase of VP9, AV1 incorporates additional techniques, several of which were developed in these experimental formats. The first version 0.1.0 of the AV1 reference codec was published on Apr. 7, 2016. The Alliance announced the release of the AV1 bitstream specification on Mar. 28, 2018, along with a reference, software-based encoder and decoder. On Jun. 25, 2018, a validated version 1.0.0 of the specification was released. On Jan. 8, 2019 a validated version 1.0.0 with Errata 1 of the specification was released. The AV1 bitstream specification includes a reference video codec.
ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) published the H.265/HEVC (High Efficiency Video Coding) standard in 2013 (version 1) 2014 (version 2) 2015 (version 3) and 2016 (version 4). They have also explored the potential need for standardization of future video coding technology (which could significantly outperform HEVC in compression capability). In October 2017, they issued the Joint Call for Proposals on Video Compression with Capability beyond HEVC (CfP). By Feb. 15, 2018, a total of 22 CfP responses on standard dynamic range (SDR), 12 CfP responses on high dynamic range (HDR), and 12 CfP responses on 360 video categories were submitted, respectively. In April 2018, all received CfP responses were evaluated in the 122 MPEG/10th JVET (Joint Video Exploration Team or Joint Video Expert Team) meeting. As a result of this meeting, JVET formally launched the standardization of next-generation video coding beyond HEVC. The new standard was named Versatile Video Coding (VVC).
Embodiments of the present disclosure relate to a video coding method, a device, and a computer-readable medium for improving on local warp motion delta modes.
According to an aspect of one or more embodiments, a video coding method, performed by at least one processor, may include: obtaining video data that comprises a plurality of blocks, each block of the plurality of blocks being associated with a first reference picture list and a second reference picture list; generating a warp model used for the first reference picture list and the second reference picture list of a current block based on motion vectors of the current block and neighboring blocks that are adjacent to the current block; and decoding a frame among the first reference picture list and the second reference picture list by applying the warp model to the frame.
According to other aspects of one or more embodiments, a device/apparatus and non-transitory computer readable medium consistent with the video coding method are also provided.
Additional embodiments will be set forth in the description that follows and, in part, will be apparent from the description, and/or may be realized by practice of the presented embodiments of the disclosure.
To describe the technical solutions of example embodiments of this disclosure more clearly, the following briefly introduces the accompanying drawings for describing the example embodiments. The accompanying drawings herein, which are incorporated into the specification and constitute a part of this specification, show embodiments that conform to this disclosure, and are used for describing a principle of this disclosure together with this specification. Apparently, the accompanying drawings in the following description show merely some embodiments. In addition, one of ordinary skill would understand that aspects of example embodiments may be combined together or implemented alone.
The following detailed description of example embodiments refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the implementations. Further, one or more features or components of one embodiment may be incorporated into or combined with another embodiment (or one or more features of another embodiment). Additionally, in the flowcharts and descriptions of operations provided below, it is understood that one or more operations may be omitted, one or more operations may be added, one or more operations may be performed simultaneously (at least in part), and the order of one or more operations may be switched.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, software, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code. It is understood that software and hardware may be designed to implement the systems and/or methods based on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set.
The proposed features discussed below may be used separately or combined in any order. Further, the embodiments may be implemented by processing circuitry (e.g., one or more processors or one or more integrated circuits). In one example, the one or more processors execute a program that is stored in a non-transitory computer-readable medium.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” “include,” “including,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Furthermore, expressions such as “at least one of [A] and [B]” or “at least one of [A] or [B]” are to be understood as including only A, only B, or both A and B.
Aspects are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer readable media according to the various embodiments. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
Referring now to
The system 100 may include a computer 102 and a server computer 114. The computer 102 may communicate with the server computer 114 via a communication network 110 (hereinafter “network”). The computer 102 may include a processor 104 and a software program 108 that is stored on a data storage device 106 and is enabled to interface with a user and communicate with the server computer 114. As will be discussed below with reference to
The server computer 114 may also operate in a cloud computing service model, such as Software as a Service (SaaS), Platform as a Service (PaaS), or Infrastructure as a Service (IaaS), as discussed below with respect to
The server computer 114, which may be used for encoding video data is enabled to run a Video Encoding Program 116 (hereinafter “program”) that may interact with a database 112. The Video Encoding Program method is explained in more detail below with respect to
It should be noted, however, that processing for the program 116 may, in some instances be shared amongst the computers 102 and the server computers 114 in any ratio. In another embodiment, the program 116 may operate on more than one computer, server computer, or some combination of computers and server computers, for example, a plurality of computers 102 communicating across the network 110 with a single server computer 114. In another embodiment, for example, the program 116 may operate on a plurality of server computers 114 communicating across the network 110 with a plurality of client computers. Alternatively, the program may operate on a network server communicating across the network with a server and a plurality of client computers.
The network 110 may include wired connections, wireless connections, fiber optic connections, or some combination thereof. In general, the network 110 can be any combination of connections and protocols that will support communications between the computer 102 and the server computer 114. The network 110 may include various types of networks, such as, for example, a local area network (LAN), a wide area network (WAN) such as the Internet, a telecommunication network such as the Public Switched Telephone Network (PSTN), a wireless network, a public switched network, a satellite network, a cellular network (e.g., a fifth generation (5G) network, a long-term evolution (LTE) network, a third generation (3G) network, a code division multiple access (CDMA) network, etc.), a public land mobile network (PLMN), a metropolitan area network (MAN), a private network, an ad hoc network, an intranet, a fiber optic-based network, or the like, and/or a combination of these or other types of networks.
The number and arrangement of devices and networks shown in
As previously described, AV1 is an open video coding format designed for video transmissions over the Internet developed as a successor to VP9. As shown in
In HEVC, a coding tree unit (CTU) may be split into coding units (CUs) by using a quad-tree (QT) structure denoted as coding tree to adapt to various local characteristics. The decision on whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction may be made at the CU level. Each CU can be further split into one, two or four prediction units (PUs) according to the PU splitting type. Inside one PU, the same prediction process may be applied, and the relevant information may be transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU splitting type, a CU can be partitioned into transform units (TUs) according to another QT structure like the coding tree for the CU. One of the key features of the HEVC structure is that it has the multiple partition conceptions including CU, PU, and TU. In HEVC, a CU or a TU can only be square shape, while a PU may be square or rectangular shape for an inter predicted block. One coding block may be further split into four square sub-blocks, and a transformation performed on each sub-block (i.e., TU). Each TU may be further split recursively (using quad-tree split) into smaller TUs, which is called Residual Quad-Tree (RQT). At picture boundaries, HEVC employs implicit quad-tree split so that a block will keep quad-tree splitting until the size fits the picture boundary.
As shown in
In a QTBT partitioning scheme, parameters including, but not limited to, CTU size (i.e., the root node size of a QT, similar to the concept in HEVC), the minimum allowed QT leaf node size (i.e., MinQTSize), the maximum allowed BT root node size (i.e., MaxBTSize), the maximum allowed BT depth (i.e., MaxBTDepth), and the minimum allowed BT leaf node size (i.e., MinBTSize).
For example, a QTBT partitioning scheme may be as follows. The CTU size may be set to 128×128 luma samples with two corresponding 64×64 blocks of chroma samples, the MinQTSize is set as 16×16, the MaxBTSize is set as 64×64, the MinBTSize (for both width and height) is set as 4×4, and the MaxBTDepth is set as 4. The QT partitioning may be applied to the CTU first to generate QT leaf nodes. The QT leaf nodes may have a size from 16×16 (i.e., the MinQTSize) to 128×128 (i.e., the CTU size). If the leaf QT node is 128×128, it will not be further split by the BT since the size exceeds the MaxBTSize (i.e., 64×64). In some embodiments, the leaf QT node may be further partitioned by the BT. Therefore, the QT leaf node is also the root node for the BT and has a BT depth of zero. When the BT depth reaches MaxBTDepth (i.e., 4), no further splitting is considered. When the BT node has a width equal to MinBTSize (i.e., 4), no further horizontal splitting is considered. Similarly, when the BT node has a height equal to MinBTSize, no further vertical splitting is considered. The leaf nodes of the BT are further processed by prediction and transform processing without any further partitioning. In the JEM, for example, the maximum CTU size is 256×256 luma samples.
The QTBT partitioning scheme supports flexibility for the luma and chroma to have a separate QTBT structure. Currently, for P and B slices, the luma and chroma CTBs in one CTU share the same QTBT structure. However, for I slices, the luma CTB is partitioned into CUs by a QTBT structure, and the chroma CTBs are partitioned into chroma CUs by another QTBT structure. This means that a CU in an I slice consist of a coding block of the luma component or coding blocks of two chroma components, and a CU in a P or B slice consist of coding blocks of all three color components.
In HEVC, inter prediction for small blocks is restricted to reduce the memory access of motion compensation, such that bi-prediction is not supported for 4×8 and 8×4 blocks, and inter prediction is not supported for 4×4 blocks. In the QTBT as implemented in the JEM-7.0, these restrictions are removed.
In merge mode, implicitly derived motion information is directly used for prediction sample generation of a current CU. The merge mode with motion vector differences (MMVD) is introduced in VVC. A MMVD flag is signalled right after sending a skip flag and merge flag to specify whether MMVD mode is used for the CU. In MMVD, after a merge candidate is selected, it may be further refined by the signalled MVDs information. The MVDs information may include a merge candidate flag, an index to specify motion magnitude, and an index for indication of motion direction. In merge mode, one for the first two merge candidate flags in the merge list is selected to be used as MV basis. The merge candidate flag is signalled to specify which flag is used.
A distance index specifies the motion magnitude information and indicates a pre-defined offset from the starting point.
The direction index represents the direction of the MVD relative to the starting point. The direction index may represent one of the four directions, as shown in Table 2 below. It's noted that the meaning of the MVD sign may be variant according to the information of the starting MVs. When the starting MVs are uni-prediction MVs or bi-prediction MVs with both lists pointing to the same side of a current picture (i.e., POCs of two references are both larger than the POC of the current picture, or the POCs of the two references are both smaller than the POC of the current picture), the sign in Table 2 specifies the sign of MV offset added to the starting MV. When the starting MVs are bi-prediction MVs with the two MVs pointing to the different sides of the current picture (i.e., the POC of one reference is larger than the POC of the current picture, and the POC of the other reference is smaller than the POC of the current picture), and the difference of the POC in list 0 (L0) is greater than the one in list 1 (L1), the sign in Table. 2 specifies the sign of MV offset added to the L0 MV component of the starting MV and the sign for the L1 MV has the opposite value. If the difference of the POC in L1 is greater than L0, the sign in Table. 2 specifies the sign of the MV offset added to the L1 MV component of the starting MV and the sign for the L0 MV has the opposite value.
The MVD is scaled according to the difference of POCs in each direction. If the differences of POCs in both lists are the same, no scaling is needed. If the difference of POC in L0 is larger than the one of L1, the MVD for L1 is scaled. If the POC difference of L1 is greater than L0, the MVD for L0 is scaled in the same way. If the starting MV is uni-predicted, the MVD is added to the available MV.
In VVC, besides the normal unidirectional prediction and bi-directional prediction mode MVD signalling, symmetric MVD mode for bi-directional MVD signalling may be applied. In the symmetric MVD mode, motion information including reference picture indices of both L0 and L1 and MVD of L1 may be derived (not signaled).
The decoding process of the symmetric MVD mode is as follows. First, at the slice level, variables BiDirPredFlag, RefIdxSymL0 and RefIdxSymL1 are derived. For example, if the mvd_l1_zero_flag is 1, then BiDirPredFlag is set equal to 0. If the nearest reference picture in L0 and the nearest reference picture in L1 form a forward and backward pair of reference pictures or a backward and forward pair of reference pictures, then BiDirPredFlag is set to 1, and both L0 and L1 reference pictures are short-term reference pictures. Otherwise, BiDirPredFlag is set to 0. Second, at the CU level, a symmetrical mode flag indicating whether symmetrical mode is used or not is explicitly signaled if the CU is bi-prediction coded and BiDirPredFlag is equal to 1. When the symmetrical mode flag is true (e.g., equal to 1), only mvp_l0_flag, mvp_l1_flag, and MVD0 are explicitly signaled. The reference indices for L0 and L1 are set equal to the pair of reference pictures, respectively. Lastly, MVD1 is set equal to (−MVD0).
In AV1, for each coded block in an inter frame, if the mode of the current block is not skip mode but inter-coded mode, then another flag is signaled to indicate whether single reference mode or compound reference mode is used for the current block. A prediction block may be generated by one motion vector in single reference mode. In compound reference mode, the prediction block is generated by a weighted averaging of two prediction blocks derived from two motion vectors. Modes that may be signaled for a single reference case are detailed in Table 3 below.
Modes that may be signaled for a compound reference case are detailed in Table 4 below.
AV1 allows ⅛ pixel motion vector precision (or accuracy). Syntaxes may be used to signal the motion vector difference in reference frame L0 or L1 as follows. Syntax mv_joint specifies which components of the motion vector difference are non-zero. Syntax mv_joint value of 0 indicates there is no non-zero MD along either horizontal or vertical direction, value of 1 indicates there is non-zero MVD only along horizontal direction, value of 2 indicates there is non-zero MVD only along vertical direction, and value of 3 indicates there is non-zero MVD along both horizontal and vertical direction. Syntax mv_sign specifies whether a motion vector difference is positive or negative. Syntax mv_class specifies the class of the motion vector difference. As shown in Table 5 below, a higher class means that the motion vector difference has a larger magnitude. Syntax Hhmv_bit specifies the integer part of the offset between the motion vector difference and a starting magnitude of each MV class. Syntax mv_fr specifies the first two fractional bits of the motion vector difference. Syntax mv_hp specifies the third fractional bit of the motion vector difference.
For NEW_NEARMVV and NEAR_NEWMV modes (shown in Table 4), the precision of the MD depends on the associated class and the magnitude of MVD. Firstly, fractional MVD is allowed only if MVD magnitude is equal to or less than one-pixel. Secondly, only one MVD value is allowed when the value of the associated MV class is equal to or greater than MV_CLASS_1, and the MVD value in each MV class is derived as 4, 8, 16, 32, 64 for MV class 1 (MV_CLASS_1), 2 (MV_CLASS_2), 3 (MV_CLASS_3), 4 (MV_CLASS_4), or 5 (MV_CLASS_5). The allowed MVD values in each MV class are shown in Table 6.
In some embodiments, if the current block is coded using NEW_NEARMV or NEAR_NEWMV mode, one context is used for signaling mv_joint or mv_class. If the current block is not coded using NEW_NEARMV or NEAR_NEWMV mode, another context is used for signaling mv_joint or mv_class.
A new inter coded mode (i.e., JOINT_NEWMV) may be applied to indicate whether the MVDs for two reference lists are jointly signaled. If the inter prediction mode is equal to JOINT_NEWMV mode, the MVDs for reference L0 and reference L1 are jointly signaled. As such, only one MVD, named as joint_mvd, may be signaled and transmitted to a decoder, and delta MVs for reference L0 and reference L1 may be derived from joint_mvd. JOINT_NEWMV mode is signaled together with NEAR_NEARMV, NEAR_NEWMV, NEW_NEARMV, NEW_NEWMV, and GLOBAL_GLOBALMV mode. No additional contexts may be added.
When JOINT_NEWMV mode is signaled, and the POC distance between two reference frames and a current frame are different, MVD is scaled for reference L0 or reference L1 based on the POC distance. To be specific, the distance between reference frame L0 and the current frame is noted as td0 and the distance between reference frame L1 and the current frame is noted as td1. If td0 is equal to or larger than td1, then joint_mvd is directly used for reference L0 and the mvd for reference L1 is derived from joint_mvd based on the following Equation (1).
If td1 equal to or larger than td0, then joint_mvd is directly used for reference L1 and the mvd for reference L0 is derived from joint_mvd based on the following Equation (2).
A new inter coded mode (i.e., AMVDMV) may be added to single reference case. When AMVDMV mode is selected, it indicates that AMVD is applied to the signal MVD. A flag, for example, amvd_flag may be added under JOINT_NEWMV mode to indicate whether AMVD is applied to joint MVD coding mode or not. When adaptive MVD resolution is applied to joint MVD coding mode, named as joint AMVD coding, MVD for two reference frames are jointly signaled and the precision of MVD is implicitly determined by MVD magnitudes. MVD for two (or more than two) reference frames are jointly signaled, and conventional MVD coding is applied.
In adaptive motion vector resolution (AMVR), initially proposed in CWG-C012, a total of seven MV precisions (8, 4, 2, 1, ½, ¼, ⅛) are supported. For each prediction block, AVM encoder searches all the supported precision values and signals the best precision to the decoder. To reduce the encoder run-time, two precision sets are supported. Each precision set contains 4-predefined precisions. The precision set is adaptively selected at the frame level based on the value of maximum precision of the frame. Similar to AV1, the maximum precision is signaled in the frame header. Table 7 summarizes the supported precision values based on the frame level maximum precision.
In AVM software (similar to AV1), there is a frame level flag to indicate if the MVs of the frame contain sub-pel precisions or not. The AMVR is enabled only if the value of cur_frame_force_integer_mv flag is 0. In the AMVR, if precision of the block is lower than the maximum precision, motion model and interpolation filters are not signaled. If the precision of a block is lower than the maximum precision, motion mode is inferred to translation motion and an interpolation filter is inferred to a REGULAR interpolation filter. Similarly, if the precision of the block is either 4-pel or 8-pel, inter-intra mode is not signaled and inferred to be 0.
Motion compensation typically assumes a translational motion model between the reference and target block. However, warped motion utilizes an affine model. The affine motion model may be represented by Equation (3).
where [x, y] are coordinates of the original pixel and [x′,y′] are the warped coordinates of the reference block. According to Equation (3), up to six parameters are needed to specify the warped motion: a3 and b3 specify a conventional translational MV; a1 and b2 specify the scaling along the MV; and a2 and b1 specify the rotation.
In global warped motion compensation, global motion information is signaled for each inter reference frame, which includes a global motion type and a number of motion parameters. The global motion types and numbers of associated parameters are listed in Table 9.
After signaling the reference frame index, if global motion is selected, the global motion type and the parameters associated with the given reference frame are used for the current coding block.
In local warped motion compensation, local warped motion is allowed for an inter coding block when the following conditions are met. First, the current block must use a single reference prediction. The width or height of the coding block must be greater than or equal to eight. Finally, at least one of the adjacent neighbouring blocks must use the same reference frame as the current block.
If local warped motion is used for the current block, the affine model parameters are estimated by mean-squared minimization of the difference between the reference and modeled projections based on the MVs of the current block and its adjacent neighboring blocks. To estimate the parameters of local warped motion, if the neighboring block uses the same reference frame as the current block, a projection sample pair of the center sample in the neighboring block and its corresponding sample in the reference frame are obtained. Subsequently, three extra samples are created by shifting the center position by a quarter sample in one or both dimensions. These extra samples may also be considered as projection sample pairs to ensure the stability of a model parameter estimation process.
The MVs of neighboring blocks, which are used to derive the motion parameters, are referred to as motion samples. The motion samples are selected from neighboring blocks that use the same reference frame as the current block. Note that the warped motion prediction mode is only enabled for blocks that use a single reference frame.
A merge with motion vector difference (MMVD) may be used for either skip or merge modes with a motion vector expression method. The MMVD re-uses merge candidates in VVC. Among the merge candidates, a candidate may be selected, and further expanded by the proposed motion vector expression method. The MMVD provides a new motion vector expression with simplified signaling. The expression method includes starting point, motion magnitude, and motion direction. The MMVD techniques use a merge candidate list in VVC. But only candidates which have a default merge type (MRG_TYPE_DEFAULT_N) are considered for the MMVD's expansion.
If the number of the base candidate is equal to 1, the base candidate IDX is not signaled. A distance index represents the motion magnitude information. The distance index indicates the pre-defined distance from the starting point information. The pre-defined distance may be as follows in Table 11.
A direction index represents the direction of the MVD relative to the starting point. The direction index may represent the four directions as shown in Table 12.
An MMVD flag may be signaled right after sending a skip flag and a merge flag. If skip and merge flag is true, the MMVD flag is parsed. If MMVD flag is equal to 1, the MMVD syntaxes are parsed. But, if not 1, an AFFINE flag is parsed. If the AFFINE flag is equal to 1, that is AFFINE mode. If the AFFINE flag is not equal to 1, then the skip/merge index is parsed for the skip/merge mode in a reference software (e.g., VTM).
There are several limitations in the design of the local warp motion or local warp motion mode in AV1. For example, local warped motion mode is only applicable in the case of single reference pictures, the local warped motion model parameters must be derived from the motion samples associated with the current block and neighboring blocks without considering the derived motion model from neighboring blocks, and there are no adjustments on motion samples even if they are not accurate to be used to derive the local warped motion model parameters. In some embodiments, the warp motion mode may be applied to compound prediction modes (i.e., multiple reference picture). In some embodiments, the warp motion parameter used for reference pictures in L0 and L1 may be derived separately using motion vectors of a neighboring block and current block that are associated with reference pictures in L0 and L1. In some embodiments, one or more warp model(s) may be derived using the MVs of the neighboring blocks and current blocks. For example, if one warp model is derived, the MVs of neighboring blocks which have the same reference picture as the reference pictures in L0 of the current block or reference pictures in L1 of the current block are used. The derived warp model may then be used to generate the warp predictors for both reference pictures in L0 and L1. In another example, if two warp models are derived, the MVs of neighboring blocks which have the same the same reference picture as the reference pictures in L0 of the current block are used to derive the warp model for the reference pictures in L0. Further, the MVs of neighboring blocks which have the same reference picture as the reference pictures in L1 of the current block are used to derive the warp model for reference pictures in L1. Therefore, two warp models are used to generate the warp predictor for the reference pictures in L0 and L1 correspondingly.
In some embodiments, a weighted average of the warp prediction for the reference pictures L0 and L1 may be used as the final predictor.
In some embodiments, the warp mode parameter may be derived only for one of the multiple reference pictures.
In some embodiments, whether the warp motion model is applied or not may be signaled separately for reference pictures in L0 and reference pictures in L1. Whether warp motion model is applied for a reference picture list may be implicitly derived by coded information, including, but not limited to: neighboring block MVs, neighboring block motion models (whether warp, translational or optical flow motion models are applied), etc.
In some embodiments, the warp motion model may be shared or mirrored between reference pictures L0 and L1.
In some embodiments, warp motion may be applied to only one of reference frame (or picture), either a reference frame in L0 or L1. In some embodiments, translational motion is applied to the other reference list (that warp motion has not been applied to), and the weighted average between the prediction samples from warp motion and translational motion are used as the final prediction of current block. In some embodiments, the weighted average between the warp motion and intra prediction are used as the final prediction of current block. An intra prediction mode for the current block may be pre-fixed or signaled into the bitstream. In one example, the intra prediction mode is pre-fixed as DC or a smooth prediction mode. In some embodiments, other averaging methods, such as wedge compound mode between warped motion and translational motion/intra prediction are used for the final prediction of the current block.
In some embodiments, warp motion models may be inherited from neighboring blocks or a local warp mode coded block in one reference picture. A warp model list may be created both at the encoder and the decoder side of the video coding. The entries of the warp model list are the warp models of the neighboring blocks of the current block. The neighboring block may be, but not limited to, adjacent spatial neighbors, non-adjacent spatial neighbors, temporal neighbors, etc. The size of the warp model list may be fixed (pre-defined or signaled in the high-level flags) or dynamic. The index that indicates which entry is used for warp prediction may be signaled into the bitstream. The warp model that is generated using surrounding MVs and a current MV may also be an entry of the warp model list. One or more generated warp models (depending on different rules) may be elements of the warp model list. To insert the warp model candidate into the warp model list, for example, the reference picture of the neighboring block must be same as the reference picture of the current block. The warp model list insertion may be pruned so that no identical model is allowed in the warp model list. A model bank may be created at the encoder and/or the decoder side. The warp model bank may be updated on the fly after encoding/decoding of a coded block. Candidates from the bank may be inserted to the warp model list.
In some embodiments, if one neighboring block is coded using warped motion mode, the associated warp motion model parameters may be inherited for the current block. The inherited motion model may be used as the predictor, namely warp motion predictor (WMP), of the warp motion model of the current block. According to some embodiments, the inherited motion model may be used as the predictor, and the predictor may be directly used as the warp motion model of the current block. According to some embodiments, the inherited motion model may be used as the predictor, and the difference between the actual warp motion model parameter and the motion model predictor, namely warp motion difference (WMD), is signaled for the current block.
In some embodiments, when the warp motion model is inherited from a local warp mode coded block in one reference picture, the block is identified by a displacement vector pointing from current block to that block in the reference picture. This displacement vector may be signaled or implicitly derived. When multiple blocks are used to derive the inherited warp motion model, the selection of the block may be signaled or determined based on a predefined rule.
In some embodiments, a correction (or delta value) is signaled to the local warp motion model parameters that are derived from motion samples. For example, when there are in total N parameters in the local warp motion model (N may include, but not limited, to 2, 4, 6, delta values on top of a selected M parameters of the N parameters) may be signaled to indicate the actual parameters used in the local warp motion models. The delta values signaled for one selected warp motion model parameter may be used as the predictor of the delta value signaled for another selected warp motion model parameter. In some embodiments, when local warp motion is applied for compound prediction mode, the signaled delta value for one reference picture may be used as the predictor of the delta value for another reference picture.
In some embodiments, the predictor may be mirrored delta value and/or may be the mirrored delta value multiplied by a scaling factor. The scaling factor may depend on the distance of the reference picture from the current picture.
In some embodiments, a motion vector difference may be signaled for one or multiple of the motion samples, and the associated motion vector is added with the signaled motion vector difference before being used as motion samples for deriving local warp motion model. The motion vector difference may be signaled using the MMVD approach. In some embodiments, the motion vector difference is signaled for sub-block motion vectors or sample-based motion vectors that are derived based on the current used warp model.
In some implementations, one or more process blocks of
As shown in
At operation 812 the method 810 may include parsing the video data into blocks, wherein the blocks are associated with reference picture lists.
At operation 813 the method 810 may include generating a warp model used for a first reference picture list and a second reference picture list of a current block, included in the reference picture lists, based on motion vectors of the current block and adjacent blocks to the current block.
At operation 814 the method 810 may include decoding a frame among the first reference picture list and the second reference picture list by applying the warp model to the frame.
Although
As shown in
The obtaining code 911 is configured to cause the at least one processor to obtain video data.
The parsing code 912 is configured to cause the at least one processor to parse the obtained video data into blocks. Each of the blocks may be associated with reference picture lists.
The generating code 913 is configured to cause the at least one processor to generate a warp model used for a first reference picture list and a second reference picture list of a current block, included in the reference picture lists, based on motion vectors of the current block and adjacent blocks to the current block.
The decoding code 914 is configured to cause at least one processor to decode a frame among the first reference picture list and the second reference picture list by applying the warp model to the frame.
Although
Embodiments described herein may be used separately or combined in any order. Further, each of the methods (or embodiments), encoder, and decoder may be implemented by processing circuitry (e.g., one or more processors or one or more integrated circuits). In one example, the one or more processors execute a program that is stored in a non-transitory computer-readable medium. For example, the term block may be interpreted as a prediction block, a coding block, or a coding unit (i.e., CU).
Computer 102 (
Processor 820 may be implemented in hardware, software, or a combination of hardware and software. Processor 820 is a central processing unit (CPU), a graphics processing unit (GPU), an accelerated processing unit (APU), a microprocessor, a microcontroller, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or another type of processing component. In some implementations, processor 820 includes one or more processors capable of being programmed to perform a function. Bus 826 includes a component that permits communication among the internal components 800A,B.
The one or more operating systems 828, the software program 108 (
Each set of internal components 800A,B may also include a R/W drive or interface 832 to read from and write to one or more portable computer-readable tangible storage devices 936 such as a CD-ROM, DVD, memory stick, magnetic tape, magnetic disk, optical disk or semiconductor storage device. A software program, such as the software program 108 (
Each set of internal components 800A,B may also include network adapters or interfaces 836 such as a TCP/IP adapter cards; wireless Wi-Fi interface cards; or 3G, 4G, or 5G wireless interface cards or other wired or wireless communication links. The software program 108 (
Each of the sets of external components 900A,B may include a computer display monitor 920, a keyboard 930, and a computer mouse 934. External components 900A,B may also include touch screens, virtual keyboards, touch pads, pointing devices, and other human interface devices. Each of the sets of internal components 800A,B may also include device drivers 840 to interface to computer display monitor 920, keyboard 930 and computer mouse 934. The device drivers 840, R/W drive or interface 832 and network adapter or interface 836 comprise hardware and software (stored in storage device 830 and/or ROM 824).
It is understood in advance that although this disclosure includes a detailed description on cloud computing, implementation of the teachings recited herein are not limited to a cloud computing environment. Rather, some embodiments are capable of being implemented in conjunction with any other type of computing environment now known or later developed.
Cloud computing is a model of service delivery for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, network bandwidth, servers, processing, memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with minimal management effort or interaction with a provider of the service. This cloud model may include at least five characteristics, at least three service models, and at least four deployment models.
Characteristics are as follows:
On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with the service's provider.
Broad network access: capabilities are available over a network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).
Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand. There is a sense of location independence in that the consumer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).
Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.
Measured service: cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer of the utilized service.
Service Models are as follows:
Software as a Service (SaaS): the capability provided to the consumer is to use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based e-mail). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.
Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems, or storage, but has control over the deployed applications and possibly application hosting environment configurations.
Infrastructure as a Service (IaaS): the capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).
Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party and may exist on-premises or off-premises.
Community cloud: the cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be managed by the organizations or a third party and may exist on-premises or off-premises.
Public cloud: the cloud infrastructure is made available to the general public or a large industry group and is owned by an organization selling cloud services.
Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancing between clouds).
A cloud computing environment is service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure comprising a network of interconnected nodes.
Referring to
Referring to
Hardware and software layer 60 includes hardware and software components. Examples of hardware components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62; servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some embodiments, software components include network application server software 67 and database software 68.
Virtualization layer 70 provides an abstraction layer from which the following examples of virtual entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73, including virtual private networks; virtual applications and operating systems 74; and virtual clients 75.
In one example, management layer 80 may provide the functions described below. Resource provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In one example, these resources may comprise application software licenses. Security provides identity verification for cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access to the cloud computing environment for consumers and system administrators. Service level management 84 provides cloud computing resource allocation and management such that required service levels are met. Service Level Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing resources for which a future requirement is anticipated in accordance with an SLA.
Workloads layer 90 provides examples of functionality for which the cloud computing environment may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data analytics processing 94; transaction processing 95; and Video Encoding/Decoding 96. Video Encoding/Decoding 96 may encode/decode video data using delta angles derived from nominal angles.
Some embodiments may relate to a system, a method, and/or a computer readable medium at any possible technical detail level of integration. The computer readable medium may include a computer-readable non-transitory storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out operations.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program code/instructions for carrying out operations may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects or operations.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code—it being understood that software and hardware may be designed to implement the systems and/or methods based on the description herein.
The descriptions of the various aspects and embodiments have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Even though combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
While this disclosure has described several exemplary embodiments, there are alterations, permutations, and various substitute equivalents, which fall within the scope of the disclosure. It will thus be appreciated that those skilled in the art will be able to devise numerous systems and methods which, although not explicitly shown or described herein, embody the principles of the disclosure and are thus within the spirit and scope thereof.
This application is based on and claims priority to U.S. Provisional Patent Application No. 63/358,735, filed on Jul. 6, 2022, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63358735 | Jul 2022 | US |