The present invention is directed to a series of methods and systems for making and using localized excess protons and more importantly for creating and using asymmetric function-gated isothermal electricity power generator systems to isothermally utilize environmental heat energy to generate electricity to do useful work.
The newly developed proton-electrostatics localization hypothesis in understanding proton-coupling bioenergetics over the Nobel-prize work of Peter Mitchell's chemiosmotic theory (Lee 2012 Bioenergetics 1:104; doi:10.4172/2167-7662.1000104; Lee 2015 Bioenergetics 4: 121. doi:10.4172/2167-7662.1000121) resulted in the following new protonic motive force (pmf) equation that may potentially represent a major breakthrough advance in the science of bioenergetics:
Where Δψ is the electrical potential difference across the membrane; R is the gas constant; T is the absolute temperature in Kelvin (K); F is the Faraday constant; pHnB is pH of the cytoplasmic (negative n side) bulk phase; [H+pB] is the proton concentration in the periplasmic (positive p side) bulk aqueous phase such as in the case of alkalophilic bacteria; C/S is the specific membrane capacitance; l is the thickness for localized proton layer; KPi is the equilibrium constant for non-proton cations (Mi+pB) to exchange for localized protons; and [Mi+pB] is the concentration of non-proton cations in liquid culture medium (Lee 2015 Bioenergetics 4: 121. doi:10.4172/2167-7662.1000121).
The core concept of the proton-electrostatics localization hypothesis is based on the premise that a biologically-relevant water body, such as the water within a bacterium, can act as a proton conductor in a manner similar to an electric conductor with respect to electrostatics. This is consistent with the well-established knowledge that protons can quickly transfer among water molecules by the “hops and turns” mechanism. From the charge translocation point of view, it is noticed that hydroxyl anions are transferred in the opposite direction of proton conduction. This understanding suggests that excess free protons in a biologically-relevant water body behave like electrons in a perfect conductor. It is well known for a charged electrical conductor at static equilibrium that all extra electrons reside on the conducting body's surface. This is expected because electrons repel each other, and, being free to move, they will spread out to the surface. By the same token, it is reasonable to expect that free excess protons (or conversely the excess hydroxyl anions) in a biologically-relevant water body will move to its surface. Adapting this view to excess free hydroxyl anions in the cytoplasm (created by pumping protons across the cytoplasm membrane through the respiratory redox-driven electron-transport-coupled proton transfer into the liquid medium outside the cell), they will be electrostatically localized along the water-membrane interface at the cytoplasmic (n) side of the cell membrane such as in the case of alkalophilic bacteria. In addition, their negative charges (OH−) will attract the positively charged species (H+) outside the cell to the membrane-water interface at the periplasmic (p) side.
That is, when excess hydroxyl anions are created in the cytoplasm by the redox-driven proton pump across the membrane leaving excess protons outside the cell, the excess hydroxyl anions in the cytoplasm will not stay in the bulk water phase because of their mutual repulsion. Consequently, they go to the water-membrane interface at the cytoplasmic (n) side of the membrane where they then attract the excess protons at the periplasmic (p) side of the membrane, forming an “excess anions-membrane-excess protons” capacitor-like system. Therefore, the protonic capacitor concept is used to calculate the effective concentration of the ideal localized protons [HL+]0 at the membrane-water interface in a pure water-membrane-water system assuming a reasonable thickness (l) for the localized proton layer using the following equation:
where C/S is the membrane capacitance per unit surface area; F is the Faraday constant; κ is the dielectric constant of the membrane; ε0 is the electric permittivity; d is the thickness of the membrane; and l is the thickness of the localized proton layer. This proton-capacitor equation [2a] is a foundation for the newly revised pmf equation [1], which includes an additional term that accounts for the effect of non-proton cations exchanging with the localized protons.
By rearranging Eq. 2a, we can also solve for the membrane potential ϕψ in terms of the ideal localized excess proton population density [HL+]0 and the membrane capacitance properties including parameters such as the membrane capacitance per unit surface area C/S; the Faraday constant F; the membrane dielectric constant κ; the electric permittivity ε0; the membrane thickness d; and the localized proton layer thickness l. Accordingly, the membrane potential Δψ can now be expressed as a function of the effective concentration of the ideal localized protons [HL+]0 at the membrane-water interface in an idealized pure water-membrane-water system using the following equation:
From this equation [2b], it is now quite clear that it is the accumulation of excess protons and the resulting ideal localized proton density [HL+]0 that essentially builds the membrane potential Δψ in proton-coupling bioenergetics systems.
Recently, using nanoscale measurements with electrostatic force microscopy, the dielectric constant (κ) of a lipid bilayer was determined to be about 3 units, which is in the expected range of 2˜4 units (Grames et al, Biophysical Journal 104: 1257-1262; Heimburg 2012 Biophysical Journal 103: 918-929.). Table 1 lists the calculation results for localized protons for an idealized pure water-membrane-water system with Eq. 2a using a lipid membrane dielectric constant κ of 3 units, membrane thickness d of 4 nm, trans-membrane potential difference Δψ of 180 mV, and three assumed values for the proton layer thickness of 0.5, 1.0, and 1.5 nm.
As shown in Table 1, the ideal localized proton density per unit area was calculated to be 1.238×10−8 moles H+/m2. The calculated effective concentration of ideal localized proton) ([HL+]0) was in a range from 8.25 mM to 24.76 mM if the localized proton layer is around 1.0±0.5 nm thick. The calculated effective pH of localized proton layer (pHL0) was 1.61, 1.91, and 2.08 assuming that the ideal localized proton layer is 0.5, 1.0, and 1.5-nm thick, respectively. This calculation result also indicated that localized excess protons may be created at a water-membrane interface for possible industrial applications such as acid-etching of certain metals and/or protonation of certain micro/nanometer materials without requiring the use of conventional acid chemicals such as nitric and sulfuric acids.
International Patent Application Publication No. WO2017/007762 A1 discloses a set of methods on creating electrostatically localized excess protons to be utilized as a clean “green chemistry” technology for industrial applications and, more importantly, as a special energy-renewing technology process to isothermally utilize environmental heat through electrostatically localized protons at a liquid-membrane interface for generation of local protonic motive force (equivalent to Gibbs free energy) to do useful work such as driving ATP synthesis. The discovery of this isothermal protonic environmental-heat-utilization energy-renewing process without being constrained by the Second Law of Thermodynamics may have seminal scientific and practical implications for energy and environmental sustainability on Earth. Further development and extension from this fundamental science and engineering breakthrough to the other fields such as the electron-based systems for energy renewal is highly desirable.
The present invention revisits the systems of localized excess protons with new updates including protonic wires and, more importantly, discloses a series of methods on the creation and use of asymmetric function-gated isothermal electron power generator systems for isothermal electricity production by isothermally utilizing environmental heat energy which is also known as the latent (existing hidden) heat energy from the environment without requiring the use of conventional energy resources such as a high temperature gradient. A special energy-recycling and renewing technology is provided with the associated methods and systems to extract environmental heat energy including molecular and/or electron thermal motion energy for generating local protonic motive force (equivalent to Gibbs free energy) and more significantly for producing isothermal electricity to do useful work, which may have seminal scientific and practical implications for energy and environmental sustainability on Earth.
The present invention first describes a series of innovative methods that creates localized excess protons at a water-substrate or water-membrane interface that may be employed in combination of protonic wires for industrial process applications. According to one of the various embodiments, an open-circuit water electrolysis process uses a pair of anode and cathode electrodes in a special excess proton production and proton-utilization system, which can treat a series of substrate plate/film materials by forming and using an excess protons-substrate-hydroxyl anions capacitor-like system. The technology enables protonation and/or proton-driven oxidation of plate/film materials in a pure water environment in conjunction with a water-based protonic wire as a protonic scanner and/or writing tool. The present invention represents a remarkable clean “green chemistry” technology that does not require the use of any conventional acid chemicals including nitric and sulfuric acids for the said industrial applications and, more importantly, as a special tool to utilize latent heat energy from the environment for generation of local proton motive force (equivalent to Gibbs free energy) to do useful work such as driving ATP synthesis.
Creating and using excess protons-substrate-hydroxyl anions capacitor-like systems has been demonstrated through an experimental study. According to this experimental study, excess protons do not stay in a bulk water liquid phase in the anode chamber. Instead, they electrostatically localize at the water-membrane interface at the anode chamber and attract the excess hydroxyl anions of the cathode chamber water to the other side of the substrate film. The effective concentration of localized protons at the water-membrane interface can be well above 0.1 mM, making them potent enough to enable protonation of synthetic substrate materials such as (poly) aniline. The use of localized excess protons as a micro/nanometer tool can also perform proton-etching of certain substrate materials such as aluminum, iron, and copper to create various desirable proton-etching patterns on a substrate membrane, film, or a substrate plate.
Since the excess-proton treatment such as the protonation of synthetic substrate materials such as (poly)aniline or proton-etching of micro/nanometer materials can be operated in a pure water environment with a neutral bulk-phase pH, when the so-treated substrate is taken out of the pure water chamber system, it could immediately emerge as a clean quality product (any residual pure water can be readily dried off) without requiring any additional washing/cleaning step that a conventional acid-treatment process would require. Therefore, the method disclosed in this invention represents a remarkably clean “green chemistry” technology.
The application of localized excess protons with a liquid membrane chamber system provides a special energy-recycling and renewing technology process function to extract environmental heat from ambient temperature environment including the molecular thermal motion energy for generating local protonic motive force (equivalent to Gibbs free energy) to do useful work such as driving ATP synthesis.
According to one of the various embodiments, the liquid membrane chamber system is a multi-chamber excess proton production and utilization system comprising: a) Multiple membranes are placed in between an anode chamber and a cathode chamber, forming multiple induction chambers among multiple membranes; b) Chamber wall is made of water- and proton-impermeable, chemically-inert and electrically insulating materials; c) Proton users comprising ATP synthase are embedded with each of the multiple membranes.
According to another of the various embodiments, the special energy-recycling and renewing technology process has a special feature that employs multiple membranes, each with a relatively smaller membrane potential, in a multi-chamber system that can be employed with use of a relatively small electrolysis voltage for generating excess protons to extract environmental heat molecular thermal motion energy to create a total pmf value much larger than the input electrolysis voltage.
According to another of the various embodiments, the special energy-recycling and renewing technology process to extract environmental heat energy associated with localized protons for generating local protonic motive force (equivalent to Gibbs free energy) comprising the following steps and features: a) Through use of the “open-circuit” water-electrolysis process, excess protons are generated in anode liquid chamber while excess hydroxyl anions are created in cathode liquid chamber; b) The generated excess protons electrostatically localize themselves primarily along the water-membrane interface at the positive (anodic) interface (PI) site while the excess anions electrostatically localize themselves primarily along the water-membrane interface at the negative (cathodic) interface (NI) site; c) The excess protons at PI site in conjunction with the excess anions at NI site electrostatically induce the formation of induced anions at the induced negative interface (INI) site(s) and the induced protons at the induced positive interface (IPI) site(s) in the induction liquid chambers; d) The formation of the electrostatically localized protons at the water-membrane interface constitutes a type of “negative entropy” event resulting in the formation of multiple “localized protons-membrane-anions” capacitor-like structures; e) The formation of multiple “localized protons-membrane-anions” capacitor-like structures results in the formation of membrane potential across each of the membranes; f) In addition to the generation of membrane potential, significant amount of “bonus” local proton motive force is also created from the “entropy effect” of the localized protons since their thermal molecular motion energy can drive nanometer scale molecular machines such as F0F1-ATP synthase embedded in the membrane.
According to another of the various embodiments, the special energy-recycling and renewing technology process has a preferred practice to place the proton-generating anode electrode well into the bulk phase liquid and to keep the mouths of proton users being located rightly within the localized excess protons layer along the membrane surface, for the best effect to utilize the environmental heat associated with the molecular thermal motion energy of localized protons to perform useful work such as driving the synthesis of ATP, enhancing the protonation of certain synthetic polymer materials, and driving the proton-etching of certain substrate metal plates.
According to exemplary embodiments, the utilization of environmental heat with localized protons to recycle/utilize the fully dissipated waste heat energy, which conventionally is thought to be totally unusable, generates local pmf to do useful work. This provides an innovative method to renew the totally “dead” heat energy in ambient temperature environment that according to the Second Law of Thermodynamics would be completely unusable. That is, the “dead” latent heat energy can now be reborn to create new Gibbs free energy in the form of local pmf in accordance with the present invention. Therefore, it fundamentally represents a special energy-recycle and energy-renew-related technology.
According to one of the exemplary embodiments, a water-based protonic wire comprises a proton-conductive water line filled in a protonic insulating tube and/or a channel, which may be used in making protonic circuits. The water-based protonic wires and protonic circuits may be employed in combination of localized excess protons for certain industrial processes and/or for certain biomedical science and technology applications. For example, the micro/nanometer-scale water-based protonic wires and artificial protonic circuits may be used to interact with certain human and/or animal tissue cells such as neurons for certain biomedical diagnosis and/or surgery treatments.
The present invention further discloses an energy renewal method for generating isothermal electricity with making and using a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container (such as a vacuum tube, bottle or chamber) with electric conductor support to enable a series of energy recycle process functions with isothermal utilization of environmental heat energy for at least one of: a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel cooling function for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity; and c) combinations thereof.
According to one of the exemplary embodiments, the present invention teaches the making and using of an asymmetric function-gated isothermal electron-based power generator system that has a low work function (0.7 eV) Ag—O—Cs emitter and a high work function Cu metal (4.56 eV) collector installed in a chamber-like vacuum tube comprising: a Ag—O—Cs film coated on the dome-shaped top end inner surface of the chamber-like vacuum tube to serve as the emitter; a vacuum space allowing thermally emitted electrons to fly through ballistically between the emitter and collector; a Cu film coated on the inversed-dome-shaped bottom end inner surface of the chamber-like vacuum tube to serve as the collector; a first electricity outlet (such as an electric conductive wire and/or lead) connected with the emitter; and a second electricity outlet connected with the collector.
According to one of the exemplary embodiments, the present invention teaches the making and using of an integrated isothermal electricity generator system that has a narrow inter electrode space gap size for each of three pairs of emitters and collectors installed in a vacuum tube chamber set up vertically comprising: a low work function film coated on the first electric conductor plate bottom surface to serve as the first emitter; a first narrow space allowing thermally emitted electrons to flow through ballistically between the first pair of emitter and collector; a high work function film coated on the second electric conductor top surface to serve as the first collector; a low work function film coated on the second electric conductor bottom surface to serve as the second emitter; a second narrow space allowing thermally emitted electrons to flow through ballistically between the second pair of emitter and collector; a high work function film coated on the third electric conductor top surface to sever as a collector; a low work function film coated on the third electric conductor bottom surface to serve as the third emitter; a third narrow space allowing thermally emitted electrons to flow through ballistically between the third pair of emitter and collector; a high work function film coated on the fourth electric conductor top surface to serve as the terminal collector, a first electricity outlet (wire) and an Earth ground that are connected with the first electric conductor plate; and a second electric outlet (wire) that is connected with the fourth electric conductor.
According to one of the exemplary embodiments, the effect of an asymmetric function-gated isothermal electricity production is additive. Pluralities (n) of asymmetrically function-gated isothermal electricity generator systems may be employed in parallel and/or in series. When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems are used in parallel, the total steady-state electrical current (Ist(total)) is the summation of the steady-state electrical current (Ist(i)) from each of the asymmetrically function-gated isothermal electricity generator systems while the total steady-state output voltage (Vst(total)) remains the same. Conversely, when a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in series, the total steady-state output voltage (Vst(total)) is the summation of the steady-state output voltages (Vst(i)) from each of the asymmetrically function-gated isothermal electricity generator systems while the total steady-state electrical current (Ist(total)) remains the same.
According to one of the exemplary embodiments, the present invention teaches the making and using of an integrated isothermal electricity generator system that employs three pairs of exceptionally low work function Ag—O—Cs (0.5 eV) emitters and high work function Au metal (5.10 eV) collectors working in series comprising: a Ag—O—Cs film coated on the dome-shaped top end inner surface of the vacuum tube chamber to serve as the first emitter that has an electricity outlet; a first vacuum space allowing thermally emitted electrons to flow through ballistically across the first pair of emitter and collector; a Au film coated on the first middle electric conductor top surface to serve as the first collector; a Ag—O—Cs film coated on the first middle electric conductor bottom surface to serve as the second emitter; a second vacuum space allowing thermally emitted electrons to flow through ballistically across the second pair of emitter and collector; a Au film coated on the second middle electric conductor top surface to serve as the second collector; a Ag—O—Cs film coated on the second middle electric conductor bottom surface as the third emitter; a third vacuum space allowing thermally emitted electrons to flow through ballistically across the third pair of emitter and collector; and an Au film coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet.
According to another one of the exemplary embodiments, the present invention teaches the making and using of an asymmetric function-gated isothermal electricity generator system that has a pair of an exceptionally low work function Ag—O—Cs (0.5 eV) emitter and a high work function graphene (4.60 eV) collector is employed to provide cooling for a new type of novel freezer/refrigerator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity.
The present invention revisits the systems of localized excess protons and discloses a series of methods on the creation of asymmetric function-gated isothermal electron power generator systems for isothermal electricity production by isothermally utilizing latent (existing hidden) heat energy from the environment without requiring the use of conventional energy resources such as a high temperature gradient.
Accordingly, a special energy-recycling and renewing technology is disclosed with the associated methods to extract environmental heat energy including molecular and/or electron thermal motion energy for generating local proton motive force (equivalent to Gibbs free energy) and more significantly for producing isothermal electricity to do useful work, which may have seminal scientific and practical implications for energy and environmental sustainability on Earth. In particular, the present invention discloses an energy renewal method for generating isothermal electricity with a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container such as a bottle with electric conductor support to enable a series of energy recycle process functions with utilization of environmental heat energy isothermally for at least one of: a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel cooling function for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting latent energy from inside the freezer/refrigerator while generating isothermal electricity; and c) combinations thereof. The various aspects of the present invention are described in further details starting from the proton-based systems and then to the asymmetric function-gated isothermal electron power generator systems hereinbelow.
Referring to
According to one of the various embodiments, both the anode and cathode chambers are filled with pure water. The anode (N) chamber liquid level 105 is set preferably at the same level as the cathode (N) chamber liquid level 106. Both the anode (P) 101 and cathode (N) 102 are typically made of stable electrode materials such as metallic platinum, palladium, gold, copper, certain stainless steels, graphite, micro/nanometer carbon fiber materials and combinations thereof. The anode and cathode are placed into the anodic (P) liquid bulk phase 109 and the cathodic (N) liquid bulk phase 110, respectively. The excess protons and excess hydroxyl anions are generated through the use of “open-circuit” water-electrolysis by applying a direct current (DC) voltage across the anode (P) 101 and cathode (N) 102 electrodes (
According to one of the various embodiments, the direct current (DC) electric voltage applied across the anode and cathode electrodes is selected from the group consisting of 1.23 V, 1.5 V, 2 V, 3 V, 4 V, 5 V, 6 V, 7 V, 8 V, 10 V, 11 V, 12 V, 13 V, 14 V, 15 V, 17 V, 18 V, 19 V, 20 V, 21 V, 22 V, 23 V, 24 V, 25 V, 26 V, 27 V, 28 V, 29 V, 30 V, 31 V, 32 V, 35 V, 36 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, 100 V, 150 V, 200 V, 250V, 300 V, 400 V, 500 V, 600 V, 700 V, 800 V, 900 V, 1000V, 1200 V, 1500 V, 2000 V, 2500 V, 3000 V, 4000V, 5000 V, 6000 V, 8000 V, 10,000 V, 12,000 V, 15,000 V, 20,000 V, 25,000V, 30,000 V and/or within a range bounded by any two of these values. When necessary to work with a voltage above 36 V, certain electric safety protocol must be strictly followed to prevent any electric shocks and accidents.
The effective concentration of the localized excess protons at the water-substrate interface can be at a value selected from the group consisting of 0.1 mM, 1 mM, 2 mM, 3 mM, 5 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM 100 mM, 120 mM, 150 mM, 200 mM, 300 mM, 500 mM, 1 M, 2 M, 3 M, 5M, 10 M and/or within a range bounded by any two of these values, which are often orders of magnitude higher than that indicated by the bulk water liquid phase pH measurements. Therefore, according to one of the various embodiments, this type of localized excess protons may be utilized to protonate certain special materials such as (poly)aniline and/or to treat certain synthetic materials and metal surfaces such as aluminum, iron and copper by “acid etching” or oxidation by protons.
According to one of the various embodiments, the substrate plate/film (or membrane) is selected from the group consisting of protonatable materials such as (poly)aniline, and certain metal surfaces such as aluminum, iron, copper, and combinations thereof.
According to one of the various embodiments, the protonatable materials such as (poly)aniline can be protonated at the PI site 107 (
(—R—NH—)n+n H+=(—R—NH2+—)n [3]
Whereas certain polymer substrate such as a protonated (poly)aniline film may be deprotonated at the NI site 108 (
(—R—NH2+—)n+n HO−=(—R—NH—)n+n H2O [4]
Therefore, use of this invention can create a special polymer film with an asymmetric proton distribution across the film material that may confer certain special functions such as diodic properties.
According to one of the various embodiments, certain metal surfaces such as aluminum, iron, and copper can be etched or oxidized by the excess protons at the PI site 107 (
Al+2H+=Al+++H2 [5]
This proton-etching process differs from the conventional metal electroetching process that involves the use of a solution of an electrolyte (salt) rather than pure water. In the conventional metal electroetching process, the metal piece to be etched is connected to the positive pole of a source of direct electric current. A piece of the same metal is connected to the negative pole of the direct current source and is called the cathode. In order to reduce unwanted electro-chemical effects, the anode and the cathode conventionally should be of the same metal. Similarly, the cation of the electrolyte should be of the same metal as well. When the current source is turned on, the metal of the anode is dissolved and converted into the same cation as in the electrolyte and at the same time an equal amount of the cation in the solution is converted into metal and deposited on the cathode.
In contrast, the proton-etching process does not require any electrolyte (salt) since it uses pure water. Furthermore, the metal piece (substrate 103) to be etched is not directly connected with the anode. Consequently, the metal of the anode 101 is not dissolved and there is no metal deposition at the cathode 102.
According to one of the various embodiments, this proton-etching process may be employed as a micro/nanometer fabrication tool with an acid-resistant material “resist” as mask coating material just like PMMA does in the current e-beam lithographic technique. Here, the etching action will be exerted by a layer of excess protons localized at the water-substrate interface according to the proton electrostatic localization theory. With the use of protonic “resist” masks, only part of the substrate surface that is not protected by a protonic “resist” mask will be etched. In this way, many proton-etching patterns such as the word “ODU” and/or any other patterns like a round disk pattern (
Since the protonic treatment (such as the protonation of synthetic substrate materials such as (poly)aniline or proton-etching of micro/nanometer materials) can be operated in a pure water environment with neutral bulk pH, when the so-treated substrate is taken out of the chamber, it may immediately emerge as a quality product with the cleanness of pure water without requiring any additional washing/cleaning step that a conventional acid-treatment process would require. Thus, the method disclosed here in accordance with one of the various embodiments of the invention represents a remarkably clean “green chemistry” technology.
In addition, as illustrated in
Since the membrane is an insulator layer (not an electrode), the excess proton layer at the water-membrane interface is likely to be a special monolayer (with a thickness probably of about 1 nm), but definitely not an “electric double layer”. This novel feature of being an excess proton monolayer at the membrane-interface is also consistent with the fundamental understanding of the “electric double layer” theory since the excess proton layer created and demonstrated here can be understood as a kind of special extension from the second (proton) layer of the anode's “electric double layer” (
When the electrolysis voltage is turned off, the electrical polarization at both anode and cathode disappears and so does the “electric double layer”, leaving only the excess proton layer around the anode chamber water body and the similarly formed excess hydroxyl (anions) layer around the cathode chamber water body as illustrated in
The excess protons created and demonstrated experimentally here have special features. Unlike a charge-balanced (1,1) electrolyte, excess protons do not have counter ions since their counter ions, the excess anions, are on the other side of the membrane as shown in
The Debye shielding length concept is commonly used to estimate the thickness of an electric double layer. It however may not be able to accurately estimate the thickness of this special excess proton monolayer demonstrated in the invention. Since both the “electric double layer” models (including the Gouy-Chapman theory) and the Debye shielding length concept are based on charge-balanced electrolytes with cations and anions being together in the same water body, they may not be applicable to the special excess protons that do not have counter ions in their associated water body since their counter ions (excess hydroxyl anions) are completely in a separated water body on the other side of the membrane as illustrated in
Furthermore, the excess protons created and demonstrated experimentally here are fundamentally different from the protons that are attracted to the biological membrane surface by the membrane's fixed surface charges such as the negatively-charged phosphate groups of a typical biological membrane that may attract protons and other cations to its surface forming an electric double layer along the membrane negatively charged surface as expected by the Gouy-Chapman theory. That type of membrane surface charge-associated electric double layer (associated with the “surface potentials”) always exists even when the protonic motive force (pmf) is completely zero. Therefore, the membrane surface potentials-attracted protons do not contribute to the protonic motive force that drives the flow of protons across the membrane for ATP synthesis as pointed out also in bioenergetics textbooks (Nicholls & Ferguson 2013 Bioenergetics, 27-51, Academic Press). In contrast, the excess protons can electrostatically localize themselves to the water-membrane interface without requiring any membrane surface charges, which are fundamentally different from those charge-balanced protons attracted by the membrane surface potentials. The concept of excess protons, however, is not to be confused with the commonly known charge-balanced protons in water and biological systems.
The creation of an excess protons layer has recently been experimentally demonstrated at a water-membrane interface in an anode water-membrane-water cathode system using a charge-neutral and inert membrane such as a Teflon membrane in mimicking the biological systems (Saeed and Lee 2015 Bioenergetics 4: 127. doi:10.4172/2167-7662.1000127). In fact, it is this type of free excess protons that have the dynamic properties to be coupled to ATP synthase that are relevant to the protonic motive force in biological systems.
Therefore, the excess protons layer demonstrated through the experiments represents an advance having scientific and technological implications. For example, the excess protons layer may be employed as a special tool to enable the extraction of environmental heat molecular thermal motion energy to create additional protonic motive force (equivalent to Gibbs free energy) to do useful work as described herein.
According to one of the preferred embodiments, it is a preferred practice to use well-degassed liquid water that does not contain too much dissolved gases for the creation of excess protons layer at a membrane-water interface. For example, during the winter season when the laboratory temperature (typically about 22° C.) is significantly higher than the outside water supplying sources, the Millipore (filtered) water made from such a cold air-saturated water source often contains too much dissolved air gases that may slowly release the excess gases due to gas solubility change in response to temperature changes, forming numerous tiny gas bubbles on the surfaces of water chambers including the Al-Tf-Al membrane surface as was observed in one of the experiments. These tiny gas bubbles can sometimes become so problematic that they could negatively affect the formation and detection of localized protons on the Al-Tf-Al membrane surface because the gas bubbles apparently reside at the water-membrane interface and form an air-gap barrier between the membrane and the liquid water phase. For example, to eliminate this problem for improved reproducibility of the experiments, a special effort was made on the laboratory water source: the Millipore water was degassed by boiling the water through autoclave and then cooled down to room temperature before the experimental use.
Degassing of liquid water can be quickly accomplished also by use of a vacuum pump in conjunction with sonication of the liquid water. With the degassed liquid water, generation of an excess protons layer at a membrane-water interface has been experimentally demonstrated with high reproducibility. Alternatively, degassing can be accomplished by letting the liquid water to fully equilibrate with the laboratory temperature and air conditions for more than 10 days, during which liquid water can naturally (slowly) release the excess dissolved gases towards equilibration. Use of fully equilibrated liquid water which no longer generates any gas bubbles on membrane surface also produced good reproducible results.
Referring to
According to one of the various embodiments, all the three chambers (from the left to the right: the cathode chamber, the induction chamber, and the anode chamber) are filled with pure water as shown in
According to one of the various embodiments, the excess proton production system 200 (
Furthermore, according to one of the various embodiments, when necessary, certain chemicals such as sodium bicarbonate and potassium bicarbonate may be added into the induction chamber 210 to modulate (reduce) the effective concentration of the induced protons at the IPI site 211 by Na+ (or K+) cation exchange with the localized protons at the IPI site 211 to achieve more desirable results. In this way, the anode (P) chamber 205 and the cathode (N) chamber 206 can still work with pure water for production of excess protons and hydroxyl anions through the “open-circuit” water electrolysis process without the presence of any added chemicals that may interfere with the process.
The effective concentration of the electrostatically localized protons at the equilibrium of cation exchange can be calculated as:
where [HL+]0 is the ideal effective concentration of localized protons without cation exchange. Here, KPi is the equilibrium constant for non-proton cations (Mi+) to exchange for the localized protons at the water-membrane interface; [MpBi+] is the concentration of the non-proton cations in the induction chamber liquid medium; and [HpB+] is the proton concentration in the bulk phase of the induction chamber liquid medium.
Since protons have the smallest atomistic diameter and can exist as part of the water molecules, they can electrostatically distribute themselves to the water-membrane interface much more favorably than any other cations, such as Na+, Mg++ or K+. Therefore, the equilibrium constant for protons to electrostatically occupy the cation sites at the water-membrane interface (in any possible competition with any other cations) is expected to be much larger than one. Certain cation exchange experimental studies (Lee et al., 2010 Environmental Science & Technology, 44(20):7970-7974; Skjemstad et al., 2008 Communications in Soil Science and Plant Analysis, 39(5-6):926-937) have recently indicated that the equilibrium constant for protons to exchange with other cations for cation binding sites can be on the order of 4.7×10+6. Conversely, the equilibrium constant KPi for non-proton cations to delocalize the localized protons from the membrane-water interface may be in the order of around 2.1×10−7. Use of the cation exchange equilibrium constant KPi can calculate the effective concentration of the localized excess protons using Equation 6 when non-proton cations are present, which is a parameter that may be helpful also to certain practitioners in accordance of the present invention.
Referring to
According to one of the various embodiments, all the four chambers (from the left to the right: the cathode chamber, the induction chambers 310 and 314, and the anode chamber) are filled with pure water as shown in
According to one of the various embodiments, the excess proton production and utilization system 300 (
According to one of the various embodiments, many more induction chambers can be used in between the anode chamber and the cathode chamber to simultaneously treat many substrate plate/films in a single system like the system 300 (
Referring to
According to one of the various embodiments, the “excess protons-membrane-hydroxyl anions” capacitor-like structures may be employed to enable novel utilization of low-grade heat energy from the ambient temperature environment such as the environmental heat energy associated with the molecular thermal motion of the localized protons to perform useful work such as driving the synthesis of ATP (
According to one of the various embodiments, it is a preferred practice to place the proton-generating anode electrode well into the bulk phase liquid and to keep the mouths of proton users such as ATP synthase 515 being located rightly within the localized excess protons layer along the membrane surface as illustrated in
The well-established scientific knowledge that protonic motive force (pmf) is equivalent to Gibbs free energy (ΔG=−n. F. pmf, where n is proton charge and F is Faraday constant) that can be employed to do useful work as in the example of driving ATP synthesis is one of the fundamentals in the invention. It is known that ATP represents a form of chemical energy that can be used not only in living organisms but also in certain industrial biochemical engineering processes for making certain biomolecules such as nucleic acids and other compounds of importance including certain pharmaceutical-related products.
According to one of the various embodiments, the total protonic motive force (pmf) across a biological membrane and/or a bio-inspired synthetic membrane taking into account the surface localized protons can be expressed as
Here Δψ is the electrical potential difference across the membrane, R is the gas constant, T is the absolute temperature, F is Faraday's constant, [HL+] is the concentration of surface localized protons, [HpB+] is the proton concentration in the periplasmic bulk aqueous phase (equivalent to the anodic chamber liquid of
This pmf expression may be rewritten to isolate the environmental heat thermal molecular motion energy contribution due to the localized protons as follows:
The first two terms of Eq. 8 comprise the “classic” expression for the protonic motive force (pmf) used in textbooks (Nicholls and Ferguson 2013, Bioenergetics (Fourth Edition), Academic Press: Boston. p. 27-51; Skulachev, Bogachev, and Kasparinsky 2012, Principles of Bioenergetics, Springer: Berlin Heidelberg) and the third term is the local pmf component from the localized protons that may be employed as a special tool to extract thermal molecular motion energy (environmental heat) to create useful Gibbs free energy to do work according to one of the various embodiments.
For certain industrial applications, the bulk phase liquid pH (i.e., the bulk liquid phase proton concentrations) can be set to be the same. For example, a liquid medium such as pure water (pH 7.0), air-equilibrated water (pH 5.8) or a pH-buffered reaction medium can be used at the same pH for each of the all liquid chambers as shown in the example of
For some special industrial applications, certain salt solutions and/or buffer solutions may be employed in any of the liquid chambers (as shown in
Table 2 lists the exemplary pmf values calculated using Eqs. 6-8 across a mimicked biological membrane with a specific membrane capacitance per unit surface area (C/S) of 13.2 mf/m2 and a reasonable thinness of the localized proton layer (l) of 1 nm with an exemplary physiological liquid medium. The exemplary physiological liquid medium comprises the following cations: 300 mM Na+, 3.584 mM K+, 0.1 mM Mg++, 0.4557 mM Ca++, 38.08 μM Zn++, 25.17 μM Fe++, 5.557 μM Mn++, 1.602 μM Cu++, 0.859 μM Co++, and 0.971 μM NH4+. The equilibrium constants KPi of cation exchange with localized protons used in this calculation were estimated from preliminary experimental data: 7.41×10−8 and 2.48×10−8 for Na+ and K+. The average of these two (4.95×10−8) was used to estimate for KPi of the other monovalent cation NH4+. The KPi value of 2.1×10−7 for divalent cation Mg++ was calculated from the experimental data of cation exchange studies (Lee et al. 2010 Environmental Science & Technology, 44(20): 7970-7974; Skjemstad et al., 2008 Communications in Soil Science and Plant Analysis, 39(5-6): 926-937) and was used for the other divalent cations here as well.
The results listed in Table 2 demonstrate that the “local” pmf (equivalent to Gibbs free energy) extracted isothermally from the environmental heat with localized protons as calculated from the third term of Eq. 8 is a very significant component of the total pmf. With a membrane potential of 50 mV and liquid bulk phase pH 7, the “local” pmf extracted from the environmental heat with localized protons is 280 mV, which represents nearly 85% of the total pmf (330 mV). Similarly, with a membrane potential of 25 mV and liquid bulk phase pH 7, the “local” pmf extracted from environmental heat with the localized protons is 263 mV, which represents as much as 91% of the total pmf (288 mV) and is more than sufficient to drive ATP synthesis that requires a minimal pmf of 116 mV. Therefore, these results demonstrate that the innovative application of localized excess protons in accordance with the invention may provide a special novel energy technology process function to isothermally extract environmental heat including the molecular thermal motion energy associated with localized protons at ambient environmental temperature for generating local protonic motive force (equivalent to Gibbs free energy) to do useful work such as driving ATP synthesis.
The results shown in Table 2 (the “local” pmf of 263 mV extracted isothermally from environmental heat with localized protons with a membrane potential of 25 mV) can also help to elucidate the mystery of how a hyperthermophilic archaeon (Thermococcus onnurineus NA1) could grow by the anaerobic oxidation of formate to CO2 and H2, which has very little free energy change at its physiological conditions (ΔG0=−2.6 kJ/mol) (Lim et al., 2014 Proceedings of the National Academy of Sciences, USA 111(31):11497-11502). If this free energy (ΔG0=−2.6 kJ/mol) is utilized to drive formation of an electrochemical proton gradient across the membrane, it could possibly form a membrane potential of about 25 mV, which, if based on the delocalized proton view of Peter Mitchell's Chemiosmotic Theory, would translate to a classic pmf of only 25 mV that would not be sufficient to drive ATP synthesis to support cell growth. On the other hand, based on the data presented in Table 2 of the invention, a membrane potential of 25 mV may translate to a total pmf of 288 mV with a local pmf (263 mV) generated from environmental heat molecular motion energy of the localized protons, which is sufficient to drive ATP synthesis to support cell growth (possibly also involving a Na+/H+ antiporter in the cell). Therefore, that difficult bioenergetics question associated with Thermococcus onnurineus NA1 may now be answered satisfactorily by the special energy-transduction mechanism of localized protons in extracting environmental heat molecular motion energy to generate a local pmf as much as 263 mV as disclosed herein.
The data in Table 2 also show that at a membrane potential of 200 mV with the same pH neutral liquid media, the “local” pmf extracted from environmental heat is 316 mV which is 61% of the total pmf (516 mV). This result indicates that at a high membrane potential (200 mV), its effect on enhancing “local” pmf can become limited. Therefore, according to one of the various embodiments, it is a preferred practice to employ a relatively smaller membrane potential as long as it can still electrostatically hold the excess protons at the liquid membrane interface to isothermally extract the environmental heat energy to generate the “local” pmf, yielding a better ratio of local pmf to total pmf.
According to one of the various embodiments, the special energy technology process for generating useful Gibbs free energy from utilization of molecular thermal motion energy associated with localized protons has a special feature that its local protonic motive force (pmf) generated from its isothermal utilization of environmental heat energy may be calculated according to the following formula:
Where R is the gas constant, T is the absolute temperature, F is Faraday's constant, [HL+] is the concentration of surface localized protons, and [HpB+] is the proton concentration in the anode bulk aqueous phase.
With this Equation [9], it is now, for the first time, clearly expressed that the local pmf is a logarithmic function of the ratio of localized proton concentration [HL+] at the liquid-membrane interface to the delocalized proton concentration [HpB+] in the liquid bulk phase at the same side of the membrane (but not to the delocalized proton concentration [HnB+] in the cathodic chamber liquid at the other side of the membrane). It is the electrostatic proton localization that brings the excess protons to the water-membrane interface that enables the isothermal utilization of molecular thermal motion energy from the ambient temperature environment to create protonic motive force without being constrained by the Second Law of Thermodynamics. Therefore, this also represents a breakthrough in the fundamental understanding of energy transduction and energy renewal and utilization, which may have seminal scientific and practical implications for energy and environmental sustainability on Earth.
Furthermore, from Eq. 9 in conjunction with Eq. 6, it is understood that when a significant amount of cations such as Na+ occupy the localized proton layer by cation exchange as in the case with high salt concentrations, it may form a localized sodium ion (Na+) concentration [NaL+] while reducing the concentration of localized protons [HL+]. Consequently, in the presence of high sodium ion (Na+) concentration [NapB+] in liquid bulk phase, certain amounts of local pmf may be converted to local sodium motive force (smf) through cation exchange with the localized protons. The value of local smf may be calculated as:
Therefore, according to one of the various embodiments, application of excess protons in the presence of high sodium cation (Na+) concentration [NapB+] in liquid bulk phase may be used to generate local smf also from the special utilization of latent heat energy from the ambient temperature environment to do useful work such as driving an Al Ao-ATP Synthase for ATP Synthesis (McMillan et al., 2011 Journal of Biological Chemistry, 286(46):39882-39892). Therefore, exemplary embodiments may be extended to other localizable cations and other species such as Na+, K+, Li+, Rb+, Cs+, Co++, Ni++, Zn++, Cu++, Fe++, Mn++, Ca++, and/or Mg++ for various industrial applications including the special extraction of environmental heat molecular thermal motion energy for energy technology applications.
According to one of the various embodiments, it is a preferred practice to employ multiple membranes, of which each is with a relatively smaller membrane potential, in a multi-chamber system such as that illustrated in
According to one of the various embodiments, depending on a given specific application and its associated temperature conditions, liquid media compositions, and the properties of proton users and membrane material such as its thickness, proton capacitance and other physical chemistry properties, the number of membranes that may be used per multi-chamber system as illustrated in
According to one of the various embodiments, depending on a given specific application and its associated temperature conditions, liquid media compositions, and the properties of proton users and the membrane material such as its thickness, proton capacitance and other physical chemistry properties, the membrane potential for the purpose of extracting environmental heat to create local pmf may be selected from the group consisting of 0.1 mV, 0.5 mV, 1 mV, 5 mV, 10 mV, 15 mV, 20 mV, 25 mV, 30 mV, 40 mV, 50 mV, 60 mV, 70 mV, 80 mV, 90 mV, 100 mV, 110 mV, 120 mV, 130 mV, 140 mV, 150 mV, 200 mV, 250 mV, 300 mV, 500 mV, 1000 mV, 2 V, 5V, 10 V, 20 V, 50 V, 100 V, 200 V, 300 V, 500V, 1000V, and/or within a range bounded by any two of these values.
According to one of the various embodiments, depending on a given specific application and its associated temperature conditions, liquid media compositions, and the properties of proton users and the membrane material such as its thickness, proton capacitance and other physical chemistry properties, the said special energy renewal technology process to isothermally extract environmental heat molecular thermal motion energy associated with localized protons for generating local protonic motive force (equivalent to Gibbs free energy) may be operated in a wide range of temperatures including ambient temperatures, elevated temperatures, and/or low temperatures.
The results listed in Table 2 showed that the “local” pmf extracted from the environmental heat with localized protons at neutral pH or slightly alkaline bulk liquid can be somewhat bigger than that at acidic conditions at the same membrane potential and liquid media ionic strength. For example, at the membrane potential of 100 mV, the amounts of “local” pmf with liquid bulk phase pH 8.2 and 7.0 are 335 and 298 mV, both are bigger than that (232 mV) with liquid bulk phase pH 5.8. Therefore, according to one of the various embodiments, it is a preferred practice to employ neutral or slightly alkaline bulk liquid pH to better generate the “local” pmf (Gibbs free energy).
As shown in Table 2, the liquid media with pH 5.8, 7.0, and 8.2 practically all work very well with the excess protons-based energy technology to generate “local” pmf in utilizing the environmental heat energy which is conventionally thought as impossible to be used from ambient temperature environment. Depending on a given specific application and its associated temperature conditions, liquid media compositions including the ionic strength, the properties of proton users, the membrane material such as its thickness, proton capacitance and other physical chemistry properties, the pH of liquid media may however be from selected the group consisting of pH 1, 2, 3, 4, 5, 6, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 11, 11.5, 12, 13, 14 and/or within a range bounded by any two of these values in accordance with one of the various embodiments of the present invention.
Meanwhile, the data also indicate that at liquid bulk phase pH 8.2, the exchange reduction factor (4.683) gets significantly bigger than those (1.225 and 1.014) with bulk liquid pH 7.0 and 5.8, which could negatively impact the localized proton concentration. Therefore, according to one of the various embodiments, it is also a preferred practice to employ pure deionized water or low salt liquid media to more effectively generate “local” pmf (equivalent to Gibbs free energy) from environmental heat molecular motion energy, although high salt solution can also be employed when the liquid pH is not high such as above pH 12.
One of the key fundamental features in the invention is the utilization of environmental heat with localized protons to recycle/utilize the fully dissipated waste heat energy in the environment, which conventionally is thought to be totally unusable, to generate local pmf to do useful work. This essentially provides a high innovative method to renew the totally “dead” latent heat energy in ambient temperature environment that according to the Second Law of Thermodynamics would be completely unusable. That is, the “dead” latent heat energy can now be reborn to create new Gibbs free energy in the form of local pmf in accordance with the invention. Therefore, it fundamentally represents a special energy-recycle and energy-renew technology.
Furthermore, it is the effective localized protons concentrations and their associated local pmf (Gibbs free energy) that fundamentally also enables the protonic industrial applications of treating substrate materials including the protonation of certain synthetic polymer films and proton-etching of substrate metal plates. Therefore, the useful work that can be done with local pmf (Gibbs free energy) includes the local pmf-driven protonation of certain protonatable synthetic polymer films and the proton-driven oxidation of certain substrate metal atoms for the industrial applications, in addition to the well-known pmf utilization for driving synthesis of ATP useful not only in living organisms but also in certain industrial biochemical engineering applications.
Therefore, exemplary embodiments provide a series of comprehensive methods for creating effective localized excess protons concentrations with a special excess proton production and utilization system including the use of an open-circuit water electrolysis process with a pair of anode and cathode electrodes in a special liquid membrane chamber system forming and using excess protons associated with an excess protons-membrane-anions capacitor-like system to enable a series of special energy recycle-related technology process functions with utilization of environmental heat energy for various special industrial applications including: a) utilization of environmental heat molecular thermal motion energy for energy recycling and renewing of the fully dissipated waste heat energy in ambient temperature environment, which conventionally is thought to be totally unusable, to generate local protonic motive force equivalent to Gibbs free energy to do useful work; b) treatment comprising protonation and proton-etching of a substrate material plate/film by forming and utilizing excess protons associated with an excess protons-membrane-hydroxyl anions capacitor-like system; and c) production and conversion of local pmf to the other ion motive force (equivalent to Gibbs free energy) for a series of other cation species for utilization of environmental heat molecular thermal motion energy and other industrial applications selected from the group consisting of Na+, K+, Li+, Rb+, Cs+, Co++, Ni++, Zn++, Cu++, Fe++, Mn++, Ca++, Mg++, and combinations thereof.
The present invention further discloses a method to make a water-based protonic wire comprising a proton-conductive water line filled into a protonic-insulating tube and/or a channel that may be employed in conjunction with the industrial and/or biomedical applications associated with the features of excess protons described above. According to one of the various embodiments, it is a preferred practice to use degassed liquid water to fill the tube and/or channel without forming any gas bubbles in the water line within the tube or channel. The tube and/or channel wall for a water-based protonic wire is made preferably from certain protonic-insulator materials that are impermeable to both water and protons. Depending on a given specific application and operating conditions, the cross section size or diameter of a water-based protonic wire within a tube and/or channel is selected from the group consisting of 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 8 nm, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 150 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 800 nm, 1000 nm, 1500 nm, 2000 nm, 2500 nm, 3000 nm, 4000 nm, 5000 nm, 6000 nm, 8000 nm, 9000 nm, 10 μm, 11 μm, 12 μm, 13 μm, 15 μm, 16 μm, 18 μm, 20 μm, 25 μm, 30 μm, 50 μm, 100 μm, 150 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 800 μm, 1000 μm, 1500 μm, 2000 μm, 2500 μm, 3000 μm, 3500 μm, 4000 μm, 5000 μm, 6000 μm, 8000 μm, 10 mm, 11 mm, 12 mm, 13 mm 14 mm, 15 mm, 16 mm, 18 mm, 20 mm, 30 mm, 50 mm, 100 mm and/or within a range bounded by any two of these values in accordance with one of the various embodiments of the present invention. Accordingly, the length of a proton-conductive water wire is selected from the group consisting of 4 nm, 5 nm, 6 nm, 8 nm, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 150 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 800 nm, 1000 nm, 1500 nm, 2000 nm, 2500 nm, 3000 nm, 4000 nm, 5000 nm, 6000 nm, 8000 nm, 9000 nm, 10 μm, 11 μm, 12 μm, 13 μm, 15 μm, 16 μm, 18 μm, 20 μm, 25 μm, 30 μm, 50 μm, 100 μm, 150 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 800 μm, 1000 μm, 1500 μm, 2000 μm, 2500 μm, 3000 μm, 3500 μm, 4000 μm, 5000 μm, 6000 μm, 8000 μm, 10 mm, 11 mm, 12 mm, 13 mm 14 mm, 15 mm, 16 mm, 18 mm, 20 mm, 30 mm, 50 mm, 100 mm, 200 mm, 300 mm 500 mm, 600 mm, 800 mm, 1000 mm, 1500 mm, 2000 mm, 3000 mm, 4000 mm, 5000 mm, 6000 mm, 8000 mm, 10 m, 15 m, 20 m, 30 m, 40 m, 50 m, 100 m, 200 m, 300 m, 500 m, 1000 m, and/or within a range bounded by any two of these values in consideration of given specific applications and operating conditions.
According to one of the various embodiments, the tube and/or channel wall for a proton-conductive water wire can be made from varieties of protonic-insulating materials that are selected from the group consisting of lipid bilayer, protonic-insulating membrane, myelin (a layer of a fatty insulating substance), myelin sheath, myelinated axons, certain polypeptide proton channels, silicon tubing material, plastic tubing materials, Teflon material, carbon fibers composite materials, vinyl ester, epoxy, polyester resin, thermoplastic materials, graphene, graphite, cellulose nanofiber/epoxy resin nanocomposites, protonic insulating plastics, protonic insulating ceramics, protonic insulating glass, fiberglass-reinforced plastic materials, borosilicate glass, Pyrex glass, fiberglass, sol-gel, silicone rubber, quartz mineral, diamond material, glass-ceramic, transparent ceramics, clear plastics, such as Acrylic (polymethyl methacrylate), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene (or polyethene) and polyethylene HD, protonic-insulating paint, colorless glass, clear transparent plastics containing certain anti-reflection materials, clear glass containing certain anti-reflection materials, stainless steels, metal alloys, and combinations thereof depending on a given specific application and operating conditions.
According to one of the various embodiments, a water-based protonic wire may be employed with a source of excess protons to deliver excess protons for certain industrial applications including pointed protonation and/or lithographic proton etching. Conceivably, a protonic scanner and/or writing tool may be constructed with the use of a protonic wire in combination with a source of excess protons such as those illustrated in
According to one of the various embodiments, the water-based protonic wires may be used in building protonic circuits that may have significant practical implications in biomedical science and technology. How does the human memory process really work? Currently, there is no definitive answer to this important scientific question. The computer memory operating process is based on electronic circuits. There are no such electronic circuits in the biological systems. Based on the fundamental understanding of water as a protonic conductor associated with the invention, the human memory process may likely operate through a type of water-based protonic circuits in addition to the known ion channels/transporters and neurotransmitters. For example, the propagation of action potential along an axon or nerve fiber (which is a long, slender projection of a nerve cell, or neuron that typically conducts electrical impulses known as action potentials) is likely by protonic conduction through the liquid water along the cell including the elongated neuron cell such as a myelinated axon as a protonic wire. The function of the axon is known to transmit information to different neurons, muscles, and glands. In this case, the cell membrane and myelin may act as a thin protonic insulator barrier around the cytosol liquid that can act as a protonic conductor. As the protons driven by action potential from one end to the other end of a neuron cell such as a myelinated axon through the cytosol (axoplasm), it may induce the formation of a transit membrane potential across the membrane at certain exposed membrane region (such as the unmyelinated region of an axon at the nodes of Ranvier, also known as myelin-sheath gaps, along a myelinated axon where the axolemma is exposed to the extracellular space) or at the other end of the cell such as an axon terminal and/or synaptic terminal, which in turn may induce protonic conduction and/or other cellular activities in the next cell and so on. This somewhat similar to the activity of induced protons propagating the membrane potential from the induction chamber 310 at the right side to the induction chamber 314 at the left side as illustrated in
Since the propagation of action potential through protonic conduction can be much faster than that of a diffusion-based system, it may help better explain the propagation of action potential signals in the heart pace-making tissue that cannot be explained by a diffusion-based slow mechanism. This again indicates that our human body operates likely with a type of water-based protonic circuits. The water-based protonic wires and artificial protonic circuits may be employed in biomedical science and technology. For example, the micro/nanometer-scale water-based protonic wires and artificial protonic circuits may be used to interact with certain human and/or animal tissue cells such as neurons and axons for certain biomedical diagnosis and/or surgery treatments.
According to one of the various embodiments, the water-based protonic wires and protonic circuits may be employed in combination of localized excess protons using local protonic motive force (equivalent to Gibbs free energy) from isothermal utilization of environmental heat energy to do useful work for certain industrial processes and/or for certain biomedical science and technology applications.
The following examples to illustrate embodiments of how the compositions and methods described herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the scope of the invention.
The excess proton production and utilization system 100 (as illustrated in
It is known that aluminum surface can begin to be corroded by protons when the effective proton concentration is above 0.1 mM (equivalent to a pH value of below 4) (Pourbaix 1974 Corrosion Science, 14(1): 25-82). This property was therefore employed as a proton-sensing mechanism in combination with the bulk phase pH electrode measurement to determine the distribution of excess protons in the water-membrane-water system (
The result of the “cathode water Al-Tf-Al water anode” experiment showed that only the proton-sensing Al film placed at the PI site facing the anode liquid showed proton-associated corrosion (see the dark brownish grey on the exposed part of the proton-sensing film in
According to the Mitchellian proton delocalized view, the excess protons in a water body would behave like a solute such as a sugar molecule which can stay anywhere in the liquid including its bulk liquid phase. Certain commonly heard arguments in favor of the Mitchellian proton delocalized view even as of today seem still believe that the excess protons would behave like solutes that could delocalize into the bulk liquid phase somehow by “proton solvation” or “electro diffusion”. If that delocalized view is true, it would predict that all the proton-sensing films in the anode water chamber including the one placed in the bulk liquid (PB) should be able to detect the excess protons. The observation that the proton sensor placed into the anode chamber bulk water phase (PB) could not detect any excess protons while the proton sensor placed at the PI site showed dramatic proton-associated aluminum corrosion activity clearly rejects the Mitchellian proton delocalized view. The result clearly demonstrated the formation of localized excess protons at the water-substrate (proton-sensing Al film) interface as outlined in the invention.
During a 10-hour experiment with 200V-driven water electrolysis, it was noticed, as expected, that the formation of small gas bubbles at both the anode and cathode platinum electrodes. This observation is consistent with the well-known water electrolysis process in which water is electrolytically oxidized to molecular oxygen (gas) producing excess protons in the anode water compartment while protons are reduced to molecular hydrogen (gas) leaving excess hydroxyl anions in the cathode water compartment. If the Mitchellian proton delocalized view is true, it would predict that the production of excess protons in the anode water compartment would result in a lower pH value for the bulk water body while the generation of excess hydroxyl anions in the cathode water body would result in a higher pH in its bulk water body. That is, if the proton delocalized view is true, it would predict a significant bulk-phase pH difference (ΔpH) between the anode and the cathode water bodies. The experimental result with the bulk-phase pH measurements demonstrated that the Mitchellian proton delocalized view is not true. As shown in Table 3, after the 10-hour experiment with the water Al-Tf-Al (membrane) water system, the measured pH value in the anode bulk water body (5.76±0.09) remained essentially the same as that of the cathode bulk water phase (5.78±0.14). These bulk water phase pH values averaged from 3 replication experiments (each replication experiment with at least 6 readings of pH measurement in each chamber water, n=3×6=18) were statistically also the same as those (5.78±0.04 and 5.76±0.02) in the control experiments in absence of the water electrolysis process. This is a significant experimental observation since it confirmed that the excess protons indeed do not stay in the bulk water phase and thus cannot be measured by a pH electrode in the bulk liquid phase.
This observation can also explain why in certain bioenergetic system such as thylakoids where ATP synthesis through photophosphorylation sometimes can occur without measurable ΔpH across the thylakoid membrane between the two bulk aqueous phases (Vinkler, Avron, Boyer 1978 FEBS Letters 96(1): 129-134). As shown in the experimental study, although the bulk-phase pH difference (ΔpH) between the anode chamber water and the cathode chamber water is zero, the excess protons were localized at the water-membrane interface as demonstrated by the dramatic proton activity on the proton-sensing film placed at the PI site (
Furthermore, the measured pH value of 5.76±0.09 in the anode bulk water phase was also consistent with the observation that the piece of proton-sensing film placed in the anode bulk water phase (PB) showed no sign of proton-associated corrosion (oxidation by the excess protons) activity (
The pH measurements also showed that the freshly deionized water had an average pH value of 6.89±0.03 before being used in the experiments (Table 3). Since the experiments were conducted in the laboratory room air, the gradual dissolution of atmospheric CO2 into the deionized water during a 10-hour experiment period resulted in water pH change from 6.89±0.03 to 5.68±0.06, which was observed in the control experiment with the same “cathode water Al-Tf-Al water anode” setup except without turning on the electrolysis voltage (0 V). Therefore, this bulk water pH change had little to do with the 200V-driven water electrolysis process. The same magnitude of bulk water pH change before and after the experiment was observed for the deionized water in both the anode and cathode chambers, which also supports the understanding that this bulk water pH change from the beginning to the end of the experiment was due to the gradual dissolution of atmospheric CO2 into the deionized water during the 10-hour experiment period. There was no difference between the bulk-phase pH of anode chamber water (pH 5.76±0.09) and that of the cathode chamber water (5.78±0.14) at the end of the experiment. This result also points to the same underline understanding that the excess protons do not behave like typical solute molecules. Excess protons do not stay in the water bulk phase; they localize at the water-membrane interface at the PI site so that they cannot be detected by the bulk-phase pH measurement.
A further set of experiments with the setup of “cathode water Tf-Al-Tf water anode” was also conducted in triplicate. In this set of experiments, we chose to use the Tf-Al-Tf membrane system instead of the Al-Tf-Al membrane system. Since the Teflon membrane is chemically inert to protons, the use of the Tf-Al-Tf membrane system eliminated the consumption of excess protons by the aluminum corrosion process at the PI site that was demonstrated above. In this set of the experiments, no bulk-phase pH difference (ΔpH) between the anode and cathode water bodies was observed as well. As shown in Table 3, after run for 10 hours at 200V with the “cathode water Tf-Al-Tf water anode” system, the measured pH value in the anode bulk water phase (5.76±0.03) was essentially the same as that of the cathode bulk water phase (5.81±0.04). This experimental observation again indicated that the excess protons do not stay in the bulk water phase and thus cannot be measured by the bulk liquid phase pH measurement. Since liquid water is an effective proton conductor as discussed above, the excess protons produced in the anode water compartment electrostatically localize to the water-membrane interface at the PI site, where they also attract the excess hydroxyl anions of the cathode water body at the other side of the Tf-Al-Tf membrane, forming an “excess hydroxyl anions Tf-Al-Tf excess protons” capacitor-like structure as illustrated in
The proton-charging-up process in this “excess hydroxyl anions Tf-Al-Tf excess protons” capacitor system was monitored by measuring the electric current of the 200V-driven water electrolysis process as a function of time during the entire 10-hour experimental run. The data in the inset of
By calculating the area under the water-electrolysis current curve above the flat baseline as shown in the inset of
9.33 × 10−10
The water electrolysis current in the “cathode water Al-Tf-Al water anode” experiment was also monitored. As shown in
By calculating the area under the water-electrolysis current curve from the “cathode water Al-Tf-Al water anode” experiment and subtracting that of the “cathode water Tf-Al-Tf water anode” experiment, the amount of excess protons that were generated by the anode and consumed by the protonic-sensing film at the PI site was able to be calculated. As shown in Table 4, during the 10-hr “cathode water Al-Tf-Al water anode” experiment, a total of 2.11×10−5 moles of excess protons were generated by the anode platinum electrode. These excess protons were apparently translocated to the protonic sensing Al film surface at the PI site and consumed there by the corrosion reaction which gives the dark brownish grey on the exposed part of the protonic sensing Al film as shown in
Recently, in the Lee laboratory at Δψ Dominion University (ODU), excess protons and excess hydroxyl anions were generated utilizing a three-chamber system (comprising a cathode chamber, a Teflon sample (induction) chamber, and an anode chamber) through application of a special “open-circuit” water-electrolysis process, which is similar to the 200 system (
Based on the experimental observations, when excess protons were generated in the anode water body while excess hydroxyl anions were generated in the cathode chamber water through the “open-circuit” water-electrolysis process that was carried out for 20 hours, the excess protons in the anode water were localized at the water-membrane interface along the Teflon membrane surface forming a positive (P) side. The localized protons of the P side attracted the hydroxyl anions of the middle sample chamber water to the water-membrane interface at the other side of the Teflon membrane, forming an induced negatively charged hydroxyl anions layer (N′) also shown at the INI site 212 in
The experimental result that supports this understanding is shown in
To see if the excess protons in the anode water could stay inside the anode water body, a piece of protonic-sensing Al film material was inserted into the anode chamber water body as shown in
A further experiment was performed by introducing certain salt (sodium bicarbonate) into the Teflon sample chamber (
Based on this experimental observation, the exchange equilibrium constant of sodium (Na+) cations with the localized protons was estimated to be less than 10−7. That is, the electrostatically localized protons at the water-surface interface is quite stable, in that it would require more than 10+7 times more Na+ cations than the protons in the liquid phase to delocalize the protons from the water-membrane interface at the P′ site. This gives confidence that the proton-electrostatic localization hypothesis is a correct and robust concept, which is employed in the invention.
In this example, 1.5 V of electrolytic voltage is applied across the anode and the cathode in a multi-chamber system similar to the one illustrated in
In this example, 1.5 V of electrolytic voltage is applied across the anode and the cathode in a multi-chamber system similar to the one illustrated in
In this example, 1.5 V of electrolytic voltage is applied across the anode and the cathode in a multi-chamber system similar to the one illustrated in
Table 5 shows pmf values calculated from Eqs. 6-8 based on the well-established experimental data of Bacillus pseuodofirmus OF4 (alkalophilic bacteria) under its culture medium pH, cytoplasmic pH, and transmembrane potential conditions. The calculated pmf as a function of the culture medium pH is displayed in
As shown in
The calculated total pmf values as listed in Table 5 are in a range from 468 mV to 161 mV, which are all above the minimally required value of 116 mV. Especially, when the culture medium pH in a range from 7.5 up to 10.8, the calculated total pmf value are in a range from 468 mV to 260 mV, which is well above the minimally required 116 mV. This result can explain why the Bacillus pseuodofirmus OF4 culture can keep such an excellent growth rate (doubling times less than 100 min) in this culture pH range from 7.5 to 10.8. Furthermore, the decrease in pmf when the liquid culture pH is raised beyond 10.8, due to decreased contribution from the localized protons, matches well with the dramatic increase in the measured growth doubling times (decreased growth rate).
Theoretically, when the total pmf is reduced to around 116 mV, the bioenergetic system would reach equilibrium and the molecular turbine of F0F1-ATP synthase would stop running and the culture growth could completely stop. When the total pmf values is reduced to a value somewhat closer the minimally required value of 116 mV, such as 179 mV and 161 mV as calculated at the culture pH 11.2 and 11.4, the growth rate would grammatically decrease. This understanding, for the first time, provides an excellent bioenergetics explanation in correlating with the dramatic reduction of growth rate observed at culture pH 11.2 and 11.4 (Table 5 and
The successful elucidation of the decades-longstanding energetic conundrum of alkalophilic bacteria Bacillus pseuodofirmus OF4 as to how they are able to synthesize ATP as demonstrated again in this Example 8, also indicated that the local pmf values calculated through Eqs. 3 and 6-8 using the parameters reported above are indeed about right.
Bacillus pseuodofirmus OF4 measured properties (pHpB, pHnB, Δψ) and calculated
1.16 × 10−10
As noted, the pmf values predicted by Eq. 8 for Bacillus pseuodofirmus OF4 were all larger than the minimum value required for ATP synthesis; however, the pmf values for the culture at pH 7.5, 8.5, 9.5, and 10.5 of 468 mV, 462 mV, 403 mV, and 307 mV, respectively, are all significantly larger than the maximum value of 228 mV that would be allowed by the First and the Second Laws of Thermodynamics (see
The maximum pmf value allowed by the conventional Thermodynamics for the entire respiratory redox-driven proton-pumping system such as the one in Bacillus pseuodofirmus OF4 is only 228 mV as presented in
The classic Mitchellian pmf values calculated from the first two terms of Eq. 8 as listed in Table 5 and presented in
The total pmf (307 mV) is significantly higher than the conventionally predicted pmf upper limit of 228 mV for the redox-driven proton-pumping system, which is also known as the thermodynamics limit. Therefore, if the observed pmf value in the oxidative-respiratory phosphorylation system such as the one in Bacillus pseuodofirmus OF4 is truly exceeds this limit, it could indicate that something special in the biological system might not necessarily have to obey the Second Law of thermodynamics.
Regarding whether a total pmf value much higher than the thermodynamics limit of 228 mV would imply that electrostatically localized protons do not exist at the cell membrane surface, or that they are not taken into account properly by Eqs. 6-8, it is now believed that the work done by the localized protons in producing ATP is not constrained by the Second Law of Thermodynamics for the following reasons.
First, the localized protons are not entirely free to move; they are electrostatically held at the membrane surface. Consequently, their thermal (Brownian) motion will cause some to enter the opening of the ATP synthase and be used to produce ATP. Secondly, the localized protons must not be directly coupled to the redox proton pumps. If they were, they would be constrained by the Second Law and they would also disrupt the respiratory process. A natural explanation of why this does not occur is that the exit points for the translocated protons must be outside of the surface layer of the electrostatically localized protons. Furthermore, to effectively make use of the localized proton thermal motion, the proton entry point for ATP synthase must be inside the localized proton surface layer. In this scenario, the redox-driven proton pump activity interacts with the proton activity in the bulk liquid phases but not with that of the localized proton layer at the liquid-membrane interface. Only the transmembrane electric potential difference and the bulk-phase proton activity at the two sides of the membrane interact and equilibrate with the proton-pumping respiratory chain activity which is driven by 228 mV per proton and follows the Second Law. The localized proton thermal motion provides additional free energy that may be utilized by the ATP synthase.
Regarding the determination of the structures of the redox complexes in sufficient detail to confirm, or disprove, these conjectures, the structures of bacterial respiratory membrane protein complexes are not well known yet. However, they are believed to be very similar to those in mitochondria, which have been more extensively studied. Indeed, the known structures of the mitochondrial respiratory protein complexes, as determined by cryo-electron microscopy and other molecular structural studies (Dudkina et al., 2010 Biochimica Et Biophysica Acta-Bioenergetics, 1797(6-7): 664-670), fit well with the fundamental understanding and principle associated with the invention. Every one of the mitochondrial respiratory redox-driven proton-pumping protein complexes I, III and IV are indeed protruded away from the membrane surface by about 1-3 nm into the bulk liquid, while the end (protonic mouth) of the ATP synthase (complex V) is located indeed rightly at the membrane surface within the localized proton layer as predicted by one of the various embodiments in the invention.
Therefore, the electrostatically localized protons in combination with asymmetric structural features of the biological membrane especially in regarding to the positions of the proton pump outlets and the mouth of the localized proton users such as that of the ATP synthase (complex V) with respect to the localized proton layer along the p-side of the membrane may constitute this special function, which is not necessarily constrained by the Second Law of Thermodynamics. It is the electrostatic proton localization with the effect of water as a proton conductor that enables the formation of localized excess proton layer at water-membrane interface over the mouths of the pmf users including the F0F1-ATP synthase. The formation of a localized excess proton layer at water-membrane interface apparently results in some kind of “negative entropy effect” that bring the excess protons to the mouths of the pmf users where the protons can utilize their molecular thermal motions (environmental heat energy) possibly including their Brownian motion to push through the doors of F0F1-ATP synthase in driving ATP synthesis.
In order to avoid the situation of localized excess protons pushing the “wrong doors” such as the proton exit sites of the respiratory electron-transport-coupled proton pumps, the billion-year natural evolution process apparently has already solved this potential problem by protruding all the proton pump exits of the respiratory protein complexes I, III and IV a few nanometers away from the membrane surface into the bulk liquid phase while keeping the mouth of the ATP synthase (complex V) rightly at the membrane surface for the best benefit of utilizing the localized excess protons there. In this way, the localized excess protons at the water-membrane interface along the membrane surface can perfectly go through the mouth of ATP synthase (complex V) and they will not be able to touch the “doors” of the redox-driven proton-pumping respiratory protein complexes I, III and IV that are protruded into the bulk liquid phase well out of the localized excess layer as we can now start to understand.
The benefit for such an apparently Anti-Second-Law biological function is significant. The application of Eq. 9 has now, for the first time, been able to calculate the “local pmf” as listed in Table 5 and plotted in
From this example, it is now also clear that the creation of localized excess protons contributes to conferring this special Anti-Second-Law energy technology function that enables the utilization of dissipated environmental heat from the ambient temperature environment to generate additional protonic motive force (equivalent to Gibbs free energy) that can be employed to do useful work. Furthermore, the asymmetric features of the membrane, especially with regarding to the geometric position of proton producers with their outlets extended well into the bulk phase liquid while the mouths of proton users being rightly within the localized excess protons layer along the membrane surface, is also beneficial to effectively employing the localized excess protons to serve as the key part of the special Anti-Second-Law energy technology function. This conclusion is also consistent with the fundamental understanding and the spirit demonstrated through the invention. For example, as mentioned above, it is a preferred practice to place the proton-generating anode electrode well into the bulk phase liquid as illustrated in
In this example, a number of water-based protonic wires with a series of lengths in a range from 50 to 350 cm were experimentally demonstrated by measuring their protonic DC conductivity. In the experiments, two chambers (each equipped with a platinum electrode) were each filled with 600 ml of ultrapure de-ionized water (MilliQ, Millipore Corporation, USA) at room temperature 22.5° C. The conventional electric conductivity of the ultrapure deionized water was measured with an AC conductivity meter integrated within the Millipore synergy water system and was determined to be 0.055 μS cm−1 (resistivity 18.2 MΩ·cm at 22.5° C.). The two water chambers were positioned 30 cm apart and bridged by a silicon tube with an inside diameter of 3 mm that was filled with a continuous pure water column to serve as a protonic wire. A number of water-based protonic wires (in silicon tubes) with a series of tube lengths (50, 100, 150, 200, 275, 350 cm) were each tested separately. For each water tube, one of its two end openings was immersed in the anode chamber water and the other immersed in the cathode chamber water. Each experiment was performed under Direct Current (DC) by sweeping voltage across the anode and cathode platinum electrodes using digital multimeter system (Keithley instruments series 2400S-903-01 Rev E). Different voltages were applied, starting with low non water-electrolyzing potential 0.2 V, and ending with high water-electrolyzing potential 210V. In all experiments, the resulting electric current (I) and resistance (R) were measured using the same digital electrometer integrated—via GPIB cable—with KickStart (version 1.8.0) software. By using this experimental setup, the DC protonic conductivity of the water wires was successfully measured. The DC protonic conductivity of the water-based protonic wires under the experimental conditions was determined to be 1.206×10−6 S/cm, which is 22 times more than the conventional electric conductivity of water (0.055×10−6 S/cm). This experimental result demonstrated the functional property of water-based protonic wires and provided further evidence that excess protons in liquid water behave like electrons in metallic conductor, which again supports the invention.
Methods for Energy Renewal with Isothermal Electricity Production
Through the work associated with localized excess protons disclosed above, it was revealed that environmental heat, also known as latent (existing hidden) heat energy, can be isothermally utilized through electrostatically localized protons at a liquid-membrane interface to do useful work in driving the synthesis of ATP without being constrained by the second law of thermodynamics as shown in
The present invention here is directed to an energy renewal method for generating isothermal electricity with a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed typically in a container such as a vacuum chamber or bottle with electric conductor support to enable a series of energy recycle process functions with utilization of environmental heat energy isothermally for at least one of: a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel refrigeration cooling function without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting environmental heat energy from inside the cold box (the heat source) while generating isothermal electricity; and c) combinations thereof.
According to one of the various embodiments, this electron-based energy renewal method teaches how to isothermally extract environmental heat energy to generate electricity by teaching the making and using of an asymmetric function-gated isothermal electron-based power generator such as the asymmetric electron-gated system 1000 illustrated in
Therefore, according to one of the various embodiments, the barrier space 1004 comprises a vacuum space that has no electric conductive materials and/or molecules with molecular orbital-associated electric conduction bands but allows the thermally emitted electrons to fly and/or flow through ballistically. The asymmetric electron-gating function 1003 effectively allows freely emitted thermal electrons 1005 to ballistically fly predominantly from the electric conductor (emitter) 1001 through the barrier space 1004 to the electric conductor (collector) 1002 although the two electric conductors 1001 and 1002 are under the same temperature and pressure conditions. Since the barrier space 1004 is an electrical insulating space without the conventional conductor-based electrical conduction but has a unique property that allows thermal electrons to fly through ballistically, it prevents the excess thermal electrons captured by the collector 1002 from conducting back to the emitter except the minimal back emission from the collector that may be controlled by the asymmetric electron-gating function 1003. As a result, the excess thermal electrons captured by the collector 1002 may accumulate, thermally equilibrates and electrostatically distribute themselves mostly to the collector 1002 electrode surface. Similarly, the excess positive charges (“holes”) left in the emitter may also accumulate and electrostatically distribute themselves mostly to the emitter 1001 electrode surface. This results in the creation of an electric voltage potential difference across the barrier space 1004 between the emitter electrode 1001 and the collector electrode 1102, in a manner that is analogous to the creation of a membrane potential Δψ in proton-coupling bioenergetics systems as expressed in Eq. 2b.
Note, in the cases of localized excess protons, when a protonic load circuit such as an ATP synthase protonic channel/load is provided, the excess protons typically flow through the ATP synthase protonic channel across the membrane to perform work in driving ATP synthesis as illustrated in
According to one of the various embodiments as shown in
As mentioned above, this phenomenon (
Where F is the Faraday constant; d is the barrier space thickness that is the distance between the emitter and the collector; κ is the barrier space dielectric constant; ε0 is the electric permittivity; and l is the localized excess electron layer thickness.
This equation (Eq. 11a) mathematically explains how the accumulation of excess electron population density [eL−]0 as a result from the capturing of thermally emitted electrons from the emitter by the collector can build the isothermal electricity output voltage Voutput Consequently, the excess electrons in the collector electrode with such an output voltage Voutput can drive an electric current through an external circuit, which comprises an electric outlet 1107 (−) wire connected with an electrical load 1108 that is connected with another electric wire as electric outlet 1106 (+) back to the emitter 1101 as shown in
When the asymmetric function-gated isothermal electron power generator system 1100 is under its “open circuit” condition (such as when the electric load 1108 is removed) as shown in
According to one of the various embodiments, it is a preferred practice to ground the emitter with an Earth ground 1110 at the electricity outlet 1106 (+) terminal as shown in
This asymmetric function-gated isothermal electron power generator system 1100 (
In contrast, for an isothermal electricity generator system such as the one illustrated in
In the conventional temperature gradient-driven thermionic converter, a conducting electrode (emitter) is heated to high temperatures so that it emits electrons (Wanke et al 2017 MRS Bulletin 42: 518-524). These thermionic electrons overcome the electrode's work function and generate a thermionic emission current. It typically requires the emitter being heated by using an external energy/heat source such as focused solar irradiation, intensified chemical combustion, or nuclear decay reaction heat to a temperature as high as 2000K while the collector is cooled to below about 600K using a heat sink (Sandia Report, SAND2004-0555). Air-breathing chemical heat sources, such as common hydrocarbon burners, cannot achieve the desired thermionic temperatures (˜2000K) unless substantial air-preheat is used. That is, the thermionic converter operation is based on an exceptionally high temperature at the emitter with a large temperature difference between the two electrodes (thermionic emitter and collector). The elevated high temperatures required by the thermionic converter impose formidable technical problems concerning the structure of the fuel elements and the means of transferring heat to the converters. The Carnot efficiency here is believed to represent the ultimate efficiency limit (Khalid et al 2016 IEEE Transactions on Electron Devices 63: 2231-2241). In contrast, the asymmetric function-gated isothermal electron power generator system disclosed in the present invention does not require such an elevated high temperature and is not constrained by the Carnot efficiency, since it can generate electricity by isothermally utilizing the ambient temperature latent heat energy from the surrounding environment without requiring any of such energy-intensive heating and/or cooling energy resources.
According to one of the various embodiments in accordance with the present invention, the asymmetric electron-gating function 1003 (
Previous study suggested that the conventional thermionic generators could be effective, but only at temperatures above 1000K (Hishinuma et al 2001 Applied Physics Letters 78: 2572-2574). In contrast, the asymmetric function-gated isothermal electron power generator system can operate isothermally at nearly any temperatures from a freezing temperature such as 253K (−20° C.), to ambient temperatures around 293K (20° C.), to an elevated temperature as high as both above and/or below 1000K where the conventional thermionic generators still cannot effectively operate. According to one of the various embodiments in accordance with the present invention, an asymmetric function-gated isothermal electricity generator system is designed to isothermally operate at a temperature or temperature range selected from a group consisting of 193K (−80° C.), 200K (−73° C.), 210K (−63° C.), 220K (−53° C.), 230K (−43° C.), 240K (−33° C.), 250K (−23° C.), 260K (−13° C.), 270K (−3° C.), 273K (0° C.), 278K (5° C.), 283K (10° C.), 288K (15° C.), 293K (20° C.), 298K (25° C.), 303K (30° C.), 308K (35° C.), 313K (40° C.), 318K (45° C.), 323K (50° C.), 328K (55° C.), 333K (60° C.), 338K (65° C.), 343K (70° C.), 348K (75° C.), 353K (80° C.), 363K (90° C.), 373K (100° C.), 383K (110° C.), 393K (120° C.), 403K (130° C.), 413K (140° C.), 423K (150° C.), 433K (160° C.), 453K (180° C.), 473K (200° C.), 493K (220° C.), 513K (240° C.), 533K (260° C.), 553K (280° C.), 573K (300° C.), 623K (350° C.), 673K (400° C.), 723K (450° C.), 773K (500° C.), 823K (550° C.), 873K (600° C.), 923K (650° C.), 973K (700° C.), 1073K (800° C.), 1173K (900° C.), 1273K (1000° C.), 1373K (1100° C.), 1473K (1200° C.), and/or within a range bounded by any two of these values. The words “to isothermally operate” here means that both the emitter and collector are placed at the same temperature and no temperature difference between the emitter and collector is required for the asymmetric function-gated isothermal electricity generation to run in accordance with one of the various embodiments of the present invention.
According to one of the various embodiments, it is critically important to properly select a special low work function conductor to serve as the emitter with consideration of its operating environmental temperature conditions. For example, for an asymmetric function-gated thermal electron power generator system that is designed to operate at a room temperature (around 25° C.), the work function of the emitter is preferably selected to be less than 1.0 eV, more preferably less than 0.8 eV, even more preferably less than 0.7 eV or 0.6 eV, and most preferably less than 0.5 eV. For an asymmetric function-gated isothermal electron power generator system designed to isothermally operate at a higher environmental temperature such as 35° C., 40° C., 50° C., 60° C., 80° C., 100° C., 120° C., 150° C., 200° C. and/or within a range bounded by any two of these values, somewhat higher work function materials may also be selected for use as the emitters. On the other hand, when the intended isothermally operating temperature is significantly lower, such as, at 15° C., 10° C., 5° C., 0° C., −5° C., −10° C., −15° C., −20° C., −30° C., −50° C. and/or within a range bounded by any two of these values, exceptionally low work function materials should be selected for use as the emitters.
According to one of the various embodiments, depending on a given specific application and its associated temperature conditions, system compositions, and the properties of the electrode materials and barrier space such as its thickness, capacitance and other physical chemistry properties, the work function of the emitters for the purpose of extracting environmental heat to generate electricity may be selected from the group consisting of 0.2 eV, 0.3 eV, 0.4 eV, 0.5 eV, 0.6 eV, 0.7 eV, 0.8 eV, 0.9 eV, 1.0 eV, 1.1 eV, 1.2 eV, 1.3 eV, 1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV, 2.4 eV, 2.6 eV, 2.8 eV, 3.0 eV and/or within a range bounded by any two of these values.
According to one of the various embodiments, the collector electrode 1102 is preferable to have a work function higher than that of its pairing emitter 1101 (
As mentioned before, the work function represents the energy barrier for an electron at the Fermi level from escaping the solid (such as the metal conductor) to free space. The work function commonly comprises two components: a bulk component and a surface component. The dominant one is the bulk component which corresponds to the chemical potential that derives from the electronic density and density of states with relation to the nuclear (positive) charge force in the solid. The surface component (also known as the surface dipole component) originates with a redistribution of charges at the surface of a metal, which give rise to the surface dipole that is generally resulted from the “spill out” of electrons into vacuum over some small distance (Angstroms), creating negative sheet of charges outside the solid and leaving a positive sheet of uncompensated metal ions in the surface and sub-surface atomic planes. It is this double sheet of charges (surface dipoles) that create a potential step which raises the electron potential just out the surface, effectively also raising the electron vacuum energy level at the emitter electrode surface Evac (S). This surface dipole-associated component may correspond to the energy difference between the Evac (S) (the vacuum energy level at the emitter electrode surface) and the Evac (∞) in vacuum space far away from the surface. The surface dipole-associated negative charge could repel an electron away the electrode. Consequently, the electrons leaving the emitter surface could be accelerated towards the collector by this repulsive force from the emitter's surface dipole, which may be beneficial to the isothermal electricity generation. On the other hand, if the collector also has a surface dipole-associated negative charge component that could potentially impede the reception of the electrons emitted from the emitter by repelling them away from the collector surface. Therefore, according to one of the various embodiments, it is a preferred practice to use a collector electrode that has no or minimized surface dipole-associated negative charge component. Alternatively, if there is the surface dipole-associated negative charge component on the collector surface, it needs to be nearly equal to or smaller than that of the emitter surface for the isothermal electricity generator to more efficiently operate. That is, it is beneficial to use a work function that originates predominately from the nuclear (positive) charge force with no or minimal surface dipole-associated negative charge force for the collector to better collect the electrons emitted from the emitter.
It is critically important to properly select a special low work function conductor as the emitter while the collector should have a higher work function predominately from the nuclear (positive) charge force. Table 6 lists various materials with known work function (eV) values, which may be considered for selection to use in making of the emitters and/or collectors in accordance with one of the various embodiments of the present invention.
According to one of the various embodiments in accordance with the present invention, it is preferred practice to use a special low work function conductor as the emitter electrode while the collector electrode should have a high work function predominately from the nuclear (positive) charge force.
According to one of the various embodiments, the emitter is a layer or film of a special lower work function material 1103 coated on a conductive electrode 1101 while the collector 1109 is a film of higher work function coated on conductive electrode 1102 and/or is simply a plate of higher-work-function conductor. Depending on a given specific isothermal electricity generation application and its associated operating temperature conditions, the emitter material is selected from a group consisting of Ag—O—Cs, Cs2O-coated Ag plate surface, K—O/Si(100), C12A7:e−, K on WTe2, P-doped diamond, P-doped diamond, Ca24Al28O64, Cs/O doped graphene, Sr1-xBaxVO3, Ba-coated SiC, O—Ba on W, Cs on Pt metal and combinations thereof. Meanwhile, the collector material is selected from a group consisting of platinum (Pt) metal, silver (Ag) metal, gold (Au) metal, copper (Cu) metal, molybdenum (Mo) metal, aluminum (Al) metal, tungsten, rhenium, molybdenum, niobium, nickel, graphene, graphite, polyaniline film, ZnO metal oxide, ITO metal oxide, FTO metal oxide, 2-dimensional nickel, PEDOT:PSS, protonated-polyaniline film and combinations thereof.
According to one of the various embodiments, the materials for making the electric conductors 1191 and 1102 that support the emitter and/or collector, and that may also directly serve as the collector are selected from the group consisting of: heat-conducting electric conductors, heat-conducting metallic conductors, refractory metals, metal alloys, stainless steels, aluminum, copper, silver, gold, platinum, molybdenum, conductive MoO3, tungsten, rhenium, molybdenum, niobium, nickel, titanium, graphene, graphite, heat-conducting electrically conductive polymers, polyaniline film, protonated-polyaniline film and combinations thereof.
According to one of the various embodiments, it is a preferred practice to employ a conductor with no or minimized surface dipole-associated work function component to serve as a collector electrode to facilitate the collection of the electrons from the emitter. For example, nonpolar organic conductors typically have no significant “spilling” of electrons at the surface and can thus be selected to use as a collector electrode.
A major problem that has been hindering the performance of the conventional thermionic converter is the formation of the static electron space-charge clouds in the inter electrode space (Physics of Plasmas 21, 023510 (2014); doi: 10.1063/1.4865828). This “space charge problem” is minimized in the asymmetric function-gated isothermal electricity generation system (
According to one of the various embodiments, a series of capacitors can be used across each of pairs of the emitters and the collectors with the isothermal electricity outlets (illustrated in the example of
According to one of the various embodiments, the capacitance across each pair of the emitter and collector is increased by properly narrowing the space separation distance between the emitter surface and the collector surface (illustrated in the example of
On the other hand, the barrier space separation distance between the emitter surface and the collector surface should be big enough (somewhat larger than the electron tunneling distance (2 or 3 nm)) to avoid electricity current leaking loss due to the possible electron tunneling. Considering the surface of a metal as a two-dimensional system, electrons cannot escape, but due to “barrier penetration”, the electron density of a metal actually extends outside the surface of the metal. The distance outside the surface of the metal at which the electron probability density drops to 1/1000 of that just inside the metal is on the order of 0.1 to 1 nanometer (nm) for electron tunneling which is strongly dependent on the distance. The electron tunneling distance is also depending on the property of the materials and barrier space. For example, electron transfer and tunneling can occur between the metal centers in the respiratory enzymes, typically over distances up to 20 or 30 Å (2010 Laser Phys. 20(1): 125-138). It is also known that biological lipid bilayer membrane with a thickness about 4 nm works well as an electric insulating barrier space with a membrane potential voltage difference of about 200 mV. In certain cases, larger barrier space gaps may be also desirable such as for ease of fabrication and certain mechanical operations. Therefore, depending on a given specific application and its associated temperature conditions, system compositions, and the properties of the electrode materials and barrier space, the inter electrode space separation distance (gap size d) across a pair of emitter and collector according to one of the various embodiments is selected from the group consisting of 2 nm, 3 nm, 4 nm, 5 nm, 6 nm. 7, nm, 8 nm, 9 nm, 10 nm, 12 nm, 14 nm, 16 nm, 18 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm 45 nm, 50 nm, 60 nm, 70 nm, 80 nm, 100 nm, 120 nm, 140 nm 160 nm, 180 nm, 200 nm, 250 nm, 300 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1.2 μm, 1.4 μm, 1.6 μm, 1.8 μm, 2.0 μm, 2.5 μm, 3.0 μm, 3.5 μm, 4.0 μm, 4.5 μm, 5.0 μm, 6.0 μm, 7.0 μm, 9.0 μm, 10 μm, 12 μm, 14 μm, 16 μm, 18 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 120 μm, 140 μm, 160 μm, 180 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1000 μm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10 mm, 12 mm, 15 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 80 mm, 100 mm and/or within a range bounded by any two of these values.
According to one of the various embodiments, a barrier space composition is selected from the group consisting of vacuum space, semi-vacuum space, gaseous space, inertial gas space, special gas space, ballistic-electron-permeable porous material space, perforated two-dimensional (2D) materials, perforated insulator film such as perforated Teflon film, and combinations thereof. When considering to utilize certain special gaseous space, attention should be paid to avoid possible side reactions associated with the gas molecules and properties of the electrodes and space barrier compositions and materials when the electric field formed across the inter electrode space during the isothermal electricity generation could be high enough to cause certain side effects such as the undesirable current leaking, plasma or radical species formation, and O3 generation if the gaseous space containing O2 gas. For many of the applications, it is a preferred practice to use vacuum space as the inter electrode space barrier 1104 (
According to one of the various embodiments, emitter(s) and collector(s) are installed in a vacuum container such as a vacuum electrotube (
According to one of the various embodiments, the interfacing contact/seal between the container wall and the electrode plates and/or electric wires is made with heat-conductive and electrical insulating material(s). Depending on a given specific application and its associated temperature conditions, the interfacing contact/seal material(s) is selected from the group consisting of heat-conductive and electrical insulating plastics, epoxy, polyester resin, air-tight electric-insulating Kafuter 704 RTV silicone gel material, thermoplastic, heat-conductive and electrical insulating ceramics, heat-conductive and electrical insulating glass, highly heat-conductive graphene, graphite, clear plastics, for example, Acrylic (polymethyl methacrylate, PMMA), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene, and polyethylene HD, thermally conductive transparent plastics, heat conductive glues, electric insulating glues, heat conductive paint, electric insulating paint, heat conductive glass, borosilicate glass such as Pyrex glass, sol-gel, silicone gel, silicone rubber, quartz mineral, diamond material, cellulose nanofiber/epoxy resin nanocomposites, carbon fibers composite materials, glass-ceramic materials, transparent ceramics, clear transparent plastics containing anti-reflection materials and/or coating, clear glass containing anti-reflection materials or coatings and combinations thereof.
According to one of the various embodiments, an asymmetric function-gated isothermal electrons-based environmental heat energy utilization system comprises a low work function of Ag—O—Cs coated on an Ag metal electrode surface to serve as an emitter and a high work function of a Cu metallic conductor to serve as a collector in a vacuum condition.
According to one of the various embodiments, a prototype of an asymmetric function-gated isothermal electrons-based environmental heat energy utilization system comprises a pair of a low work function Ag—O—Cs film 1203 (coated on a silver electrode 1201 surface) and a high work function Mo metallic conductor 1202 separated by a vacuum space 1204 in a vacuum tube (
According to one of the various embodiments, a prototype of an asymmetric function-gated electrotube system like the one shown in
These predicted features were successfully demonstrated in a preliminary experiment, where an asymmetric function-gated electrotube was placed into a Faraday shielding box made of metal foils and its isothermal electricity generation was measured with a Keithley 6514 system electrometer (Keithley Instruments, Inc., Cleveland, Ohio, USA). When the emitter 1201 was connected with the positive (red) input connector alligator clip of the Keithley 6514 system electrometer while the collector 1202 was connected with the negative (black) input connector alligator clip, a positive electrical current was indeed sensed by the Keithley 6514 electrometer. The steady-state electrical current density normal to the cross-section area of the interelectrode space was measured to be 5.17 pA/cm2. Meanwhile, when the asymmetric function-gated electrotube system and electrometer were connected in the opposite (reverse) orientation, a negative electrical current with comparable amplitude was indeed measured through the Keithley 6514 electrometer. The steady-state electrical current density normal to the cross-section area of the interelectrode space measured in the reverse orientation was −4.50 pA/cm2. The averaged steady-state electrical current density from the absolute values measured in the two orientations was 4.84±0.34 pA/cm2.
Similarly, according to one of the various embodiments, it is predicted that when the emitter 1201 is connected with the positive (red) input connector alligator clip of a Keithley 6514 electrometer while the collector 1202 is connected with the negative (black) input connector alligator clip, it will measure a positive voltage that is generated by the isothermal electricity generating system (
Based on the measured steady-state electrical current density (4.84±0.34 pA/cm2) and steady-state output voltage (about 140 mV), the isothermal electricity power generation density cross-section area of the interelectrode space was calculated to be about 6.78×10−13 Watt/cm2 in this example of an experimental prototype system (
Table 7 presents more examples of experimental data on the isothermal electricity current density of the asymmetric work function-gated electrotubes similar to that of
As shown in Table 7, the isothermal electricity current density averaged from the absolute values measured in both orientations was 3.26, 4.87, and 7.57 pA/cm2 for the asymmetric work function-gated electrotube samples 2, 3 and 4, respectively. The corresponding averaged voltage output was 94, 141 and 218 mV. The isothermal electricity power density calculated as the product of the isothermal electricity current density and corresponding voltage output was 3.07×10−13, 6.90×10−13, and 1.65×10−12 Watt/cm2 for the asymmetric work function-gated electrotube samples 2, 3 and 4, respectively, under the given experimental conditions without any optimization efforts. Therefore, these experimental data and the specific details were intended to show the proof of the principle according to one of the various embodiments and they shall not be viewed as a limit to its performance.
Table 7 lists more examples of experimental data on the isothermal electricity current density (pA/cm2) of asymmetric work function-gated electrotubes similar to that of
According to one of the various embodiments, the asymmetric function-gated thermal electron power generator system 1100 as illustrated in
J
isoT
=AT
2(e−[WF(e)+e·V(e)]/kT−e−[WF(c)+e·V(c)]/kT) [11b]
Where A is the universal factor (as known as the Richardson-Dushman constant) can be expressed as
[where m is the electron mass, e is the electron unit charge, k is the Boltzmann constant and h is Planck constant]. T is the absolute temperature in Kelvin (K) for both the emitter and the collector; WF(e) is the work function of the emitter surface; the term of e·V (e) is the product of the electron unit charge e and the voltage V (e) at the emitter; k is the Boltzmann constant in (eV/K); WF(c) is the work function of the collector surface; and e·V (c) is the product of the electron charge e and the voltage V(c) at the collector.
Of particular significance is that the conversion of environmental thermal energy (latent heat) isothermally to electrical power without the need for an external energy-consuming heater or an exhaust, heat sink or the like, so that the energy efficiency is essentially 100% without being constrained by the second law of thermodynamics.
According to one of the various embodiments, when the voltage at the emitter (V(e)) is zero such as when the emitter is grounded as illustrated in
J
isoT(gnd)
=AT
2(e−[WF(e)]/kT−e−[WF(c)+e·V(c)]/kT) [12]
According to one of the various embodiments, when the voltage at both the emitter (V(e)) and the collector (V(c)) are zero such as at the initial state of an isothermal electricity generation system 1100 as illustrated in
J
isoT(sat)
=AT
2(e−[WF(e)]/kT−e−[WF(c)+e·V(c)]/kT) [13]
According to one of the various embodiments, the “open circuit” ideal saturation output voltage (Vsat) at the equilibrium between the emitter and collector terminals (1106 and 1107) as shown in
Where e is the electron charge which is 1 (an electron charge unit); and WF(c) and WF(e) are the collector work function and the emitter work function, respectively, as illustrated in the 1100 (c) of
According to one of the various embodiments, the steady-state operating output voltage (Vst) between the emitter and collector terminals (1106 and 1107) can be expressed as:
V
st
=V
(c)
−V
(e) [15]
Where V(c) and V(e) are the steady-state operating voltages at the collector and emitter, respectively, as illustrated in the 1100 (b)
According to one of the various embodiments, the ideal saturation electrical current (Isat) across the inter electrode space between the emitter and collector as shown in
I
sat
=S·J
isoT(sat)
=S·AT
2(e−[WF(e)]/kT−e−[WF(c)]/kT) [16]
According to one of the various embodiments, the ideal steady-state operating electrical current (Ist) through the electrical load 1108 as shown in
Where R1 is the resistance of the electrical load and Rm is any possible miscellaneous resistance from the circuit including the electrodes and wire materials; Vst is the steady-state operating output voltage as of Eq. [15].
According to one of the various embodiments, the effect of the asymmetric function-gated isothermal electricity generating activity is additive. That is, the asymmetric function-gated isothermal electricity generator systems like the one shown in
V
st(total)=Σi=1nVst(i)=Σi=1n(V(c)i−V(e)i) [18]
Similarly, the total saturation output voltage (Vsat(total)) is the summation of the saturation output voltages (Vsat(i) as of Eq. [14]) from each of the asymmetric function-gated isothermal electricity generator systems operating in series:
According to one of the various embodiments, when pluralities (n) of the asymmetric function-gated isothermal electricity generator systems are used in the parallel, the total ideal electrical current (Isat(total)) is the summation of the ideal electrical current (Isat(i) as of Eq. [16]) from each of the asymmetric function-gated isothermal electricity generator systems:
Therefore, the asymmetric function-gated isothermal electricity production is additive. Pluralities (n) of the asymmetric function-gated isothermal electricity generator systems may be used in parallel and/or in series, depending on a given specific application and its associated operating conditions such as temperature conditions, and the properties of the barrier spaces such as their thickness and compositions, the properties of the emitter and collector electrodes and other physical chemistry properties.
When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in parallel, the total steady-state electrical current (Ist(total)) is the summation of the steady-state electrical current (Ist(i)) from each of the asymmetric function-gated isothermal electricity generator systems while the total steady-state output voltage (Vst(total)) remains the same.
When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in series, the total steady-state output voltage (Vst(total)) is the summation of the steady-state output voltages (Vst(i)) from each of the asymmetric function-gated isothermal electricity generator systems while the total steady-state electrical current (Ist(total)) remains the same.
As shown in
Table 8 lists the ideal isothermal electricity current density (A/cm2) values as a function of operating temperature T in a range from 203 K (−70° C.) to 673 K (400° C.) at a number of output voltage V(c) values including 0.00, 1.50, 3.00, 3.50, 3.80 and 3.86 V, as calculated using Eq. 12 for a pair of emitter work function (WF(e)=0.70 eV) and collector work function (WF(c)=4.56 eV, copper Cu(110)) where the emitter was grounded. The data showed that, with a reasonable output voltage V(c) of about 3 V, the isothermal electricity current density is strongly dependent on temperature T in a range from 2.07×10−11 (A/cm2) at 203 K (−70° C.) to 1.55×10−5 (A/cm2) at 298K (25° C.), and to as much as 311 (A/cm2) at 673 K (400° C.).
Table 8 presents the examples of the ideal isothermal electricity current density (A/cm2) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, calculated using Eq. 12 for a pair of emitter work function (WF(e)=0.70 eV) and collector work function (WF(c)=4.56 eV, copper Cu(110)). The emitter was grounded and the output voltage V(c) is the voltage difference between the collector and the grounded emitter.
According to one of the various embodiments, when the emitter is grounded, the ideal isothermal electricity power production density (W/cm2) at various output voltage V(c) volts can be expressed as:
P
isoT(gnd)
=AT
2(e−[WF(e)]/kT−e[WF(c)+e·V(c)]/kT)V(c) [21]
Table 9 list the ideal isothermal electricity power production density defined as Watt (W) per square centimeters (W/cm2) as a function of operating temperature T in a range from 203 K (−70° C.) to 673 K (400° C.) at a number of output voltage V(c) values including 0.00, 1.50, 3.00, 3.50, 3.80 and 3.86 V, as calculated using Eq. 21 for a pair of emitter work function (WF(e)=0.70 eV) and collector work function (WF(c)=4.56 eV, copper Cu(110)) where the emitter was grounded. The data showed that the output voltage V(c) that gave the best isothermal electricity power production density (W/cm2) was about 3.50 V in this example. The isothermal power production density (W/cm2) at output voltage V(c) of 3.50 V is strongly dependent on temperature T, which is in a range from 7.24×10−11 (W/cm2) at 203 K (−70° C.) to 5.41×10−5 (W/cm2) at 298K (25° C.), and to as much as 1090 (W/cm2) at 673 K (400° C.).
Table 9 presents the examples of the ideal isothermal electricity power production density defined as Watt (W) per square centimeters (W/cm2) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, calculated using Eq. 21 for a pair of emitter work function (WF(e)=0.70 eV) and collector work function (WF(c)=4.56 eV, copper Cu(110)) where the emitter is grounded.
According to one of the various embodiments, it is a preferred practice to employ: a first capacitor 1361 connected in between the first and second electric conductor plates 1301 and 1302; a second capacitor 1362 linked in between the second and third conductor plates 1302 and 1321; a third capacitor 1363 used in between third and the fourth conductor plates 1321 and 1332 as illustrated in
According to one of the various embodiments, the isothermal electricity of the 1300 system (
The isothermal electricity generator system 1400A (
As shown in Table 6, the work function of Mo film is about 4.36 eV and the work function of Ag—O—Cs film can be made to be anywhere between 0.5 and 1.2 eV.
In the example with the isothermal electricity generator system 1400A, the work function of Ag—O—Cs film was selected to be 0.7 eV for use as the emitter while the work function of Mo film was 4.36 eV for use as the collector as illustrated in
The isothermal electricity generator system 1400B (
Furthermore, this system 1400B is designed to provide an option to deliver the isothermal electricity through the outlet terminals 1476 and 1477, leaving the V(c) voltage (about 3.5 V) generated by the first pair of emitter (Ag—O—Cs film 1403) and collector (Mo film/plate 1409) to serves as a bias voltage for the second emitter (Ag—O—Cs film 1423 on the second conductor plate 1402 right side surface) to more readily emit thermal electrons towards the terminal collector (Mo film/plate 1439) of the third conductor plate 1432. Sometimes, use of this option can help better extract environmental heat energy especially when the operating environmental temperature is relatively low or when the work function of certain emitters alone may not be low enough to function effectively. When the isothermal electricity is delivered through the outlet terminals 1476 and 1477, the steady-state operating output voltage is typically about 3.5 V in this example.
As illustrated in
When the isothermal electricity is delivered through outlet terminals 1406 and 1477 across three pairs of emitters and collectors, according to Eq. 18, the steady-state operating output voltage typically can be as high as about 10.5 V. However, the total saturation isothermal electricity current density (at output voltage of 10.5 V) remains to be about 1.55×10−5 (A/cm2) at the standard ambient temperature of 298 K (25° C.) in this example.
More importantly, when the isothermal electricity is delivered through the outlet terminals 1476 and 1477, the activity of the first emitter (1401 with Ag—O—Cs film 1403) and the first collector (Mo film/plate 1409) can be used to generate a V(c) of about 3.5 V to serves as a bias voltage for the second emitter (Ag—O—Cs film 1423) on the surface of the second conductor plate 1402. In this way, the second emitter (Ag—O—Cs film 1423) will more readily emit thermal electrons towards the second collector (Mo film/plate 1429) of the third conductor plate 1421. Subsequently, the enhanced generation of V(c) at the third collector 1429 of the third conductor plate 1421 can serve as a bias voltage for the third emitter to more readily emit thermal electrons towards the terminal collector 1439 at the fourth conductor plate 1432. Therefore, use of this special feature can help better extract environmental heat energy especially when the operating environmental temperature is relatively low or when the work function of certain emitters alone may not be entirely low enough to function effectively. When the isothermal electricity is delivered through the outlet terminals 1476 and 1477, the steady-state operating output voltage can typically be about 7 V according to Eq. 18. The total saturation isothermal electricity current density (at output voltage of 7 V) remains to be about 1.55×10−5 (A/cm2) at the standard ambient temperature of 298 K (25° C.) in this example.
According to one of the various embodiments, the system capacitance for a pair of parallel emitter and collector plates is inversely dependent on their separation distance (d). It is a preferred practice to increase the capacitance across each pair of emitter and collector by properly narrowing the space separation distance (d) between the emitter surface and the collector surface to a selected space gap size in a range from as big as 100 mm to as small as in a micrometer and/or sub-micrometer scale based on specific application and operation conditions. In this way, the need of using external capacitors may be eliminated. Furthermore, use of a narrow (micrometer and/or sub-micrometer) space gap between the emitter and the collector may also help to limit the formation of the static electron space-charge clouds in the inter electrode space for better system performance.
The integrated isothermal electricity generator system 1500 (
According to one of the various embodiments, it is a preferred practice to use an asymmetric function-gated thermal electron power generator system in an orientation with its emitter facing down and its collector is placed at the lower position facing up so that it can utilize gravity to better collect the thermally emitted electrons from the emitter placed at a higher position as illustrated in
For examples, some of the emitted election may have quite limited kinetic energy that may not be sufficient to overcome the repulsion force of the collector electrode's surface electrons to immediately enter the collection electrode. The use of gravitational pull provides two effects that benefit the collection of the electrons from the emission electrode. First, it can, in some extent, help accelerate the electrons from the emitter more quickly move down into the collector. The second effect is to help localize some of these emitted electrons at (and/or near) the interface between the collector surface and the vacuum space by the use of gravitational force in this manner. As shown previously with localized protons above, use of localized electron population density can enhance the utilization of environmental heat to benefit the thermal electron power generation. For instance, since free electrons including these at the interface between the collector surface and the vacuum space can gain additional kinetic energy by absorbing infrared radiation from the environment, an enhanced concentration of localized electrons at the interface between the vacuum space and the collection electrode surface enhances the probability for localized electrons to utilize their thermal motion energy to finally enter the collector electrode. After an electron enters into the collector electrode that typically has a relatively higher work function, its contribution to the thermal electron power production is essentially certain regardless of its initial kinetic energy before or after the entry.
According to one of the various embodiments, this special energy technology process for generating useful Gibbs free energy from utilization of electron thermal motion energy associated with localized electrons has a special feature that its local electron motive force (emf) generated from its special utilization of environmental heat energy may be calculated according to the following equation:
Where R is the gas constant, T is the absolute temperature, F is Faraday's constant, [eL−] is the concentration of localized electrons at the interface between the collector surface and the vacuum space, and [eB−] is the electron concentration in the bulk vacuum space.
With this Eq. 22, it is now, for the first time, understood that this local emf is a logarithmic function of the ratio of localized electron concentration [eL−] at the interface to the delocalized electron concentration [eB−] in the bulk vacuum gap space. Proper application of this local emf may facilitate the entry of thermal elections gap space-collector surface interface into the collector in accordance with one of the various embodiments. For example, the use of positive-charged molecular functional group-modified collector surface and/or the use of gravitational force may bring the emitted electrons to the gap space-collector surface interface forming local emf there that may help overcome the collector surface-dipole barrier to facilitate the entry of thermal electrons into the collector for enhanced isothermal electricity production.
According to one of the various embodiments, the effect of the isothermal electricity production is additive. Depending on a given specific application and its associated operating conditions such as temperature conditions, and the properties of the barrier space such as its thickness and composition, the emitter and collector electrodes and other physical chemistry properties, the number of emitter-collector pairs that may be used per integrated system as shown in
The integrated isothermal electricity generator system 1600 (
According to one of the various embodiments, during the isothermal electricity generation, an effective emitter such as those in the systems 1300, 1400, 1500 and 1600 absorbs environmental heat from the outside environment and utilizes the environmental heat energy to emit electrons as shown in
The integrated isothermal electricity generator system 1600 (
According to one of the various embodiments, the collector surface is engineered by adding certain positively charged molecular structure such as protonated amine groups on the surface. Protonated (poly)aniline which has protonated amine groups (positive charges) on its surface made by the protonation process using the electrostatically localized excess protons as disclosed above is selected for use as a collector electrode in this embodiment.
According to one of the various embodiments, the positively charged groups such as the protonated amine groups on the collector electrode surface provide a number of beneficial effects on facilitating the collection of electrons emitted from the emitter electrode: 1) Attracting the electrons emitted from the emitter electrode, which results in an enhanced concentration of localized electron cloud [eL−] at the vicinity of the collector electrode surface and thus enable better utilization of additional environmental heat energy according to Eq. 22 to facilitate the entry of the vacuum electrons into the collector electrode for power generation; 2) Neutralizing negative surface dipole (if any) for the collector electrode surface; and 3) Counter balancing the negative electric surface potential resulted from the accumulation of the collected electrons in the collector electrode for more power storage.
According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of Ag—O—Cs and high work function of Cu metal.
When the isothermal electricity is delivered through outlet terminals 1806 and 1837 across two pairs of emitters and collectors, the maximum total steady-state operating output voltage of the system 1800B (
According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of Ag—O—Cs and high work function of Au metal.
According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of doped-graphene and high work function of graphite.
According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of doped-graphene and high work function of graphene.
According to one of the various embodiments, any of the isothermal electricity generator systems disclosed here may be modified for various applications. For examples, a typical smart mobile phone device such as iPhone 6 consumes about 10.5 Watt-hours per day (24 hours). Use of certain isothermal electricity generator systems disclosed in this invention may enable to produce a new generation of smart mobile electronic devices that can utilize the latent (existing hidden) heat energy from the ambient temperature environment to power the devices without requiring the conventional electrical power sources. For instance, use of an asymmetric function-gated isothermal electricity generator system disclosed here with a chip size of about 40 cm2 that has a 3 V isothermal electricity output of 200 mA may be sufficient to continuously power a smart mobile phone device.
According to one of the various embodiments, a highly optimized isothermal electricity generator system such as the integrated isothermal electricity generator system 1900 that employs an exceptionally low work function of Ag—O—Cs (0.5 eV) and a high work function of Au metal (5.10 eV) illustrated in
As presented in
According to one of the various embodiments, an asymmetric function-gated optimized isothermal electricity generator system that has a pair of an exceptionally low work function Ag—O—Cs (0.5 eV) emitter and a high work function graphene (4.60 eV) collector is employed to provide the novel cooling for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity.
Furthermore, use of certain isothermal electricity generator systems according to one of the various embodiments can produce electricity by utilizing the waste heat from wide varieties of waste heat sources including (but not limited to) the waste heat from electrical devices such as computers, motor vehicles engines, air-conditioner heat exchange systems, combustion-based power plants, combustion systems, heat-based distillation systems, nuclear power plants, geothermal heat sources, solar heat, and waste heat from photovoltaic panels.
The following methods and steps were employed in fabricating these CsOAg—Cu prototype electrobottles (
Therefore, although the metal screws/nuts were in contact with the supporting aluminum sheet plates as shown in
The isothermal electricity generation activity in each prototype CsOAg—Cu electrobottle was measured with a Keithley 6514 electrometer (Keithley Instruments, Inc., Cleveland, Ohio, USA) as shown in
As shown in
A number of prototype CsOAg—Cu electrobottles were experimentally tested for their isothermal electricity production performance. Table 10 presents examples of experimental isothermal electricity production results from a prototype isothermal electricity generator (electrobottle sample “CsOAg—Cu 1”) in comparison with a control electrobottle sample “CK Ag—Cu” as tested at 23° C. with Keithley 6514 system electrometer. The control electrobottle “CK Ag—Cu” has the same structure as that of the electrobottle “CsOAg—Cu 1” except that the Ag plate surface of the control electrobottle “CK Ag—Cu” was not coated with any cesium oxide (Cs2O). The Amps measurement procedure with Keithley 6514 electrometer's zero check and zero (baseline) correction (CZ) was used in testing 1) the electrobottle “CsOAg—Cu 1”, 2) the Keithley 6514 system's Model 237-ALG-2 low noise cable with three alligator clips (no electrobottle device), and 3) the control electrobottle “CK Ag—Cu”. Based on the experimental measurements with 12 readings from the Keithley 6514 system electrometer, the isothermal electric current from electrobottle “CsOAg—Cu 1” was measured to be 11.17±0.08 pico amps (pA), which is well above the electrometer baseline signal of 0.071±0.17 pA as measured with Keithley 6514 system's Model 237-ALG-2 low noise cable with three alligator clips (no electrobottle device). The control electrobottle “CK Ag—Cu” gave an electric current reading of −0.360±0.005 pA, which is quite different from that (11.17±0.08 pA) of electrobottle “CsOAg—Cu 1”. Therefore, these experimental results quite clearly demonstrated the isothermal electricity production activity in the prototype electrobottle “CsOAg—Cu 1” as expected.
When the isothermal electricity from the prototype electrobottle “CsOAg—Cu 1” was measured in reverse polarity (Keithley 6514 system's Model 237-ALG-2 low noise cable black alligator connector to CsOAg plate (a type of Ag—O—Cs emitter) and red alligator connector to Cu plate), the isothermal electric current was measured to be −10.77±0.17 pA, which is quite different from that (0.220±0.003 pA) of the control electrobottle “CK Ag—Cu” when measured also in its reverse polarity (see “rev, pA·CZ” in Table 10). Therefore, these experimental results quite also clearly demonstrated the isothermal electricity production activity in the prototype electrobottle “CsOAg—Cu 1” as expected.
Table 10 presents the experimental isothermal electricity production results from a prototype electrobottle “CsOAg—Cu 1” in comparison with a control electrobottle “CK Ag—Cu” as tested at 23° C. with Keithley 6514 electrometer's zero check and zero (baseline) correction (CZ).
Note, the isothermal electron flux (JisoT) normal to the surfaces of the emitter and collector (also named as the isothermal electricity current density) can be calculated as the ratio of the isothermal electric current (11.17±0.08 pA) to the CsOAg plate surface area (4.0×4.6=18.4 cm2). As listed in Table 10, the electricity current density across the CsOAg plate surface area in electrobottle “CsOAg—Cu 1” was determined to be 0.607 pA/cm2 in its normal polarity and −0.586 pA/cm2 when measured with its reverse polarity. By taking their absolute values, the averaged electricity current density in electrobottle “CsOAg—Cu 1” was calculated to be 0.596 pA/cm2. Based on this isothermal electron flux (JisoT) of 0.596 pA/cm2 at 23° C., the work function of the CsOAg emitter plate surface in electrobottle “CsOAg—Cu 1” was estimated to be about 1.1 eV in this example.
Table 11 presents the experimental isothermal electricity production results from another prototype isothermal electricity generator (electrobottle “(3) CsOAg—Cu”) measured as a function of operating temperature. The standard methods of Amps and voltage measurements with Keithley 6514 electrometer's zero check and zero (baseline) correction (CZ) were used in testing this prototype “(3) CsOAg—Cu” electrobottle. Based on 12 measurement readings from Keithley 6514 system electrometer, the isothermal electric current from electrobottle “(3) CsOAg—Cu” at 20.5° C., 23° C. and 25° C. was measured to be 2.12±0.03 pA, 5.81±0.03 pA and 7.35±0.02 pA, respectively. This experimental result demonstrated that isothermal electricity production can indeed increase dramatically with the rising of environmental temperature as expected.
When the isothermal electricity from electrobottle “(3) CsOAg—Cu” was measured in reverse polarity (Keithley 6514 system's Model 237-ALG-2 low noise cable black alligator connector to CsOAg plate (a type of Ag—O—Cs emitter) and red alligator connector to Cu collector plate), the isothermal electric current was measured to be −7.43±0.03 pA (Table 11), somewhat similar to that observed in electrobottle “CsOAg—Cu 1” (Table 10).
According to the measurements with 12 readings from Keithley 6514 system electrometer, the isothermal electric voltage output from electrobottle “(3) CsOAg—Cu” at 25° C. was measured to be 54.2±0.8 mV (Table 11). Based on the isothermal electric voltage (54.2±0.8 mV) and isothermal electric current (7.35±0.02 pA) as measured at 25° C., the isothermal electricity power output was calculated to be 3.98×10−13 Watts for the electrobottle “(3) CsOAg—Cu” prototype device in this example.
As listed in Table 11, the electricity current density across the CsOAg plate surface area in electrobottle “(3) CsOAg—Cu” was measured to be 0.399 pA/cm2 with normal polarity and −0.404 pA/cm2 when measured with reverse polarity. By taking the absolute values, the averaged electricity current density in electrobottle “(3) CsOAg—Cu” was calculated to be 0.402 pA/cm2. Based on this experimentally determined isothermal electron flux (JisoT) of 0.402 pA/cm2 at 25° C., the work function of the CsOAg emitter plate surface in electrobottle “(3) CsOAg—Cu” was estimated to be about 1.1 eV.
Table 11 presents the experimental isothermal electricity production results from a prototype electrobottle “(3) CsOAg—Cu” measured as a function of operating temperature at 20.5° C., 23° C. and 25° C. with Keithley 6514 electrometer's zero check and zero (baseline) correction (CZ).
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the invention claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 15/202,214 filed on Jul. 5, 2016 that claims priority and benefit from U.S. Provisional Application No. 62/231,402 filed on Jul. 6, 2015. This application also claims priority and benefit from U.S. Provisional Application No. 62/613,912 filed on Jan. 5, 2018. These applications are incorporated herein by reference in their entirety.