Localized liquid therapy and thermotherapy device

Information

  • Patent Grant
  • 8357188
  • Patent Number
    8,357,188
  • Date Filed
    Tuesday, July 22, 2008
    16 years ago
  • Date Issued
    Tuesday, January 22, 2013
    11 years ago
Abstract
A device for directly applying thermotherapeutic liquid to an area upon the surface of an afflicted patient, and methods of use thereof, are described. In particular, a device for apply water-based liquid at a therapeutic temperature directly to an afflicted area in order to create a localized hyperthermia, is presented. The afflicted area may be either on the skin of the patient, or subcutaneous. The device is also effective for disinfection, irrigation, lavage, and the like, when employing a suitable solution. The liquid may also have a mild oxidizing effect, which, if greater upon afflicted than upon non-afflicted cells, would enhance the therapeutic effect in conjunction with the therapy herein described.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to devices for applying localized liquid therapy and/or thermotherapy to an afflicted area of the patient. More particularly, this invention relates to a device, and method of use thereof, which directly applies a liquid, most usually a water based liquid to a selected area to create the desired therapeutic effect, most usually a localized hyperthermia, which is effective in treating localized afflictions, such as moles, lesions, tumors, malignancies, both surface and subcutaneous, and the like, or a therapeutic lavage or irrigation.


2. Description of Related Art


Heat and cold have both been used to effectively treat afflicted patients. Directly applying liquid to afflicted cells is also well known. Cold has often been used as a localized treatment, while heat has been, and is currently used as both a localized and total body treatment. Using heat to treat a localized afflicted area of an afflicted patient is most relevant to the present invention.


The search continues to ways to effectively treat wounds, tumors and similar disorders while minimizing adverse collateral effects. For example, assignee has been a leader in treating open wounds through a process known as Vacuum Assisted Closure™ (“V.A.C.®”). In a similar vein, localized thermotherapy, primarily localized hyperthermia, has also shown promise as a treatment modality which is capable of producing beneficial therapeutic effects without significant adverse collateral effects for certain conditions. However, the localized hyperthermic treatment modalities in the prior art, all suffer from serious drawbacks, limitations, or side effects.


Research has demonstrated that heating cancerous, or other abnormal cells to over about 42° Celsius (“C”) can kill the abnormal cells, while causing little damage to the surrounding normal cells. This treatment is temperature sensitive. Heating the cancel cells, for example, to a temperature between nominal body temperatures, 37° C. and approximately 41° C. or greater can seriously damage them. To maximize patient safety, this hyperthermia treatment must be localized.


The variety of available heat transfer methods for localized thermotherapy is limited. Heat is transferred in three ways, radiation, convection, or conduction. The heat transfer medium creating the localized hyperthermia can be either heated in situ or be heated exogenously, before being placed upon the patient. The medium can either be placed in direct contact with the afflicted cells or, transfer heat to the afflicted cells through an intermediary.


Localized hyperthermia therapy is presently used in treating prostate afflictions, breast cancer, and other afflictions. This modality involves placing implants about the afflicted patient's afflicted cells, and then heating the implants by radiating EMF or ultrasonic energy thereto. The heat from the implants then migrates into the afflicted tissue, via conduction, thereby raising the temperature of the afflicted cells. Several issued patents demonstrate variations of this technique. Issues relating to possible adverse affects of exposure to both radiation, and radiated energy abound. However, as most suffers of prostate cancer are older men who are past the age of fathering children, and female breasts are relatively remote from the female reproductive organs, the possible long-term adverse collateral effects of using such radiant energy treatments are minimized.


Applicant has discovered various patents that employ and exemplify other energy transfer methods and media in creating localized hyperthermias. These patents include Guibert, U.S. Pat. No. 4,595,008, issued Jun. 17, 1986, and Shantha, U.S. Pat. No. 5,195,965 issued Mar. 23, 1993.


Various other heated liquid devices and methods of treating hollow organs or body orifices exist, and operate in the same basic manner. However, there is a need for a system and method for the creation of a localized therapeutic hyperthermia by means of a heated liquid directly contacting afflicted cells for a period of significant duration. More particularly, there is a need for a device, or method of treatment, which involves, selecting a therapeutic liquid, heating the selected liquid through conduction so as to avoid EMF or ultrasonic radiation, placing a therapeutic applicator about the afflicted cells, and circulating the heated fluid through the therapeutic applicator, thereby creating a localized hyperthermia in the afflicted cells within the circumference of the applicator. Furthermore it would be beneficial to provide the use of a localized hyperthermic modality in conjunction with Vacuum Assisted Closure™, (“V.A.C.®”) of open wounds. It is towards the fulfillment of these needs that the present invention is directed.


SUMMARY

The present invention is a novel device used to create a localized therapeutic effect on afflicted cells on an afflicted patient. These effects include cleaning, disinfecting, cooling, heating, and methods of use thereof. The device embodying the present invention comprises a therapeutic liquid, liquid supply means, liquid energizing means, circulating means, and control means. The device may also be used in conjunction with V.A.C.® therapy. These elements interface, and are employed, as briefly described below.


An appropriate therapeutic liquid is selected. Most often this liquid will be water, or a liquid comprising at least 90% water on a weight/weight (“w/w %”) basis. Thermal energy is directly applied to, or taken from, the liquid. Most commonly the liquid will be heated. This energy transfer is regulated by the control means, which compares the actual liquid temperature with a selected reference temperature. The heated or cooled liquid is then used to create a local therapeutic effect. Control means also comprises system control means that monitors and regulates the overall operation of the device.


The balance of this description presumes that the liquid is heated rather than cooled. The liquid will either be recirculated if a closed loop embodiment is selected, or be used once and discarded if an open loop embodiment is selected. An afflicted area, such as a mole, skin cancer, or the like, is located on the afflicted patient. The afflicted area may be on the skin, or subcutaneous.


The circulation means comprises supply means, recovery means, and applicator means. The applicator has an open bottom or bottom portion and is placed about the afflicted cells on the skin of the patient, and most likely, some of the surrounding non-afflicted cells on the patient's skin as well. Before commencing the application of the therapeutic liquid, a fluid tight seal must be established between the patient and the application means; this seal must be maintained for at least the duration of the liquid application. The applicator may also comprise a fluid tight V.A.C.® dressing. The liquid flows from the liquid supply means, into the supply conduit of the circulation means, into the applicator means, and then into the return conduit. The liquid is then either recirculated, or discarded.


Circulation means also likely comprises liquid pressurization means that likely comprise a pump; though a sealed pressurized embodiment is also contemplated. Alternatively, gravity flow, or the negative pressure associated with V.A.C.®, roughly 150 mm Hg, in an open loop system could be considered. In a preferred embodiment, the pump is placed on the return side of the circulation means. This configuration has the advantage of applying negative pressure to the application means thereby creating a self actuated negative pressure seal between the application means and the patient's skin for the duration of therapeutic liquid application. Alternatively, a sealing mechanism could be used to maintain the necessary seal between the application means the afflicted patient. Applying pressure to the liquid also creates a more rapid circulation of the liquid to the epidermal region, which could have beneficial therapeutic effects.


Accordingly, an object of the present invention is to provide a device that employs an exogenously heated fluid to provide direct thermotherapy to an afflicted portion of a patient.


Another object of the present invention is to provide localized thermal therapy where the perimeter of the afflicted portion of the patient is within the boundaries of the therapy applicator of the present invention.


A further object of the present invention is to provide a novel device that provides lavage to an afflicted patient.


Yet another object of the present invention is to combine the therapeutic effects of the present invention with the positive effects associated with V.A.C.®.


The foregoing has outlined some of the more pertinent objects of the present invention. These objects should be construed to be merely illustrative of some of the more prominent features and applications of the invention. Many other beneficial results can be attained by applying the disclosed invention in a different manner or by modifying the invention as will be described. Accordingly, other objects and a fuller understanding of the invention may be had by referring to the following Detailed Description of the Invention, which includes the preferred embodiment.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the invention will now be described with reference to the drawings of certain preferred embodiment, which are intended to illustrate and not to limit the invention, and wherein like reference numbers refer to like components, and in which:



FIG. 1 is a block diagram illustrating a closed loop negative pressure embodiment that operates in accordance with the present invention.



FIG. 2 is a perspective view of an applicator fastener that operates in accordance with the present invention.



FIG. 3 is a perspective view of a V.A.C.® dressing that operates in accordance with the present invention.



FIG. 4 is a block diagram illustrating a closed loop negative pressure system embodiment, utilizing a V.A.C.® dressing, that operates in accordance with the present invention.



FIG. 5 is a block diagram illustrating a closed loop positive pressure system embodiment that operates in accordance with the present invention.



FIG. 6 is a block diagram illustrating an open loop positive pressure lavage system embodiment that operates in accordance with the present invention.



FIG. 7 is a block diagram illustrating an open loop negative pressure V.A.C.® embodiment that operates in accordance with the present invention.



FIG. 8 is a block diagram illustrating a combined open loop negative pressure V.A.C.® and positive pressure pump system embodiment that operates in accordance with the present invention.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Although those of ordinary skill in the art will readily recognize many alternative embodiments, especially in light of the illustrations provided herein, this detailed description is exemplary of the preferred embodiment of the present invention as well as alternate embodiments, the scope of which is limited only by the claims that may be drawn hereto.


The details of the preferred embodiments of the present invention are graphically and schematically illustrated in the accompanying drawings. Like elements in the drawings are represented by like numbers, and any similar elements are represented by the like numbers with a different lower case letter suffix.


The preferred embodiments of the present invention, referred to throughout by the general reference 10, are intended to treat an afflicted patient 11, and particularly an afflicted area of the patient's skin 12, or the area immediately subcutaneous thereto, which is surrounded by a healthy area 13 of patient 11. As shown in FIG. 1-8, the preferred embodiments 10, comprise a liquid storage means 14, a liquid supply means 15 terminated by ends 27 and 29, a liquid return means 16 terminated by ends 26, 36, 37, and 28, a liquid movement means 17, a therapy site liquid applicator means 18, a liquid heating means 19, a liquid temperature measuring means 20, and control means 21 which operatively coact in a manner more fully described below. The embodiments 10 are capable of creating a localized therapeutic hyperthermia, localized hypothermia, lavage, irrigation, disinfection, or other therapeutic effects, either alone, or in conjunction with V.A.C.®.


Embodiment 10 may be used with a variety of liquids, in addition to water, and may provide either localized heating or localized cooling, in addition to direct contact effects from the liquid such as disinfection, irrigation, lavage, and so forth. However, to promote ease of understanding, the further description shall focus on the hyperthermia delivering embodiment using a liquid which on a w/w % basis is at least 90% water.


As shown in FIGS. 1, 4, and 5, liquid storage means 14, which most commonly comprises a reservoir, is operatively connected to both the liquid supply means 15, and to the liquid return means 16 so as to both provide liquid to liquid supply means 15 via outlet 22, and accept liquid from means 16 via inlet 23, as is more fully described below. Depending upon task dependent design choices, liquid storage means 14 may either b open, closed, or pressurized, so long as an adequate supply of liquid covers end 27 of supply means 15 when the embodiment 10 is in operation.


Control means 21 is connected to both liquid heating means 19 and liquid temperature means 20 and coacts therewith in a manner more fully described below. Measuring means 20 may be located as necessary, depending upon both the speed of liquid flow, and the degree of temperature loss encountered. In a low speed flow embodiment, such as in FIG. 7, a location in proximity to end 29 may well be most desirable. Control means 21 receives temperature information from means 20 and, using this information, continuously regulates the power to heating means 19 in order to achieve the desired liquid temperature in a manner that it, at least in general, well known to those of ordinary skill in the art. Various control methods, including fuzzy logic, may be used to regulate the temperature of the liquid. The liquid temperature may be controlled to within 0.5° C. and possibly to within 0.1° C.


The precision heated liquid is delivered to the afflicted area 12 of patient 11 via liquid supply means 15, therapy site liquid applicator 18, liquid return means 16, and liquid movements means 17 all of which coact as described more fully below. Liquid movement means 17 generally comprises a pump of adequate capacity, as is well known in the art. Although the exact connection configuration of means 17 depends upon the overall system configuration of embodiment 10, in the presently preferred embodiment of embodiment 10, shown in FIG. 1, means 17 is operatively connected to liquid return means 16 via inlet 24 of means 17 and outlet 25 of means 17. This configuration supplies a negative pressure to applicator 18 because of the liquid it extracts therefrom. This negative pressure serves to hold applicator 18 in place about afflicted area 12 of afflicted patient 11 without the need for a separate engagement means being attached thereto. An alternative embodiment utilizing negative pressure is also shown in FIG. 7, where the V.A.C.® dressing adhesive covering 62, schematically represented in FIG. 3 coacts with dressing material 60 to perform the function of applicator 18, as is also shown in FIG. 8. The V.A.C.® embodiment would most likely be employed where afflicted cells comprise an open wound, such as is shown in FIGS. 7 and 8, where dressing material 60, coacts with dressing adhesive covering 62 to function as applicator 18 and covers wound 64 and also allows vacuum generated underneath dressing adhesive covering 62 to drain wound 64.


Some applications may require avoiding applying negative pressure to the afflicted area 12, by applying positive pressure as shown in FIGS. 5 and 6, thus alternate configurations could be used, such as shown in FIG. 2, where fastener 50 is depicted; plainly such fasteners are well known in the art, and any such known suitable fastener could be employed. The use of separate engagement means, such as fastener 50, to hold applicator 18 in place would avoid the need to apply negative pressure to afflicted area 12.


As shown in FIGS. 1, 4, 5, 6, and 8, a variety of alternate configurations of liquid movement means 17 could be used including configurations which would place means 17 at various positions along either liquid supply means 15, as shown in FIGS. 5 and 6, or liquid return means 16, as shown in FIGS. 1 and 4. In FIG. 7, negative pressure collection container 66 is used in lieu of liquid movement means 17 to move the fluid. As previously state, the device in FIGS. 5 and 6 would require the use of fastener 50, whether the afflicted cells 12 were on the skin, or subcutaneous thereto. One alternative configuration (not shown) could place liquid movement means 17 inside reservoir 15 in a manner that would connect outlet 25 of liquid movement means 17 connected to end 27 of supply means 15. Alternatively, liquid movement means 17 could be placed inside reservoir 14 with inlet 24 of liquid movement means 17 connected to end 28 of return means 16. Alternative configurations, which would place liquid movements means 17 inside applicator 18, could also be used. Fastener 50 would be required if a positive pressure embodiment is employed.


Returning now to the specific embodiment shown in FIG. 1, liquid supply means 15 comprises supply end 27, delivery end 29, and a body portion intermediate these two ends. Applicator 18 comprises top 30, open bottom 31, outer surface 32, inner surface 33, liquid supply means receptor 34, and liquid return means receptor 35. Liquid return means comprise recovery end 26, pump intake end 36, pump output end 37, reservoir inlet end 28, every part of itself between end 26 and end 36, and every part of itself between end 37 and end 28. Liquid supply means 15, applicator 18, liquid return means 16, reservoir 14, and liquid movement/pressurization means 17 interconnect and coact in the following manner.


Supply end 27 of liquid supply means 15 is placed in liquid tight operative engagement with outlet 22 of reservoir 14. Delivery end 29 of liquid supply means 15 is placed in fluid tight engagement with applicator 18 via liquid supply means receptor 34 thereof. Applicator 18 is arranged about afflicted area 12 so that the inner surface 33 of open bottom 31 surrounds area 12, and most likely area 13, in fluid tight engagement. Cavity 38 is defined by inner surface 33, afflicted area 12, and the portion of area 13 surrounded by open bottom 31, as described above.


In this configuration pump 17 is placed between end 36 of liquid return line 16 and end 37 of liquid return line 16 in the following manner. End 26 of liquid return line 16 is placed in fluid tight engagement with liquid return means receptor 35. Pump intake end 36 of liquid return line 16 is placed in fluid tight engagement with pump intake 24. Any desired filtration means (not shown) could also logically be placed in proximity thereto. Pump output end 37 of liquid return means 16 is placed in fluid tight engagement with outlet 25 of pump 17. Reservoir inlet end 28 of liquid return means 16 is placed in fluid tight engagement with inlet 23 of reservoir 14.


The system control means regulators the overall operation of the embodiment 10, in a manner well known to those skilled in the art. Actuation means, timing means, data collection means, data recordation means, alarm means, and emergency shutoff means (all not shown) are just a few of the possible functions which could comprise the functions carried out by system control means. Existing data processing means remote from the location of the embodiment 10 could well perform some of these functions.


The embodiment 10 would be used in the following manner. The embodiment is connected to a power source (not shown) in reasonable proximity to the afflicted patient 11, convenient for attachment about afflicted area 12. If necessary, the control means are activated. A selected temperature is entered into set point controller 21. If desired, a selected duration is entered into the optional timing means. Any temperature or other alarm values are also entered into the system control means. Applicator 18 is placed about afflicted area 12. Embodiment 10 is activated. When the temperature of the liquid in reservoir 14 approximates the selected temperature set into controller 21, pump 17 is enabled. Upon actuation, pump 17 first partially evacuates cavity 38, thereby creating a negative pressure differential. This negative pressure acts to hold applicator 18 in place about afflicted area 12. Heated liquid then exits reservoir 14 through outlet end 27 of liquid supply means 15, and passes through supply conduit liquid supply means 15, enters applicator 18, comes into contact with afflicted area 12, transfers heat to afflicted area 12, and exits applicator 18 into liquid return means 16. This liquid passes through the pump 17 and is returned into reservoir 14 through inlet end 28 of liquid return means 16, thereby completing the loop.


Certain advantages may accrue from moving the heated liquid rapidly through the embodiment. These advantages are believed to include better temperature control, a faster rate of heat transfer to the afflicted cells, a quicker attainment of thermal equilibrium, and a lower requirement for total system liquid. It is also anticipated that this device and modality would also be effective in treating cells subcutaneous the skin areas 12 and 13, placed within the open bottom 31 of the applicator 18.


Additional, an open loop system, as shown in FIG. 6, where fluid comes into contact with skin areas 12, 13, and is then either discarded, in a manner well known in the art, or is placed in storage for later disposal, in a manner well known in this art, could be used for irrigation therapy, lavage, or the like. As is apparent to one of ordinary skill in the art, this apparatus would well serve this purpose of an open loop system were to be used, and a positive, rather than a negative pressure pump is provided. In that case, an additional mechanism to hold applicator 18 in place, fastener 50 would be required, as the pump would be operatively connected with liquid supply means 15 rather than liquid return means 16. Fluid supply means would supply either a limited quantity of fluid, such as from reservoir 14, or an unlimited source of fluid from a faucet or the like.


An additional embodiment would be to use a mild oxidizing agent as the fluid in this device. Such an agent, were it to have a greater affect upon afflicted cells, than non-afflicted cells, would provide an enhanced therapeutic effect in conjunction with the therapy herein described. An example of such a solution would be 3% Hydrogen peroxide, U.S.P. Likely a more benign disinfecting solution would be used, such as are well known to those skilled in the art, for irrigation or other treatment of wounds.


While the invention has been described herein with reference to certain preferred embodiments, these embodiments have been presented by way of example only, and not to limit the scope of the invention. Many other variations are possible, which would be obvious to one skilled in the art. Accordingly, the scope of the invention should be identified only in accordance with the claims that follow.

Claims
  • 1. An apparatus for treating an afflicted area of a patient, the apparatus comprising: a reservoir;a temperature-controlled liquid stored in the reservoir;an applicator having a cavity formed between an inner surface of the applicator and the afflicted area of the patient, the applicator being fluidly connected to the reservoir and positioned adjacent the afflicted area, wherein the applicator is formed from a dressing material adapted to support a vacuum; anda negative pressure pump fluidly connected to the applicator to draw the temperature-controlled liquid from the reservoir through the applicator and return the temperature-controlled liquid to the reservoir.
  • 2. The apparatus of claim 1, further comprising: a controller operably connected to the reservoir to regulate a temperature of the temperature-controlled liquid.
  • 3. The apparatus of claim 2, further comprising: a liquid heater exposed to the temperature-controlled liquid and operably connected to the controller, wherein the controller is operable to regulate power to the liquid heater so that the temperature-controlled liquid is heated.
  • 4. The apparatus of claim 1, further comprising: a liquid heater operable to heat the temperature-controlled liquid prior to application to the afflicted area to induce a localized hyperthermia in the afflicted area after application of the heated temperature-controlled liquid to the afflicted area.
  • 5. The apparatus of claim 1, wherein the controller is operable to cause the temperature-controlled liquid to be cooled prior to application to the afflicted area.
  • 6. The apparatus of claim 5, wherein the cooled temperature-controlled liquid is operable to induce a localized hypothermia in the afflicted area after application of the cooled temperature-controlled liquid to the afflicted area.
  • 7. A device for applying therapeutic liquid to an afflicted area of a patient comprising: a supply means for supplying a therapeutic liquid;a return means for returning the therapeutic liquid to the supply means;a control means for thermally regulating the therapeutic liquid;an applicator fluidly connected between the supply means and the return means, the applicator being adapted to be secured about the afflicted area to support a vacuum; andliquid movement means for moving and re-circulating the therapeutic liquid through the supply means, the applicator, and the return means.
  • 8. The device of claim 7, wherein the therapeutic liquid is a water-based, temperature controlled liquid.
  • 9. The device of claim 7, wherein further comprising: a liquid heater operable to heat the therapeutic liquid.
  • 10. The device of claim 9, wherein the liquid heater is operable to induce a localized hyperthermia in the afflicted area after application of the heated therapeutic liquid to the afflicted area.
  • 11. The device of claim 7, wherein the control means is operable to cool the therapeutic liquid.
  • 12. The device of claim 11, wherein the cooled therapeutic liquid is operable to induce a localized hypothermia in the afflicted area after application of the cooled therapeutic liquid to the afflicted area.
  • 13. The device of claim 7, further comprising: a liquid storage means for providing the therapeutic liquid to the supply means and for accepting the therapeutic liquid from the return means.
  • 14. The device of claim 13, wherein the liquid movement means is positioned within the liquid storage means.
  • 15. The device of claim 7, wherein the liquid movement means generates a negative pressure at the applicator to drain the afflicted area, secure the applicator against the afflicted area, and provide negative pressure wound therapy to the afflicted area.
  • 16. The device of claim 7, wherein the liquid movement means is a negative pressure pump positioned to draw the therapeutic liquid through the applicator.
  • 17. The device of claim 7, wherein the liquid movement means is a negative pressure collection container.
  • 18. The device of claim 7, wherein the liquid movement means is a pump positioned to apply positively pressured therapeutic liquid to the afflicted area.
  • 19. A method of treating an afflicted area of a patient comprising: positioning an applicator adapted to support a vacuum over the afflicted area of the patient;thermally regulating a temperature of a liquid;moving the liquid through the applicator such that the liquid contacts the afflicted area of the patient and creates a vacuum adjacent the afflicted area; andrecirculating the liquid through the applicator after the liquid has passed through the applicator.
  • 20. The method of claim 19, further comprising: measuring the temperature of the liquid.
  • 21. The method of claim 19, wherein thermally regulating the temperature further comprises heating the liquid.
  • 22. The method of claim 19, wherein thermally regulating the temperature further comprises cooling the liquid.
  • 23. The method of claim 19, wherein moving the liquid through the applicator further comprises applying a negative pressure to the applicator to draw the liquid through the applicator.
  • 24. The method of claim 19, wherein moving the liquid through the applicator further comprises applying a positive pressure to the liquid to push the liquid through the applicator.
  • 25. An apparatus for treating an afflicted area of a patient, the apparatus comprising: a reservoir;a temperature-controlled liquid stored in the reservoir;an applicator having a cavity formed between an inner surface of the applicator and the afflicted area of the patient, the applicator being fluidly connected to the reservoir and positioned adjacent the afflicted area; anda negative pressure pump fluidly connected to the applicator to draw the temperature-controlled liquid from the reservoir through the applicator and return the temperature-controlled liquid to the reservoir;wherein the temperature-controlled liquid is cooled prior to application to the afflicted area.
  • 26. The apparatus of claim 25, further comprising: a controller operably connected to the reservoir to regulate a temperature of the temperature-controlled liquid.
  • 27. The apparatus of claim 25, wherein the cooled temperature-controlled liquid induces a localized hypothermia in the afflicted area after application of the cooled temperature-controlled liquid to the afflicted area.
  • 28. A device for applying therapeutic liquid to an afflicted area of a patient comprising: a supply means for supplying a therapeutic liquid;a return means for returning the therapeutic liquid to the supply means;a control means for thermally regulating the therapeutic liquid, wherein the therapeutic liquid is cooled;an applicator fluidly connected between the supply means and the return means, the applicator being adapted to be secured about the afflicted area; anda negative pressure pump positioned to draw therapeutic liquid through the applicator from the supply means to the return means.
  • 29. The device of claim 28, wherein the therapeutic liquid is a water-based, temperature controlled liquid.
  • 30. The device of claim 28, wherein the cooled therapeutic liquid is operable to induce a localized hypothermia in the afflicted area after application of the cooled therapeutic liquid to the afflicted area.
  • 31. The device of claim 28, further comprising: a liquid storage means for providing the therapeutic liquid to the supply means and for accepting the therapeutic liquid from the return means.
  • 32. The device of claim 31, wherein the negative pressure pump is positioned within the liquid storage means.
  • 33. The device of claim 28, wherein the negative pressure pump generates a negative pressure at the applicator to drain the afflicted area, and secure the applicator against the afflicted area.
  • 34. The device of claim 28, wherein the negative pressure pump is a negative pressure collection container.
  • 35. The device of claim 28, further comprising: a pump positioned to apply positively pressured therapeutic liquid to the afflicted area.
  • 36. A method of treating an afflicted area of a patient comprising: positioning an applicator over the afflicted area of the patient;thermally regulating a temperature of a liquid, wherein thermally regulating the temperature comprises cooling the liquid;applying a negative pressure to the applicator to draw the liquid through the applicator such that the liquid contacts the afflicted area of the patient; andrecirculating the liquid through the applicator after the liquid has passed through the applicator.
  • 37. The method of claim 36, further comprising: measuring the temperature of the liquid.
  • 38. The method of claim 37, further comprising: applying a positive pressure to the liquid to push the liquid through the applicator.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/320,211 filed Dec. 16, 2002 now U.S. Pat. No. 7,422,576, which is a continuation of U.S. application Ser. No. 09/590,333, filed Jun. 8, 2000, now U.S. Pat. No. 6,520,982. Priority is claimed to all of the above-mentioned applications, and each application is hereby incorporated by reference.

US Referenced Citations (124)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2272481 Rinkes Feb 1942 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
4080970 Miller Mar 1978 A
4090507 Van Horn May 1978 A
4096853 Weigand Jun 1978 A
4112947 Nehring Sep 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4192297 Labrecque Mar 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4353359 Milbauer Oct 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4595008 Guibert Jun 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielson Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt et al. Apr 1990 A
4941882 Ward et al. Jul 1990 A
4945901 Burcke, Jr. Aug 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4979938 Stephen et al. Dec 1990 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5195965 Shantha Mar 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5241953 Sykes Sep 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5458596 Lax et al. Oct 1995 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5683438 Grahn Nov 1997 A
5735833 Olson Apr 1998 A
5871526 Gibbs et al. Feb 1999 A
6071267 Zamierowski Jun 2000 A
6135116 Vogel et al. Oct 2000 A
6200292 French et al. Mar 2001 B1
6241747 Ruff Jun 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6406447 Thrash et al. Jun 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6520982 Boynton et al. Feb 2003 B1
6553998 Heaton et al. Apr 2003 B2
6800074 Henley et al. Oct 2004 B2
6814079 Heaton et al. Nov 2004 B2
7144390 Hannigan et al. Dec 2006 B1
7422576 Boynton et al. Sep 2008 B2
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
Foreign Referenced Citations (30)
Number Date Country
550575 Aug 1982 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
2005436 Jun 1990 CA
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
295 04 378 Oct 1995 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 81 Aug 2004 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 333 965 Aug 1999 GB
2 329 127 Aug 2000 GB
4129536 Apr 1992 JP
71559 Apr 2002 SG
WO 8002182 Oct 1980 WO
WO 8704626 Aug 1987 WO
WO 9010424 Sep 1990 WO
WO 9309727 May 1993 WO
WO 9420041 Sep 1994 WO
WO 9605873 Feb 1996 WO
WO 9718007 May 1997 WO
WO 9913793 Mar 1999 WO
WO 0007653 Feb 2000 WO
Non-Patent Literature Citations (57)
Entry
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation).
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 563-576.
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997.
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinović, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,”Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
Non-Final Office Action date mailed Jan. 3, 2002 for U.S. Appl. No. 09/590,333.
Response filed Jul. 2, 2002 to Non-Final Office Action date mailed Jan. 3, 2002 for U.S. Appl. No. 09/590,333.
Notice of Allowance date mailed Oct. 9, 2002 for U.S. Appl. No. 09/590,333.
Non-Final Office Action date mailed Aug. 20, 2004 for U.S. Appl. No. 10/320,211.
Response filed Dec. 9, 2004 to Non-Final Office Action date mailed Aug. 20, 2004 for U.S. Appl. No. 10/320,211.
Non-Final Office Action date mailed Feb. 17, 2005 for U.S. Appl. No. 10/320,211.
Response filed Aug. 15, 2005 to Non-Final Office Action date mailed Feb. 17, 2005 for U.S. Appl. No. 10/320,211.
Final Office Action date mailed Oct. 27, 2005 for U.S. Appl. No. 10/320,211.
Response filed Mar. 27, 2006 to Final Office Action date mailed Oct. 27, 2005 for U.S. Appl. No. 10/320,211.
Non-Final Office Action date mailed May 30, 2006 for U.S. Appl. No. 10/320,211.
Response filed Nov. 30, 2006 to Non-Final Office Action date mailed May 30, 2006 for U.S. Appl. No. 10/320,211.
Non-Final Office Action date mailed Mar. 7, 2007 for U.S. Appl. No. 10/320,211.
Response filed Jun. 6, 2007 to Non-Final Office Action date mailed Mar. 7, 2007 for U.S. Appl. No. 10/320,211.
Non-Final Office Action date mailed Aug. 27, 2007 for U.S. Appl. No. 10/320,211.
Response filed Nov. 27, 2007 to Non-Final Office Action date mailed Aug. 27, 2007 for U.S. Appl. No. 10/320,211.
Non-Final Office Action date mailed Feb. 25, 2008 for U.S. Appl. No. 10/320,211.
Response filed May 14, 2008 to Non-Final Office Action date mailed Feb. 25, 2008 for U.S. Appl. No. 10/320,211.
Notice of Allowance date mailed Jun. 11, 2008 for U.S. Appl. No. 10/320,211.
Related Publications (1)
Number Date Country
20080275408 A1 Nov 2008 US
Continuations (2)
Number Date Country
Parent 10320211 Dec 2002 US
Child 12177588 US
Parent 09590333 Jun 2000 US
Child 10320211 US