1. Field of the Invention
The present invention relates to the field of medical devices and more particularly to a medical system for introducing, among other things, minimally invasive surgical instruments and other medical treatments into a patient's body.
2. Description of the Related Art
Medical procedures have advanced to stages where less invasive or minimally invasive surgeries, diagnostic procedures and exploratory procedures have become desired and demanded by patients, physicians, and various medical industry administrators. To meet these demands, improved medical devices and instrumentation have been developed, such as cannulas or micro-cannulas, medical introducers, vacuum assisted biopsy apparatus, and other endoscopic related devices.
In the field of tissue biopsy, minimally invasive biopsy devices have been developed that require only a single insertion point into a patient's body to remove one or more tissue samples. One such biopsy device incorporates a “tube-within-a-tube” design that includes an outer piercing needle having a sharpened distal end and a lateral opening that defines a tissue receiving port. An inner cutting member is slidingly received within the outer piercing needle, which serves to excise tissue that has prolapsed into the tissue receiving port. A vacuum is used to draw the excised tissue into the tissue receiving port and aspirates the excised tissue from the biopsy site once severed.
Exemplary “tube-within-a-tube” biopsy devices are disclosed in pending U.S. patent application Ser. Nos. 09/707,022 and 09/864,031, which are owned by the assignee of the present invention. Among other features, the exemplary biopsy devices can be used in conjunction with Magnetic Resonance Imaging (MRI). This compatibility is due to the fact that many of the components of the biopsy devices are made of materials that do not interfere with operation of MRI apparatus or are otherwise compatible therewith. It is desirable to perform biopsies in conjunction with MRI because it is currently the only non-invasive visualization modality capable of defining the margins of a tumor.
While the exemplary MRI compatible biopsy devices have proven effective in operation, in some procedures it is desirable to create a pathway to the biopsy site for precise introduction of the biopsy device and other medical treatments into the patient. For these and other reasons, an MRI compatible medical introduction system is desirable for use with minimally invasive biopsy devices, such as those employing a “tube-within-a-tube” design.
A medical target confirmation device, such as a localizing obturator, is disclosed. In one embodiment, the medical target confirmation device includes an elongate body member defined by a distal end and a proximal end. The distal end includes at least one bore extending therein. The bore receives contrast agent therein. A method for using the medical target confirmation device is also disclosed.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, wherein:
Referring now to the drawings, the preferred illustrative embodiments of the present invention are shown in detail. Although the drawings represent some preferred embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain the present invention. Further, the embodiments set forth herein are not intended to be exhaustive or otherwise limit or restrict the invention to the precise forms and configurations shown in the drawings and disclosed in the following detailed description.
Referring to
In an embodiment, introducer stylet 22 includes a handle 28 and a stylet 30 having a distal end 32 and a proximal end 34 connected to handle 28. Handle 28 may be made of a medical grade resin or other MRI compatible material. Stylet 30 may also be made of an MRI compatible, medical grade material, such as 316 stainless steel or inconel 625.
In a particular configuration, a distal end 32 of stylet 30 includes a tissue piercing tip, such as a trocar tip, to facilitate penetration of stylet 30 into a patient's tissue. In addition to a trocar tip, it will be appreciated that stylet 30 may include other devices for of piercing the patient's tissue, including without limitation, devices that use a laser or radio frequencies (RF) to pierce the tissue. The length of stylet 30 is generally denoted by the reference character “A” in
Referring to the embodiment shown in
In an embodiment, outer cannula 24 also includes an inner lumen 40 therethrough, which is open to communication with a fluid conduit 42 for supplying fluids, such as saline and anesthetics, or removing fluids, such as blood, from the patient's body. Fluid conduit 42 communicates with inner lumen 40 via a port in outer cannula 24. In some configurations, outer cannula 24 may include a haemostatic valve, depicted generally as element 41, or a manually operable valve 41′ that can be selectively closed to prevent the escape of fluid from proximal end 36. Fluid conduit 42 may also include a directional valve 43 to selectively control the supply and removal of fluid to and from inner lumen 40, respectively.
In the embodiment shown in
Distal end 46 of target confirmation device 26 is generally rounded to facilitate entry into the patient's body. In an embodiment, a portion of target confirmation device 26 is configured with a magnetic resonance imaging (MRI) identifiable material, such as inconel 625, titanium or other material with similar magnetic characteristics. In one particular configuration, a targeting band 48 is provided a distance “C” from connecting end 44, as shown in
In another embodiment of the present invention, the tip of target confirmation device itself may be used to provide the reference point in the MR image, provided the target confirmation device material exhibits a relatively low artifact during MR imaging. As used herein, the term “artifact” describes a material's tendency to distort an MR image. A material exhibiting a relatively high artifact will render the body tissue surrounding the material unreadable in an MR image. Conversely, a material with a relatively low artifact will allow the material to be readily identified in the MR image and will not significantly distort the MR image of the surrounding tissue.
As shown in the embodiments of
Distal end 31 of obturator 27 may be generally rounded to facilitate entry into the patient's body. In the embodiment shown in
In the embodiment shown in
Proximal end 33 is sized so as to be larger than inner lumen 40 of cannula 24 such that the entire obturator 27 may not be delivered into a patient's body. In one embodiment, proximal end 33 includes a number of gripping depressions 39 to assist a user in gripping obturator 27. Alternatively, proximal end 33 may include a cap, such as described above in connection with
To assist in imaging a target site, a contrast agent is introduced into the bores 35′ 35″ of obturator 27. In the embodiment shown in
After the contrast agent has been introduced into reservoir 37, when obturator 27 is placed into the body via outer cannula 24, the contrast agent is visible. Suitable contrast agents include fluro-deoxyglucose (FDG), technicium 99 or other similar radioactive isotope. These radioactive isotopes are visible under imaging modalities such as PET (positron emission tomography), gamma cameras, or scintimammography. The radioactive isotopes attach to glucose, such that highly active cells (typically cancer) metabolize the glucose much more rapidly than normal tissue cells. Thus, the contrast agent is concentrated in the areas of high metabolic activities and shows up as bright areas under the imaging modalities.
In operation, after the contrast agent is introduced into the reservoir, either by dipping or by injection, at least a portion of the contrast agent is retained within the reservoir 37. Next, obturator 27 is inserted into inner lumen 40 of outer cannula 24. As obtuator 27 is inserted therein, distal end 31 passes through hemostatic valve 41. Because a portion of the contrast agent is retained within the reservoir 37, the contrast material will still be visible under the imaging modalities even if the frictional force between the hemostatic valve 41 and the distal end 31 of the obturator 27 wipes some of the contrast material off the obturator 27 outside surface. Further, in one embodiment, distal end 31 may be formed with an inwardly extending depression 41 that substantially surrounds bore 35. Depression 41 further serves to reduce the likelihood that the contrast material will be removed from obturator 27. The visibility of the contrast agent is also significant as the contrast material that has wicked into the bores 35 view is pure contrast agent in that it has not been metabolized by in the surrounding tissue and thus has not be diluted. Once the obturator 27 has been placed in the body, the contrast agent will be easily visible under the imaging modalities, thereby indicating a target site where a biopsy instrument may be placed.
In still another embodiment, introducer stylet 30 may function as a target confirmation device. In this embodiment, introducer stylet 30, and more particularly stylet 30, may be made of an MRI compatible material that preferably, but not necessarily, exhibits a relatively low artifact.
An exemplary biopsy apparatus 50, which is suitable for use with medical system 20 of the present invention, is generally shown in
A particular embodiment of the working end of cutting element 52 is depicted in
Referring to
Referring to
In an embodiment, reference structure 82 includes a support grid having a number of holes therethrough. Each hole is sized to allow passage of outer cannula 24. The hole through which outer cannula 24 is ultimately inserted is determined by the location of target tissue 80 relative to reference structure 82 along the X and Y axes. The patient and reference structure 82 are viewed using a medical imaging system, such as MRI, to determine the location of the target tissue relative to reference structure 82.
After application of anesthesia, the stylet portion of introducer stylet 22 and a portion of outer cannula 24 are inserted through the support grid and into the patient's body, creating a pathway 84 to the target tissue 80 (see, e.g.,
Fluids may be inserted into or removed from the patient's body through inner lumen 40 via fluid conduit 42. These fluids may include, for example, additional anesthetics and/or saline solution to cleanse pathway 84 and remove blood. Accumulated blood and other fluids within pathway 84 may be aspirated through fluid conduit 42 or by inserting aspirating wand 68 prior to insertion of target confirmation device 26.
Once introducer stylet 22 is removed from outer cannula 24, target confirmation device 26 may be inserted into the patient's body through the port created by outer cannula 24 (see, e.g.,
Once the desired position is achieved, depth limiting member 39 is moved against reference structure 82 to inhibit movement of outer cannula 24 further into the patient. When no reference structure 82 is used, depth limiting member may be moved directly against the patient's skin. Target confirmation device 26 is then removed from outer cannula 24 and biopsy device 50 is inserted into outer cannula 24 until handpiece 54 abuts proximal end 36 of outer cannula 24. In the embodiment illustrated in
After completion of the biopsy, the biopsy site can be aspirated using aspirating wand 68 (see, e.g.,
Among other features, the medical system of the present invention localizes the target biopsy site in a manner that allows confirmation of the target biopsy site under MRI or other visualization modality, and allows positioning of a biopsy device to ensure the cutting element of the biopsy device can be accurately placed at the target biopsy site. The medical system of the present invention also facilitates the introduction and removal of fluids from the target site, including without limitation, anesthesia and blood, but minimizes the exposure of the fluids to the adjacent equipment and medical staff. In addition to allowing the medical staff to identify the presence of significant bleeding and to introduce a biopsy device into the patient, the medical system provides access to the target site to introduce a medical treatment, such as a site marker, tamponade or other haemostatic agent, after removal of the tissue.
The present invention has been particularly shown and described with reference to the foregoing embodiments, which are merely illustrative of the best modes for carrying out the invention. It should be understood by those skilled in the art that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention without departing from the spirit and scope of the invention as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. This description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.
This application is a continuation-in-part application that claims priority to U.S. patent application Ser. No. 10/649,068 filed on Aug. 27, 2003 which claims priority to U.S. provisional application 60/416,755 filed on Oct. 7, 2002. Both applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60416755 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10649068 | Aug 2003 | US |
Child | 11516277 | Sep 2006 | US |