1. Field of the Invention
The present invention relates to a current source on a chip that can be calibrated on-chip to provide a current source that is PVT independent.
2. Description of the Prior Art
Microchips require PVT independent reference currents that can be input to various local circuits on the chip. In order to avoid the effects of noise, a reference current is routed to the chip over a long distance, and then rerouted to all circuits on the microchip. Each circuit requires a separate wire for this routing, which takes up space on the chip. It is therefore an object of the present invention to provide a circuit that reduces the number of wires required for providing a constant current reference to many circuits on a chip.
A microchip that can calibrate a plurality of circuits on the microchip with a current reference according to an exemplary embodiment of the present invention comprises: at least a first circuit disposed on the microchip; at least a first local bias generation circuit, for generating a bias current that is input to the first circuit; an external current reference, coupled to the first local bias generation circuit, for updating the bias current; and a calibration logic, coupled to the first local bias generation circuit, for enabling the external current reference to update the bias current according to a valid calibration signal.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
The present invention provides an architecture whereby current can be routed to local circuits on a chip utilizing fewer wires than prior art methods. By the use of additional circuitry that is within the microchip, local calibration can take place.
Please refer to
The master current reference 150, which is process, voltage and temperature (PVT) insensitive, is input to the microchip 100. This current reference is then routed over a single wire which is coupled to each of the local crude bias generation circuits 112, 122, 132, 142. The microchip 100 also comprises a calibration logic circuit 160 which is similarly routed over a single wire and coupled to each of the local crude bias generation circuits 112, 122, 132, 142.
The calibration logic 160 is only enabled when a particular circuit requires calibration. Each local circuit 114, 124, 134, 144 can have a specific enable signal. When the valid enable signal is received from the calibration logic 160, the crude bias generation circuit will calibrate its corresponding circuit.
Please refer to
When the calibration logic is a valid logic for the circuit 112, the switch 220 will be on, allowing the reference current to be input. The current reference is then compared with the locally generated current, which is fed back from the bias generation circuit 250, by the comparator 240. The comparator 240 will then generate a correction amount for updating the locally generated current, so that the output of the local crude bias generation circuit 112 equals the current reference that is supplied (i.e. the master current).
The locally generated current is insensitive to voltage only. As each locally generated current is constantly updated by a PVT insensitive reference, however, the current that is supplied to the local circuits 11, 124, 134, 144 will be PVT independent.
The means for determining when to update the current can occur at any time. In one embodiment, updates occur according to a certain period of time. In another embodiment, as the locally generated current is sensitive to temperature, each time there is a temperature change the calibration logic 160 will be enabled to allow current updates.
As the current reference is used to update locally generated currents, it only requires a single wire for coupling with the local crude bias generation circuits 112, 122, 132, 142. The current that is input to the local circuits 114, 124, 134, 144 is constantly updated by a PVT insensitive reference, so it does not need to be temperature and process insensitive. The use of the calibration logic circuit 160 for selectively enabling updates of the locally generated current allows the number of wires used in the microchip 100 to be fewer than those used in the prior art.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Name | Date | Kind |
---|---|---|---|
7307470 | Hasegawa | Dec 2007 | B2 |
7466166 | Date et al. | Dec 2008 | B2 |
7514989 | Somerville et al. | Apr 2009 | B1 |
7675317 | Perisetty | Mar 2010 | B2 |