1. Field of Invention
This invention relates in general to well component positioning, and in particular to a device that provides an operator with the location-and-rotation of a tool during wellhead operation.
2. Description of Related Art
The operation of equipment in remote and inaccessible locations, such as subsea wellheads, is difficult because there is no information available as to the condition or the occurrence of an event in such remote location. It is thus difficult to determine if a particular subsea wellhead operation has been successful. Wellhead operations may include landing a casing hanger on the housing seat, properly locating an annulus seal, properly positioning a tool or component at a particular level, or rotating a tool or component to a particular orientation within the wellhead.
The operation and placement of well components in a wellhead housing bore, riser bore, or blowout preventer (BOP) stack is critical in oil and gas drilling operations, especially in offshore operations where down time is very expensive. Thus a variety of approaches have been used in an attempt to provide reliable location-and-rotation of well components. Hard landing a casing hanger can be used as an indicator of location but it can be a false indicator if the hanger gets snagged on debris or other obstruction in the well bore.
An index line has also been used in conjunction with hard landing. However, the index line becomes inaccurate as longer lines are used in deeper waters, which can lead to costly errors in location when setting a tool. Another approach calls for the use of radioactive material to provide a location signal. Overpull can also be used as a location indicator but is not viable for all types of tools.
Acoustic or ferrous metal detectors, as well as magnetic detection units have also been used as location tools. U.S. Pat. No. 4,314,365 shows a system for transmitting and detecting acoustic signals along a drill pipe string, and U.S. Pat. No. 4,862,426 discloses an apparatus that uses acoustic or ferrous metal detectors to determine if certain operations such as landing a casing hanger are completed. German Utility Model Application No. 110 08 413.5 shows a system for detecting tool joints using magnetic detection units in a planar arrangement.
Moreover, a method and apparatus for sensing the profile and position of a well component in a well bore is disclosed in U.S. Pat. No. 6,478,087. The apparatus uses acoustic, ultrasonic, or optical sensors to sense well components and then transmits the information to a display at the surface.
Improvements that make the identification of the location and the rotation of well bore tools and components more reliable, less complicated, less costly, and more accessible are desired. The techniques described below address one or more of the problems described above.
A system and method for providing a reliable indicator of a well component's location and orientation in a subsea wellhead or well bore is presented. In the illustrated embodiment, a location-and-rotation feedback tool is presented that provides feedback to a surface location via fluid pressure in a choke-and-kill line. The pressure feedback location enables the feedback tool to be aligned with a choke-and-kill line port. The distance from the choke-and-kill line port in the BOP to points within the BOP, subsea wellhead, or wellbore is known. In addition, the distance from the component to the feedback tool is known, and may be adjusted to obtain a desired distance. Thus, the location of the component in the BOP, subsea wellhead, or wellbore may be established by aligning the feedback tool with the choke-and-kill line port. In addition, the pressure feedback enables the rotation of the feedback tool relative to the choke-and-kill line port to be established. The location-and-rotation feedback tool may be used in many operations, such as landing a casing hanger in a subsea wellhead seat, positioning and setting an annular seal between a subsea wellhead and a casing hanger, or positioning a well component such as a test plug or tool joint at a particular level, or orientation, in a wellbore, wellhead, or BOP stack.
The illustrated technique utilizes a flow of fluid from the choke-and-kill line into the BOP to establish when the feedback tool is aligned with the choke-and-kill line port of the BOP. The location feedback provided to the surface is in the form of a pressure profile in the fluid within the choke-and-kill line as the feedback tool is moved vertically in the well. The rotation feedback also is provided to the surface in the form of a pressure profile obtained from the fluid in the choke-and-kill line. However, the pressure profile is obtained as the feedback tool is rotated in the BOP in reference to the choke-and-kill line port.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
Referring generally to
In the illustrated embodiment, a running tool 30 is used to install a casing hanger 24 within the subsea wellhead housing 11. The running tool 30 is connected to a tool stem 32 to enable movement of the running tool 30 and casing hanger 24 through the bore of the BOP 10 into housing 11.
Running tool 30 is conventional and has a body 31 that releasably secures, to casing hanger 24. Running tool 30 has a sleeve 34 with an energizing ring 36 on its lower end. Sleeve 34 moves relative to body 31 from the upper position shown in
A location-and-rotation feedback tool 50 is connected to the tool stem 32 above the running tool 30 to enable a wellhead housing component, such as the casing hanger 24, to be positioned at a desired location within the subsea wellhead housing 24. The location-and-rotation feedback tool 50 is positioned on the tool stem 32 so that the distance, D2, between the wellhead component and the feedback tool 50 places the wellhead component at the desired distance, D1, from the choke-and-kill line port 12 when the feedback tool 50 is aligned with the choke-and-kill line port 12. In the illustrated embodiment, the location-and-rotation feedback tool 50 is positioned on the tool stem 32 so that the feedback tool 50 will be positioned opposite the choke-and-kill line port 12 when the casing hanger 24 has landed on the load shoulder in the wellhead housing 11. As will be discussed in more detail below, the position of the feedback tool 50 relative to the choke-and-kill port 12 will affect fluid pressure in the choke-and-kill line 13 that may be read on the pressure reading device 14. If the casing hanger 24 is landed at the correct location, the feedback tool 50 will be located opposite the choke-and-kill port 12 and an expected pressure may be read on the pressure reading device 14. However, if the casing hanger 24 is landed at an incorrect location, the feedback tool 50 will not be located opposite the choke-and-kill port 12 and the expected pressure will not be read on the pressure reading device 14.
Referring to
In this embodiment, an outlet passage 56 extending from the upper end of the feedback tool body 52 to about the central part of the body 52 communicates with the circumferential groove 54 to allow fluid entering the groove 54 to flow up into the bore of the BOP 10 above the feedback tool 50. A plurality of through passages 58 vertically traverse the body 52 of the feedback tool 50 to allow flow-by during operations such as tripping and cementing. Passages 58 extend from the upper to the lower end of feedback tool 50, communicating fluid through the feedback tool 50.
The feedback tool 50 is preferably locked onto the tool stem 32 with two split gland locks 60 that are typically referred to as Morse taper locks. One set of locks 60 is located at the top and another set of locks 60 is located at the bottom of the tool 50 to lock onto the tool stem 32 by friction caused by the interference between the tapered locks 60 and wedges machined into the tool body 52 at the tool 50 bore.
In a running operation as shown in
Running tool 30 is then actuated to move seal 38 from the upper position down to the lower position. The tool stem 32 and feedback tool 50 may be rotated to actuate running tool 30 to position the seal 38 in a seal pocket of the casing hanger 24. The distance the energizing ring 36 and annulus seal 38 must travel downward relative to running tool body 31 to set is known. The correct locking location on the tool stem 32 for the feedback tool 50 is thus previously determined from this known distance and accurately calibrates the feedback tool 50 to provide confirmation of the seal 38 setting as explained below.
During cementing, feedback tool 50 may be spaced a short distance above choke-and-kill line port 12 or it may be partially blocking port 12 as shown in
The pressure causes sleeve 34 and energizing ring to move down inside wellhead housing 11 stack relative to the tool body 31. Feedback tool 50 also moves downward inside BOP 10. As the feedback tool 50 moves down inside the BOP 10 stack, the pressure in the choke-and-kill line 12 will decrease when the circumferential groove 54 in the feedback tool body 52 aligns with the choke-and-kill line 12. The fluid from the choke-and-kill line 12 now flows up passage 56. The pressure drop will provide feedback, via the lower reading registered by the pressure reading device 14, confirming that the annulus seal 38 landed and was set at the correct location within the wellhead housing 11. In this example, the seal 38 is set by closing the annular space in the well and pressuring up the BOP 10, causing energizing ring 36 to set the seal 38. After seal 38 is set, the operator stops pumping through choke-and-kill line 12, releases the engagement of BOP 10 around stem 32, and lifts stem 32. The operator releases body 31 from casing hanger 24 and retrieves running tool 30.
Referring generally to
In another embodiment, a plurality of holes can be cut into the groove. In a further additional embodiment, location and feedback tool can be used to properly orient a tool or component at a particular level, or rotate a tool or component a required number of times during running operations.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. These embodiments are not intended to limit the scope of the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3336976 | Word, Jr. | Aug 1967 | A |
4353420 | Miller | Oct 1982 | A |
4836288 | Wester | Jun 1989 | A |
4862426 | Cassity et al. | Aug 1989 | A |
5450905 | Brammer et al. | Sep 1995 | A |
6253854 | Fenton | Jul 2001 | B1 |
6478087 | Allen | Nov 2002 | B2 |
8033756 | Adamson | Oct 2011 | B2 |
20070272415 | Ratliff et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100243244 A1 | Sep 2010 | US |