Location-based conversational understanding

Abstract
Location-based conversational understanding may be provided. Upon receiving a query from a user, an environmental context associated with the query may be generated. The query may be interpreted according to the environmental context. The interpreted query may be executed and at least one result associated with the query may be provided to the user.
Description
BACKGROUND

Location-based conversational understanding may provide a mechanism for leveraging environmental contexts to improve query execution and results. Conventional speech recognition programs do not have techniques for leveraging information (e.g., speech utterances, geographical data, acoustic environments of certain locations, typical queries made from a particular location) from one user to another to improve the quality and accuracy of new queries from new and/or existing users. In some situations, speech-to-text conversions must be made without the benefit of using similar, potentially related queries to aid in understanding.


Speech-to-text conversion (i.e., speech recognition) may comprise converting a spoken phrase into a text phrase that may be processed by a computing system. Acoustic modeling and/or language modeling may be used in modern statistic-based speech recognition algorithms. Hidden Markov models (HMMs) are widely used in many conventional systems. HMMs may comprise statistical models that may output a sequence of symbols or quantities. HMMs may be used in speech recognition because a speech signal may be viewed as a piecewise stationary signal or a short-time stationary signal. In a short-time (e.g., 10 milliseconds), speech may be approximated as a stationary process. Speech may thus be thought of as a Markov model for many stochastic purposes.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter. Nor is this Summary intended to be used to limit the claimed subject matter's scope.


Location-based conversational understanding may be provided. Upon receiving a query from a user, an environmental context associated with the query may be generated. The query may be interpreted according to the environmental context. The interpreted query may be executed and at at least one result associated with the query may be provided to the user.


Both the foregoing general description and the following detailed description provide examples and are explanatory only. Accordingly, the foregoing general description and the following detailed description should not be considered to be restrictive. Further, features or variations may be provided in addition to those set forth herein. For example, embodiments may be directed to various feature combinations and sub-combinations described in the detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments of the present invention. In the drawings:



FIG. 1 is a block diagram of an operating environment;



FIG. 2 is a flow chart of a method for providing location-based conversational understanding; and



FIG. 3 is a block diagram of a system including a computing device.





DETAILED DESCRIPTION

The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements. While embodiments of the invention may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description does not limit the invention. Instead, the proper scope of the invention is defined by the appended claims.


Location-based conversational understanding may be provided. For example, a speech-to-text system may be provided that correlates information from multiple users in order to improve the accuracy of the conversion and the results of queries included in the converted statement. Consistent with embodiments of the invention, a personal assistant program may receive speech-based queries from user(s) at multiple locations. Each query may be analyzed for acoustic and/or environmental characteristics, and such characteristics may be stored and associated with the location from which the query was received. For example, a query received from a user at a subway station may detect the presence of acoustic echoes off of tile walls and/or the background environmental sounds of crowds or the subway train. These characteristics may then be known to be filtered out in future queries from that location allowing greater accuracy in the conversion of those queries. Consistent with embodiments of the invention, the location may be defined, for example by a global positioning system (GPS) location of the user, an area code associated with the user, a ZIP code associated with the user, and/or a proximity of the user to a landmark (e.g., a train station, a stadium, a museum, an office building, etc.).


Processing the query may comprise adapting the query according to an acoustic model. For example, the acoustic model may comprise a background sound known to be present at a particular location. Applying the acoustic model may allow the query to be converted more accurately by ignoring irrelevant sounds. The acoustic model may also allow for altering the display of any results associated with the query. For example, in a particularly loud environment, results may be displayed on a screen rather than via audio. The environmental context may further be associated with an understanding model to aid in the speech-to-text conversion. For example, the understanding model may comprise a Hidden Markov Model (HMM). The environmental context may further be associated with a semantic model to aid in executing the query. For example, the semantic model may comprise an ontology. Ontologies are described in detail in related application Ser. No. 13/077,303, filed Mar. 11, 2011 and entitled “Personalization of Queries, Conversations, and Searches”, which is herein incorporated by reference in its entirety.


Further, the subject of the query may be used to improve the results for future queries. For example, if users at the subway station query “when is the next one?”, the personal assistant program may determine, over the course of several queries, that the user wants to know when the next train will arrive. This may be accomplished by asking for clarification of the query from a first user, and storing the clarification for use in the future. For another example, if one user queries “when is the next one?” and another user queries “when is the next train?”, the program may correlate these queries and make the assumption that both users are requesting the same information.



FIG. 1 is a block diagram of an operating environment 100 for providing location-based conversational understanding. Operating environment 100 may comprise a spoken dialog system (SDS) 110 comprising a personal assistant program 112, a speech-to-text converter 114, and a context database 116. Personal assistant program 112 may receive queries over a network 120 from a first plurality of users 130(A)-(C) at a first location 140 and/or a second plurality of users 150(A)-(C) at a second location 160. Context database 116 may be operative to store context data associated with queries received from users such as first plurality of users 130(A)-(C) and/or second plurality of users 150(A)-(C). The context data may comprise acoustic and/or environmental characteristics and query context information such as query subjects, time/date of the query, user details, and/or the location from which the query was made. Consistent with embodiments of the invention, network 120 may comprise, for example, a private data network (e.g., an intranet), a cellular data network, and/or a public network such as the Internet.


The agent may be associated with a spoken dialog system (SDS). Such systems enable people to interact with computers with their voice. The primary component that drives the SDS may comprise a dialog manager: this component manages the dialog-based conversation with the user. The dialog manager may determine the intention of the user through a combination of multiple sources of input, such as speech recognition and natural language understanding component outputs, context from the prior dialog turns, user context, and/or results returned from a knowledge base (e.g., search engine). After determining the intention, the dialog manager may take an action, such as displaying the final results to the user and/or continuing in a dialog with the user to satisfy their intent. The spoken dialog system may comprise a plurality of conversational understanding models, such as acoustic models associated with locations and/or a spoken language understanding model for processing speech-based inputs.



FIG. 2 is a flow chart setting forth the general stages involved in a method 200 consistent with an embodiment of the invention for providing location-based conversational understanding. Method 200 may be implemented using a computing device 300 as described in more detail below with respect to FIG. 3. Ways to implement the stages of method 200 will be described in greater detail below. Method 200 may begin at starting block 205 and proceed to stage 210 where computing device 300 may receive a speech-based query from a user at a location. For example, user 130(A) may send a query to SDS 110 via a device such as a cellular telephone.


From stage 210, method 200 may advance to stage 215 where computing device 300 may determine whether an environmental context associated with the location exists in the memory storage. For example, SDS 110 may identify the location from which the query was received (e.g., first location 140) and determine whether an environmental context associated with that location is present in context database 116.


If no context associated with the location exists, method 200 may advance to stage 220 where computing device 300 may identify at least one acoustic interference in the speech-based query. For example, SDS 110 may analyze the audio of the query and identify background noise such as that associated with a large crowd around user 130(A) and/or of a passing train.


Method 200 may then advance to stage 225 where computing device 300 may identify at least one subject associated with the speech-based query. For example, if the query comprises “When is the next arrival?”, SDS 110 may identify train schedules as the subject of the query when the user is at a train station.


Method 200 may then advance to stage 230 where computing device 300 may create a new environmental context associated with the location for storing in the memory storage. For example, SDS 110 may store the identified acoustic interference and query subject in context database 116 as being associated with the user's location.


If a context associated with the location does exist, method 200 may advance to stage 235 where computing device 300 may load the environmental context associated with the location. For example, SDS 110 may load an environmental context as described above from context database 116.


After creating the context at stage 240 or loading the context at stage 235, method 200 may then advance to stage 240 where computing device 300 may convert the speech-based query to a text-based query according to the environmental context. For example, SDS 110 may convert the speech-based query to a text-based query by applying a filter for removing the at least one acoustic interference associated with the environmental context.


Method 200 may then advance to stage 245 where computing device 300 may execute the text-based query according to the environmental context. For example, SDS 110 may execute the query (e.g., “When is the next arrival?”) within a search domain (e.g., train schedules) associated with the at least one subject associated with the environmental context.


Method 200 may then advance to stage 250 where computing device 300 may provide at least one result of the executed text-based query to the user. For example, SDS 110 may transmit a result to a device associated with user 130(A) (e.g., a cellular phone) for display. Method 200 may then end at stage 255.


An embodiment consistent with the invention may comprise a system for providing location-based conversational understanding. The system may comprise a memory storage and a processing unit coupled to the memory storage. The processing unit may be operative to receive a query from a user, generate an environmental context associated with the query, interpret the query according to the environmental context, execute the interpreted query, and provide at least one result of the query to the user. The query may comprise, for example, a spoken query that the processing unit may be operative to convert into computer-readable text. Consistent with embodiments of the invention, the speech-to-text conversion may utilize a Hidden Markov Model algorithm comprising statistical weightings for various likely words associated with an understanding model and/or semantic concepts associated with a semantic model. The processing unit may be operative to increase a statistical weighting of at least one predicted word according to at least one previous query received from the location, for example, and store that statistical weighting as part of the environmental context.


The environmental context may comprise an acoustic model associated with a location from which the query was received. The processing unit may be operative to adapt the query according to at least one background sound out of the speech-based query according to the acoustic model. For example, the background sound (e.g., a train whistle) may be known to be present in spoken queries received from a given location (e.g., a train station). The background sound may be detected, measured for pitch, amplitude, and other acoustic characteristics. The query may be adapted to ignore such sounds, and the sound may be computed and stored for application to future queries from that location. The processing unit may be further operative to receive a second speech-based query from a second user and adapt the query to same the background sound out according to the updated acoustic model. The processing unit may be further operative to aggregate the environmental contexts associated with a plurality of queries from a plurality of users and store the aggregated environmental contexts associated with the location.


Another embodiment consistent with the invention may comprise a system for providing location-based conversational understanding. The system may comprise a memory storage and a processing unit coupled to the memory storage. The processing unit may be operative to receive a speech-based query from a user at a location, load an environmental context associated with the location, convert the speech-based query to text according to the environmental context, execute the converted query according to the environmental context, and provide at least one result associated with the executed query to the user. The environmental context may comprise, for example, a time of at least one previous query, a date of at least one previous query, a subject of at least one previous query, a semantic model comprising an ontology, an understanding model, and an acoustic model of the location. The processing unit may be operative to adapt the query according to a known acoustic interference associated with the location. The processing unit may be further operative to store a plurality of environmental contexts associated with a plurality of locations aggregated according to a plurality of queries received from a plurality of users. The processing unit may be further operative to receive a correction to the converted text from the user and update the environmental context according to the correction. The processing unit may be further operative to receive a second speech-based query from the user at a second location, load a second environmental context associated with the second location, convert the second speech-based query to text according to the second environmental context, execute the converted query according to the second environmental context, and provide at least one second result associated with the executed query to the user.


Yet another embodiment consistent with the invention may comprise a system for providing a context-aware environment. The system may comprise a memory storage and a processing unit coupled to the memory storage. The processing unit may be operative to receive a speech-based query from a user at a location and determine whether an environmental context associated with the location exists in the memory storage. In response to determining that the environmental context does not exist, the processing unit may be operative to identify at least one acoustic interference in the speech-based query, identify at least one subject associated with the speech-based query, and create a new environmental context associated with the location for storing in the memory storage. In response to determining that the environmental context does exist, the processing unit may be operative to load the environmental context. The processing unit may then be operative to convert the speech-based query to a text-based query according to the environmental context, wherein being operative to convert the speech-based query to a text-based query according to the environmental context comprises being operative to apply a filter for removing the at least one acoustic interference associated with the environmental context, execute the text-based query according to the environmental context, wherein being operative to execute the text-based query according to the environmental context comprises being operative to execute the query wherein the at least one acoustic interference is associated with an acoustic model and wherein the at least one identified subject is associated with a semantic model associated with the environmental context, and provide at least one result of the executed text-based query to the user.



FIG. 3 is a block diagram of a system including computing device 300. Consistent with an embodiment of the invention, the aforementioned memory storage and processing unit may be implemented in a computing device, such as computing device 300 of FIG. 3. Any suitable combination of hardware, software, or firmware may be used to implement the memory storage and processing unit. For example, the memory storage and processing unit may be implemented with computing device 300 or any of other computing devices 318, in combination with computing device 300. The aforementioned system, device, and processors are examples and other systems, devices, and processors may comprise the aforementioned memory storage and processing unit, consistent with embodiments of the invention. Furthermore, computing device 300 may comprise an operating environment for system 100 as described above. System 100 may operate in other environments and is not limited to computing device 300.


With reference to FIG. 3, a system consistent with an embodiment of the invention may include a computing device, such as computing device 300. In a basic configuration, computing device 300 may include at least one processing unit 302 and a system memory 304. Depending on the configuration and type of computing device, system memory 304 may comprise, but is not limited to, volatile (e.g., random access memory (RAM)), non-volatile (e.g., read-only memory (ROM)), flash memory, or any combination. System memory 304 may include operating system 305, one or more programming modules 306, and may include personal assistant program 112. Operating system 305, for example, may be suitable for controlling computing device 300's operation. Furthermore, embodiments of the invention may be practiced in conjunction with a graphics library, other operating systems, or any other application program and is not limited to any particular application or system. This basic configuration is illustrated in FIG. 3 by those components within a dashed line 308.


Computing device 300 may have additional features or functionality. For example, computing device 300 may also include additional data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Such additional storage is illustrated in FIG. 3 by a removable storage 309 and a non-removable storage 310. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. System memory 304, removable storage 309, and non-removable storage 310 are all computer storage media examples (i.e., memory storage.) Computer storage media may include, but is not limited to, RAM, ROM, electrically erasable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store information and which can be accessed by computing device 300. Any such computer storage media may be part of device 300. Computing device 300 may also have input device(s) 312 such as a keyboard, a mouse, a pen, a sound input device, a touch input device, etc. Output device(s) 314 such as a display, speakers, a printer, etc. may also be included. The aforementioned devices are examples and others may be used.


Computing device 300 may also contain a communication connection 316 that may allow device 300 to communicate with other computing devices 318, such as over a network in a distributed computing environment, for example, an intranet or the Internet. Communication connection 316 is one example of communication media. Communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media. The term computer readable media as used herein may include both storage media and communication media.


As stated above, a number of program modules and data files may be stored in system memory 304, including operating system 305. While executing on processing unit 302, programming modules 306 (e.g., personal assistant program 112) may perform processes including, for example, one or more of method 200's stages as described above. The aforementioned process is an example, and processing unit 302 may perform other processes. Other programming modules that may be used in accordance with embodiments of the present invention may include electronic mail and contacts applications, word processing applications, spreadsheet applications, database applications, slide presentation applications, drawing or computer-aided application programs, etc.


Generally, consistent with embodiments of the invention, program modules may include routines, programs, components, data structures, and other types of structures that may perform particular tasks or that may implement particular abstract data types. Moreover, embodiments of the invention may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like. Embodiments of the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.


Furthermore, embodiments of the invention may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. Embodiments of the invention may also be practiced using other technologies capable of performing logical operations such as, for example, AND, OR, and NOT, including but not limited to mechanical, optical, fluidic, and quantum technologies. In addition, embodiments of the invention may be practiced within a general purpose computer or in any other circuits or systems.


Embodiments of the invention, for example, may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process. Accordingly, the present invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). In other words, embodiments of the present invention may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. A computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.


The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific computer-readable medium examples (a non-exhaustive list), the computer-readable medium may include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.


Embodiments of the present invention, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the invention. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.


While certain embodiments of the invention have been described, other embodiments may exist. Furthermore, although embodiments of the present invention have been described as being associated with data stored in memory and other storage mediums, data can also be stored on or read from other types of computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or a CD-ROM, a carrier wave from the Internet, or other forms of RAM or ROM. Further, the disclosed methods' stages may be modified in any manner, including by reordering stages and/or inserting or deleting stages, without departing from the invention.


All rights including copyrights in the code included herein are vested in and the property of the Applicant. The Applicant retains and reserves all rights in the code included herein, and grants permission to reproduce the material only in connection with reproduction of the granted patent and for no other purpose.


While the specification includes examples, the invention's scope is indicated by the following claims. Furthermore, while the specification has been described in language specific to structural features and/or methodological acts, the claims are not limited to the features or acts described above. Rather, the specific features and acts described above are disclosed as example for embodiments of the invention.

Claims
  • 1. A system comprising: at least one processor; andmemory coupled to the at least one processor, the memory comprising computer executable instructions that, when executed by the at least one processor, performs a method for providing location-based conversational understanding, the method comprising: receiving, by a computing device, a speech-based query from a user at a location;determining whether an environmental context is associated with the location;when it is determined that no environmental context is associated with the location: identifying at least an acoustic interference in the speech-based query;identifying a subject of the speech-based query;based at least on the identified subject of the speech-based query, creating the environmental context, wherein the environmental context suppresses the acoustic interference; andconverting the speech-based query to a text-based query using the environmental context.
  • 2. The system of claim 1, wherein the environmental context is associated with at least one of: an understanding model to facilitate speech-to-text conversion; anda semantic model to facilitate query execution.
  • 3. The system of claim 1, wherein the location is determined using at least one of: global positioning system (GPS) coordinates;an area code associated with the user;a zip code associated with the user; anda proximity to a landmark.
  • 4. The system of claim 1, wherein identifying at least an acoustic interference comprises analyzing audio of the query and identifying background noise in the audio.
  • 5. The system of claim 1, wherein identifying the subject of the speech-based query comprises: asking for clarification of the speech-based query from the user; andcorrelating a plurality of queries, wherein the plurality of queries are identified as requesting similar information.
  • 6. The system of claim 1, wherein creating the environmental context comprises: associating the identified acoustic interference and the identified subject with the location; andstoring the identified acoustic interference, the identified subject and an the location information in a context database.
  • 7. The system of claim 1, wherein converting the speech-based query comprises applying a filter for removing the acoustic interference associated with the environmental context.
  • 8. The system of claim 1, wherein converting the speech-based query includes utilizing a Hidden Markov Model algorithm comprising statistical weightings for at least one of: words and semantic concepts.
  • 9. The system of claim 1, the method further comprising: executing the text-based query according to the environmental context within a search domain associated with the identified subject; andproviding a result of the executed text-based query to the user.
  • 10. A method for providing location-based conversational understanding, the method comprising: receiving, by a computing device, a first speech-based query from a user at a location;determining whether an environmental context is associated with the location;when it is determined that no environmental context is associated with the location: identifying at least a first acoustic interference in the first speech-based query;identifying a subject of the first speech-based query;based at least on the identified subject of the first speech-based query, creating a first environmental context, wherein the environmental context suppresses the acoustic interference; andconverting the first speech-based query to a text-based query using the first environmental context.
  • 11. The method of claim 10, wherein converting the first speech-based query includes utilizing a Hidden Markov Model algorithm comprising statistical weightings for at least one of: words likely to be associated with an understanding model; andsemantic concepts associated with a semantic model.
  • 12. The method of claim 11, further comprising increasing the statistical weightings of one or more predicted words according to one or more previous queries received at the location.
  • 13. The method of claim 10, wherein the first environmental context comprises an acoustic model associated with the location, and wherein the first speech-based query is adapted according to the first acoustic interference using the acoustic model.
  • 14. The method of claim 13, wherein adapting the first speech-based query comprises: identifying at least one background sound from the first acoustic interference;adapting the first speech-based query to ignore the at least one background sound; andstoring the at least one background sound.
  • 15. The method of claim 14, further comprising: receiving a second speech-based query associated with the location;applying the acoustic model associated with the location to the second speech-based query; andadapting the second speech-based query to ignore the stored at least one background sound.
  • 16. The method of claim 15, further comprising: identifying a second acoustic interference in the second speech-based query;based on the second acoustic interference, updating the acoustic model associated with the location; andadapting the second speech-based query to ignore one or more background sounds in the second acoustic interference.
  • 17. The method of claim 10, further comprising: receiving a second speech-based query associated with the location;creating a second environmental context based on the second speech-based query;aggregating the first environmental context and the second environmental context into an aggregated environmental context, wherein the aggregated environmental context is associated with the locations; andstoring the aggregated environmental context.
  • 18. The method of claim 17, wherein the aggregated environmental context comprises the subject of the first speech-based query and a subject of the second speech-based query.
  • 19. The method of claim 18, wherein the subject of the first speech-based query is used to improve a result for the second speech-based query.
  • 20. A computer-readable storage device storing computer executable instructions that when executed cause a computing system to perform a method for providing location-based conversational understanding, the method comprising: receiving, by a computing device, a speech-based query from a user at a location;determining whether an environmental context is associated with the location;when it is determined that no environmental context is associated with the location: identifying at least an acoustic interference in the speech-based query;identifying a subject of the speech-based query;based at least on the identified subject of the speech-based query, creating an environmental context, wherein the environmental context suppresses the acoustic interference; andconverting the speech-based query to a text-based query using the environmental context.
RELATED APPLICATIONS

This application is a continuation application and claims priority to U.S. patent application Ser. No. 13/077,455, filed Mar. 31, 2011, entitled “Location-Based Conversational Understanding,” now issued U.S. Pat. No. 9,244,984, which application is incorporated herein by reference in its entirety. This patent application is also related to and filed concurrently with U.S. patent application Ser. No. 13/076,862 entitled “Augmented Conversational Understanding Agent,” filed on Mar. 31, 2011; U.S. patent application Ser. No. 13/077,233 entitled “Conversational Dialog Learning and Correction,” filed on Mar. 31, 2011; U.S. patent application Ser. No. 13/077,303 entitled “Personalization of Queries, Conversations, and Searches,” filed on Mar. 31, 2011; U.S. patent application Ser. No. 13/077,368 entitled “Combined Activation for Natural User Interface Systems,” filed Mar. 31, 2011; U.S. patent application Ser. No. 13/077,396 entitled “Task Driven User Intents,” filed on Mar. 31, 2011; U.S. patent application Ser. No. 13/077,431 entitled “Augmented Conversational Understanding Architecture,” filed on Mar. 31, 2011; which are assigned to the same assignee as the present application and expressly incorporated herein, in their entirety, by reference.

US Referenced Citations (283)
Number Name Date Kind
4560977 Murakami et al. Dec 1985 A
4688195 Thompson Aug 1987 A
4727354 Lindsay Feb 1988 A
4772946 Hammer Sep 1988 A
4811398 Copperi et al. Mar 1989 A
4868750 Kucera et al. Sep 1989 A
4969192 Chen et al. Nov 1990 A
5146406 Jensen Sep 1992 A
5259766 Sack Nov 1993 A
5265014 Haddock et al. Nov 1993 A
5299125 Baker Mar 1994 A
5325298 Gallant Jun 1994 A
5418948 Turtle May 1995 A
5600765 Ando et al. Feb 1997 A
5680628 Carus et al. Oct 1997 A
5694559 Hobson et al. Dec 1997 A
5737734 Schultz Apr 1998 A
5748974 Johnson May 1998 A
5794050 Dahlgren et al. Aug 1998 A
5819260 Lu et al. Oct 1998 A
5861886 Moran et al. Jan 1999 A
5880743 Moran et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5930746 Ting Jul 1999 A
5970446 Goldberg et al. Oct 1999 A
6212494 Boguraev Apr 2001 B1
6222465 Kumar et al. Apr 2001 B1
6246981 Papineni et al. Jun 2001 B1
6256033 Nguyen Jul 2001 B1
6397179 Crespo et al. May 2002 B2
6401086 Bruckner Jun 2002 B1
6411725 Rhoads Jun 2002 B1
6441725 Rhoads Jun 2002 B1
6434520 Kanevsky Aug 2002 B1
6512838 Rafii et al. Jan 2003 B1
6539931 Trajkovic et al. Apr 2003 B2
6553345 Kuhn et al. Apr 2003 B1
6601026 Appelt et al. Jul 2003 B2
6658377 Anward et al. Dec 2003 B1
6665640 Bennett et al. Dec 2003 B1
6674877 Jojic et al. Jan 2004 B1
6895083 Bers et al. May 2005 B1
6950534 Cohen et al. Sep 2005 B2
6970947 Ebling et al. Nov 2005 B2
6990639 Wilson Jan 2006 B2
6999932 Zhou Feb 2006 B1
7050977 Bennett May 2006 B1
7100082 Little Aug 2006 B2
7227526 Hildreth et al. Jun 2007 B2
7231609 Baudish Jun 2007 B2
7251781 Batchilo et al. Jul 2007 B2
7272601 Wang et al. Sep 2007 B1
7308112 Fujimura et al. Dec 2007 B2
7317836 Fujimura et al. Jan 2008 B2
7328216 Hofmann et al. Feb 2008 B2
7366655 Gupta Apr 2008 B1
7367887 Watabe et al. May 2008 B2
7519223 Dehlin et al. Apr 2009 B2
7590262 Fujimura et al. Sep 2009 B2
7596767 Wilson Sep 2009 B2
7606700 Ramsey et al. Oct 2009 B2
7617200 Budzik Nov 2009 B2
7640164 Sasaki et al. Dec 2009 B2
7665041 Wilson et al. Feb 2010 B2
7672845 Beranek et al. Mar 2010 B2
7704135 Harrison, Jr. Apr 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720856 Godecke et al. May 2010 B2
7747438 Nguyen et al. Jun 2010 B2
7756708 Cohen et al. Jul 2010 B2
7797303 Roulland et al. Sep 2010 B2
7822597 Brun Oct 2010 B2
7869998 Di Fabbrizio Jan 2011 B1
7890500 Bobrow et al. Feb 2011 B2
7890539 Boschee et al. Feb 2011 B2
8000453 Cooper et al. Aug 2011 B2
8019610 Walker Sep 2011 B2
8108208 Makela Jan 2012 B2
8117635 Hendricks Feb 2012 B2
8140556 Rao et al. Mar 2012 B2
8144840 Luehrig et al. Mar 2012 B2
8155962 Kennewick et al. Apr 2012 B2
8165886 Gagnon Apr 2012 B1
8180629 Rehberg May 2012 B2
8260817 Boschee et al. Sep 2012 B2
8265925 Aarskog Sep 2012 B2
8317518 Jarrell Nov 2012 B2
8335754 Dawson et al. Dec 2012 B2
8352245 Lloyd Jan 2013 B1
8380489 Zhang Feb 2013 B1
8448083 Migos May 2013 B1
8468019 Rempel Jun 2013 B2
8489115 Rodriguez et al. Jul 2013 B2
8521766 Hoarty Aug 2013 B1
8595222 Dean Nov 2013 B2
8595642 Lagassey Nov 2013 B1
8600747 Abella et al. Dec 2013 B2
8612208 Cooper et al. Dec 2013 B2
8612747 Roskind Dec 2013 B2
8762358 Datta et al. Jun 2014 B2
8825661 Joshi et al. Sep 2014 B2
9064006 Hakkani-Tur et al. Jun 2015 B2
9082402 Yadgar Jul 2015 B2
9123341 Weng Sep 2015 B2
9197736 Davis Nov 2015 B2
9244984 Heck et al. Jan 2016 B2
9318108 Gruber Apr 2016 B2
9497499 Chang et al. Nov 2016 B2
9812120 Takatsuka Nov 2017 B2
20010020954 Hull Sep 2001 A1
20010053968 Galitsky Dec 2001 A1
20020165860 Glover Nov 2002 A1
20030125955 Arnold et al. Jul 2003 A1
20030137537 Guo et al. Jul 2003 A1
20030236099 Deisher et al. Dec 2003 A1
20040078725 Little Apr 2004 A1
20040083092 Valles Apr 2004 A1
20040117189 Bennett Jun 2004 A1
20040122674 Bangalore et al. Jun 2004 A1
20040172460 Marel et al. Sep 2004 A1
20040189720 Wilson et al. Sep 2004 A1
20040193420 Kennewick et al. Sep 2004 A1
20040220797 Wang et al. Nov 2004 A1
20040225499 Wang et al. Nov 2004 A1
20050033582 Gadd et al. Feb 2005 A1
20050074140 Grasso et al. Apr 2005 A1
20050270293 Guo et al. Dec 2005 A1
20050271864 Hudson Dec 2005 A1
20050278164 Hudson et al. Dec 2005 A1
20050289124 Kaiser et al. Dec 2005 A1
20060036430 Hu Feb 2006 A1
20060074631 Wang et al. Apr 2006 A1
20060074883 Teevan et al. Apr 2006 A1
20060080101 Chotimongkol et al. Apr 2006 A1
20060136375 Cox Jun 2006 A1
20060173868 Angele et al. Aug 2006 A1
20060206306 Cao Sep 2006 A1
20060206333 Pack et al. Sep 2006 A1
20060206336 Gurram et al. Sep 2006 A1
20060206454 Forstall et al. Sep 2006 A1
20060235689 Sugihara Oct 2006 A1
20060271353 Berkan et al. Nov 2006 A1
20060271356 Vos Nov 2006 A1
20060271520 Ragan Nov 2006 A1
20060293874 Zhang et al. Dec 2006 A1
20070005363 Cucerzan et al. Jan 2007 A1
20070038436 Cristo et al. Feb 2007 A1
20070055508 Zhao Mar 2007 A1
20070071209 Horvitz et al. Mar 2007 A1
20070100624 Weng et al. May 2007 A1
20070106497 Ramsey et al. May 2007 A1
20070118357 Kasravi et al. May 2007 A1
20070124134 Van Kommer May 2007 A1
20070124263 Katariya et al. May 2007 A1
20070136068 Horvitz Jun 2007 A1
20070136222 Horvitz Jun 2007 A1
20070143155 Whitsett et al. Jun 2007 A1
20070299799 Meehan et al. Dec 2007 A1
20080005068 Dumais et al. Jan 2008 A1
20080040114 Zhou et al. Feb 2008 A1
20080040510 Warner et al. Feb 2008 A1
20080080678 Ma et al. Apr 2008 A1
20080082518 Loftesness Apr 2008 A1
20080097951 Gupta et al. Apr 2008 A1
20080140389 Funakoshi Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080152191 Fujimura et al. Jun 2008 A1
20080167876 Bakis et al. Jul 2008 A1
20080168037 Kapadia et al. Jul 2008 A1
20080172359 Lundell et al. Jul 2008 A1
20080201280 Martin et al. Aug 2008 A1
20080201434 Holmes et al. Aug 2008 A1
20080221870 Attardi et al. Sep 2008 A1
20080228467 Womack et al. Sep 2008 A1
20080231926 Klug et al. Sep 2008 A1
20080235199 Li et al. Sep 2008 A1
20080300871 Gilbert Dec 2008 A1
20080306934 Craswell et al. Dec 2008 A1
20080319944 Venolia Dec 2008 A1
20080319962 Riezler et al. Dec 2008 A1
20090006333 Jones et al. Jan 2009 A1
20090006345 Platt et al. Jan 2009 A1
20090006389 Piscitello et al. Jan 2009 A1
20090012778 Feng Jan 2009 A1
20090012842 Srinivasan et al. Jan 2009 A1
20090027337 Hildreth Jan 2009 A1
20090055380 Peng et al. Feb 2009 A1
20090076917 Jablokov et al. Mar 2009 A1
20090077047 Cooper et al. Mar 2009 A1
20090079813 Hildreth Mar 2009 A1
20090089126 Odubiyi Apr 2009 A1
20090094036 Ehlen et al. Apr 2009 A1
20090112596 Syrdal et al. Apr 2009 A1
20090112782 Cross et al. Apr 2009 A1
20090141933 Wagg Jun 2009 A1
20090177645 Heck Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090221368 Yen et al. Sep 2009 A1
20090232288 Forbes et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090248422 Li et al. Oct 2009 A1
20090248659 McCool et al. Oct 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090292687 Fan et al. Nov 2009 A1
20090315740 Hildreth et al. Dec 2009 A1
20100023320 DiCristo et al. Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100036717 Trest Feb 2010 A1
20100036831 Vemuri Feb 2010 A1
20100057463 Weng et al. Mar 2010 A1
20100057801 Ramer et al. Mar 2010 A1
20100082610 Anick Apr 2010 A1
20100093435 Glaser et al. Apr 2010 A1
20100114574 Liu et al. May 2010 A1
20100121839 Meyer May 2010 A1
20100138215 Williams Jun 2010 A1
20100138410 Liu Jun 2010 A1
20100161642 Chen Jun 2010 A1
20100169098 Patch Jul 2010 A1
20100199227 Xiao et al. Aug 2010 A1
20100205180 Cooper et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100235341 Bennett Sep 2010 A1
20100235375 Sidhu et al. Sep 2010 A1
20100250518 Bruno Sep 2010 A1
20100274796 Beauregard et al. Oct 2010 A1
20100281435 Bangalore et al. Nov 2010 A1
20100306591 Krishna Dec 2010 A1
20100313125 Fleizach Dec 2010 A1
20100318398 Brun et al. Dec 2010 A1
20100318549 Mayr Dec 2010 A1
20110016005 Li et al. Jan 2011 A1
20110022992 Zhou et al. Jan 2011 A1
20110040777 Stefanov Feb 2011 A1
20110078159 Li et al. Mar 2011 A1
20110082848 Goldentouch Apr 2011 A1
20110099476 Snook et al. Apr 2011 A1
20110105190 Cha May 2011 A1
20110137943 Asano Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110219340 Pathangay Sep 2011 A1
20110313768 Klein et al. Dec 2011 A1
20110320470 Williams et al. Dec 2011 A1
20110320945 Wong Dec 2011 A1
20120030637 Day et al. Feb 2012 A1
20120035924 Jitkoff Feb 2012 A1
20120059842 Hille-Doering et al. Mar 2012 A1
20120078636 Ferrucci Mar 2012 A1
20120130822 Patwa et al. May 2012 A1
20120131073 Olney May 2012 A1
20120136865 Blom et al. May 2012 A1
20120166178 Latzina Jun 2012 A1
20120197999 Agarwal et al. Aug 2012 A1
20120216151 Sarkar et al. Aug 2012 A1
20120233207 Mohajer Sep 2012 A1
20120242586 Krishnaswamy Sep 2012 A1
20120253788 Heck et al. Oct 2012 A1
20120253789 Heck et al. Oct 2012 A1
20120253790 Heck et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120253793 Ghannam et al. Oct 2012 A1
20120253802 Heck et al. Oct 2012 A1
20120254227 Heck et al. Oct 2012 A1
20120254810 Heck et al. Oct 2012 A1
20120290290 Tur et al. Nov 2012 A1
20120296643 Kristjansson et al. Nov 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20130013644 Sathish et al. Jan 2013 A1
20130080472 Cohen et al. Mar 2013 A1
20130117022 Chen et al. May 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130273976 Rao et al. Oct 2013 A1
20140006012 Zhou et al. Jan 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20150127323 Jacquet May 2015 A1
20150356418 Yampolska et al. Dec 2015 A1
20160004707 Hakkani-Tur et al. Jan 2016 A1
20160179807 Kumar et al. Jun 2016 A1
20170011025 Tur et al. Jan 2017 A1
20170075985 Chakraborty et al. Mar 2017 A1
20180075151 Heck Mar 2018 A1
Foreign Referenced Citations (42)
Number Date Country
1313972 Sep 2001 CN
1325527 Dec 2001 CN
1692407 Nov 2005 CN
1963752 Oct 2006 CN
1845052 May 2007 CN
1983271 Jun 2007 CN
101120341 Feb 2008 CN
101297355 Oct 2008 CN
101499277 May 2011 CN
1335338 Aug 2003 EP
1793318 Jun 2007 EP
08-235185 Sep 1996 JP
2001022779 Jan 2001 JP
2001125592 May 2001 JP
2001125896 May 2001 JP
2002-024285 Jan 2002 JP
2002-082748 Mar 2002 JP
2003-505712 Feb 2003 JP
2003-115951 Apr 2003 JP
2004212641 Jul 2004 JP
2004328181 Nov 2004 JP
2004341672 Dec 2004 JP
2005-043461 Feb 2005 JP
2006202159 Aug 2006 JP
2009116733 May 2009 JP
2009205552 Sep 2009 JP
2010-128665 Jun 2010 JP
2010519609 Jun 2010 JP
2010-145262 Jul 2010 JP
2010-230918 Oct 2010 JP
1020050032649 Apr 2005 KR
10-1007336 Jan 2011 KR
10-2011-0066357 Jun 2011 KR
504624 Oct 2002 TW
WO 0073900 Dec 2000 WO
WO 0075808 Dec 2000 WO
2006042028 Jun 2006 WO
WO 2007064482 Jun 2007 WO
WO 2008049206 May 2008 WO
2008069519 Jun 2008 WO
2009029905 May 2009 WO
2009059065 May 2009 WO
Non-Patent Literature Citations (229)
Entry
U.S. Appl. No. 13/077,233, Office Action dated Nov. 10, 2016, 41 pages.
U.S. Appl. No. 13/077,431, Amendment and Response filed Nov. 7, 2016, 16 pages.
U.S. Appl. No. 13/076,862, Notice of Allowance dated Dec. 1, 2016, 16 pages.
Chinese Office Action in Application 201210091176.3, dated Dec. 21, 2016, 9 pages.
Japanese Office Action in Application 20014502721, dated Nov. 22, 2016, 4 pages.
Japanese Notice of Allowance in Application 2014-502723, dated Jan. 4, 2017, 3 pages. (No English Translation.).
U.S. Appl. No. 13/077,396, Office Action dated Jan. 27, 2017, 36 pages.
Chinese Office Action in Application 201210087420.9, dated Jan. 12, 2017, 5 pages.
Chinese Office Action in Application 201210087420.9, dated May 5, 2016, 18 pgs.
U.S. Appl. No. 13/077,303, Office Action dated May 3, 2016, 19 pgs.
U.S. Appl. No. 13/077,396, Office Action dated May 19, 2016, 36 pgs.
U.S. Appl. No. 13/106,374, Notice of Allowance dated May 13, 2016, 16 pgs.
U.S. Appl. No. 13/106,374, Notice of Allowance dated May 27, 2016, 2 pgs.
Website: Fully automated conversation dialog systems, Published Date: Jun. 10, 2008, http://www.gyruslogic.com, 2 pgs.
Japanese Office Action in Application 2014-502723, dated Apr. 27, 2016, 7 pages.
Japanese Office Action in Application 2014-502718, dated May 20, 2016, 9 pages.
Chinese Office Action in Application 201210093414.4, dated Jun. 3, 2016, 16 pages.
Chinese Office Action in Application 2012100911763, dated May 25, 2016, 14 pages.
Chinese Office Action in Application 201210090349, dated Jun. 15, 2016, 13 pages.
Brody, et al., Body language user interface (BLUI), http://adsabs.harvard.edu/abs/1998SPIE.3299..400B, accessed Aug. 17, 2009, 1 page.
Corominas, Aurora, “The Artist's Gesture. An initial approach to the cinematic representation of Vincent Van Gogh's pictorial practice”, http://www.iua.upf.es/formats/formats3/cor_a_htm, accessed Aug. 17, 2009, 12 pgs.
Gao et al., “VS: Facial Sculpting in the Virtual World”, International Conference on Computational Intelligence for Modeling Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), IEEE Computer Society, Aug. 17, 2009, 6 pgs.
“Qian et al., ““A Gesture-Driven Multimodal Interactive Dance System””, IEEE International Conference on Multimedia and Expo, Taipei, Jun. 2004, vol. 3,pp. 1579-1582.”
Hauptmann, “Speech and Gestures for Graphic Image Manipulation”, CHI'89 Proceedings, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Penn., May 1989, 20(SI), 241-245.
Shivappa et al., “Person Tracking with Audio-Visual Cues Using Iterative Decoding Framework”, IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, AVSS '08, Santa Fe, MN, Sep. 1-3, 2008, pp. 260-267.
“U.S. Official Action dated May 10, 2012, in U.S. Appl. No. 12/604,526, 21 pgs.”
U.S. Official Action dated Dec. 4, 2015, in U.S. Appl. No. 13/077,396, 45 pgs.
U.S. Appl. No. 13/077,431, Office Action dated Jun. 29, 2016, 16 pgs.
Chinese Office Action in Application 201210090634.1, dated Jun. 30, 2016, 10 pgs.
Chinese Office Action and Search Report Issued in Patent Application No. 201210092263.0, dated Dec. 10, 2015, 15 pgs.
Chinese Office Action and Search Report Issued in Patent Application No. 201210101485.4, dated Dec. 11, 2015, 14 Pages.
Taiwan Notice of Allowance Issued in Patent Application No. 101105673, dated Mar. 2, 2016, 4 Pages.
Japanese Office Action in Application 2014-502721, dated Mar. 3, 2016, 10 pgs.
U.S. Official Action dated Jan. 14, 2016 in U.S. Appl. No. 13/076,862, 44 pgs.
U.S. Appl. No. 13/077,233, Office Action dated Apr. 18, 2016, 36 pgs.
U.S. Appl. No. 13/077,303, Advisory Action dated Apr. 15, 2016, 3 pgs.
Klusch; “Information Agent Technology for the Internet: A Survey”; Data & Knowledge Engineering; vol. 36, Mar. 1, 2001, 36 pgs.
Panton et al., “Common Sense Reasoning—From Cyc to Intelligent Assistant”; Cycorp, Inc.; Jan. 1, 2006; Ambient Intelligence in Everyday Life Lecture Notes in Computer Science; 32 pgs.
Kolski et al., “A Review of Intelligent Human-Machine Interfaces in the Light of the ARCH Model”; Published online Nov. 13, 2009; International Journal of Human-Computer Interaction; vol. 10, No. 3; Sep. 1, 1998.
Notice of Allowance dated Dec. 18, 2015, in U.S. Appl. No. 13/077,455, 2 pgs.
Notice of Allowance dated Dec. 3, 2015, in U.S. Appl. No. 13/077,455, 2 pgs.
U.S. Patent Application entitled Augmented Conversational Understanding Agent, having U.S. Appl. No. 13/076,862, filed Mar. 31, 2011.
U.S. Patent Application entitled “Conversational Dialog Learning and Correction” having U.S. Appl. No. 13/077,233, filed Mar. 31, 2011.
U.S. Patent Application entitled “Personalization of Queries, Conversations, and Searches” having U.S. Appl. No. 13/077,303, filed Mar. 31, 2011.
U.S. Patent Application entitled “Combined Activation for Natural User Interface Systems” having U.S. Appl. No. 13/077,368, filed Mar. 31, 2011.
U.S. Patent Application entitled “Task Driven User Intents” having U.S. Appl. No. 13/077,396, filed Mar. 31, 2011.
U.S. Patent Application entitled “Augmented Conversational Understanding Architecture” having U.S. Appl. No. 13/077,431, filed Mar. 31, 2011.
U.S. Patent Application entitled “Location-Based Conversational Understanding” having U.S. Appl. No. 13/077,455, filed Mar. 31, 2011.
U.S. Patent Application entitled “Sentence Simplification for Spoken Language Understanding” having U.S. Appl. No. 13/106,374, filed May 12, 2011.
U.S. Patent Application entitled “Translating Natural Language Utterances to Keyword Search Queries” having U.S. Appl. No. 13/592,638, filed Aug. 23, 2012.
U.S. Patent Application entitled “Translating Natural Language Utterances to Keyword Search Queries” having U.S. Appl. No. 14/733,188, filed Jun. 8, 2015.
Senior, et al, article entitled “Augmenting Conversational Dialogue By Means of Latent Semantic Googling,”—Published Date: Oct. 4-6, 2005, Trento, Italy; http://www.hml.queensu.ca/files/po265-senior.pdf, 7 pgs.
Wang, et al, article entitled “Idea Expander: Agent-Augmented Online Brainstorming,”—Published Date: Feb. 6-10, 2010, Savannah, Georgia, http://research.microsoft.com/en-us/um/redmond/groups/connect/cscw_10/docs/p535.pdf, 2 pgs.
Lyons, et al, article entitled “Augmenting Conversations Using Dual-Purpose Speech,”—Published Date: 2004; College of Computing and GVU Center, Georgia Institute of Technology, Atlanta, Georgia; http://www.cc.gatech.edu/ccg/publications/dp-uist.pdf, 10 pgs.
Sherwani, et al, article entitled “VoicePedia: Towards Speech-based Access to Unstructured Information,”—Published Date: 2007, http://www.cs.cmu.edu/˜jsherwan/pubs/voicepedia.pdf, 4 pgs.
Website: The Future of Voice Arrives—Published Date: Jan. 11, 2007.http://www.voicebox.com/technology, 2 pgs.
“Mairesse, et al., article entitled Learning to Personalize Spoken Generation for Dialogue Systems—Published Date: 2005,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.9988&rep=repl&type=pdf”, 4 pgs.
Nguyen, et al., article entitled “An Adaptive Plan Based Dialogue Agent: Integrating Learning into a BDI Architecture,” Published Date: May 8-12, 2006 at AAMASA '06 in Hakodate, Hokkaido, Japan. http://www.cse.unsw.edu.au/˜wobcke/papers/adaptive-dialogue.pdf, 3 pgs.
Technical Whitepaper entitled “Speak With Me, Inc.” Retrieved Date: Sep. 24, 2010; http://www.speakwithme.com/files/pdf/whitepaper.pdf, 11 pgs.
Castells, et al, article entitled “Scalable semantic personalized search of spoken and written contents on the Semantic Web, A”, Published Date: 2005.http://webcache.googleusercontent.com/search?q=cache:http://ir.ii.uam.es/s5t/informes/TIN2005-06885.pdf, 12 pgs.
Marcialis, et al, article entitled “SEARCHY: An Agent to Personalize Search Results,” Published Date: Jun. 20, 2008 at the IEEE Third International Conference on Internet and Web Applications and Services Conference. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4545664. 6 pgs.
Tomuro et al, article entitled “Personalized Search in Folksonomies with Ontological User Profiles,” Retrieved Date: Sep. 30, 2010, http://facweb.cs.depaul.edu/noriko/papers/iis09.pdf, 14 pgs.
Mylonas et al, article entitled “Personalized information retrieval based on context and ontological knowledge,” Retrieved Date: Sep. 30, 2010. Printed in the United Kingdom and Presented in The Knowledge Engineering Review, vol. 23:1, 73-100; 2007, Cambridge University Press, http://citeseetx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.4272&-rep=repl&type=pdf, 28 pgs.
“Abstract entitled “Adding Intelligence to the Interface,” Published Date: 1996 IEEE; http://wwyw.hitl.washington.edu/publications/billinghurst/vrais96/”, 12 pgs.
“Turunen et al article entitled “Multimodal Interaction with Speech and Physical Touch Interface in a Media Center Application,” Presented and Published Oct. 29-31, 2009 at Ace 2009 in Athens, Greece. http://delivery.acm.org/10.1145/1700000/1690392/p19-turunen.pdf?key1=1690392&key2=5824375821&coll=GUIDE&dl=GUIDE&CFID=103676711&CFTOKEN=24231502”, 8 pgs.
“Moustakas et al, article entitled “Master-Piece: A Multimodal (Gesture+Speech) Interface for 3D Model Search and Retrieval Integrated in a Virtual Assembly Application,” Presented and Published Jul. 18-Aug. 12, 2005 at Enterface '05 in Mons, Belgium. http://www.enterface.net/enterface05/docs/results/reports/project7.pdf”, 14 pgs.
Lee e al, article entitled “An Implementation of Multi-Modal Game Interface Based on PDAs,” Published Date: Aug. 2007 at the IEEE Fifth International Conference on Software Engineering Research, Management and Applications., http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4297013, 8 pgs.
Mark Billinghurst, article entitled “Put That Where? Voice and Gesture at the Graphics Interface,” Published in the Nov. 1998 Computer Graphics. http://delivery.acm.org/10.1145/310000/307730/p60-billinghurst.pdf?key1=307730&key2=0278375821&coll=GUIDE&dl=GUIDE&CFID=103683245&CFTOKEN=90378528, 5 pgs.
Stegmann, et al, abstract entitled “Multimodal Interaction for Access to Media Content,” Retrieved Date: Sep. 29, 2010. http://www.icin.biz/files/2008papers/Poster-08.pdf, 4 pgs.
Horiguchi et al, abstract entitled “GaChat: A chat system that displays online retrieval information in dialogue text,” Published at the Workshop on Visual Interfaces to the Social and the Semantic Web Conference Feb. 8, 2009 in Sanibel Island, Florida. http://www.smart-ui.org/events/vissw2009/papers/VISSW2009-Horiguchi.pdf, 5 pgs.
Aye, et al, article entitled “Use of Ontologies for Bridging Semantic Gaps in Distant Communication,” Published Date: 2008. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4781725, 5 pgs.
Jebara et al, article entitled “Tracking Conversational Context for Machine Mediation of Human Discourse,” Retrieved Date: Oct. 1, 2010. http://www.cs.columbia.edu/˜jebara/papers/conversation.pdf, 3 pgs.
Power Point Presentation entitled “Spoken Language Understanding for Conversational Dialog Systems,” Presented and published at the IEEE/ACL 2006 Workshop on Spoken Language Technology in Aruba, Dec. 10-13, 2006. http://www.slt2006.org/MichaelMcTear.ppt, 33 pgs.
Fabbrizio et al, abstract entitled “Bootstrapping Spoken Dialog Systems with Data Reuse,” Retrieved Date: Oct. 12, 2010. http://www.sigdialorg/workshops/workshop5/proceedings/pdf/difabbrizio.pdf, 9 pgs.
Website: Siri: Your Personal Assistant for the Mobile Web—Published Date: Feb. 4, 2010. http://www.readwriteweb.com/archives/siri_your_personal_assistant_for_the_mobile_web.php, 3 pgs.
Abela, et al, abstract entitled “SemChat: Extracting Personal Information from Chat Conversations,” Retrieved Date: Oct. 12, 2010. http://staff.um.edu.mt/cabe2/supervising/undergraduate/overview/keith_cortis.pdf, 10 pgs.
Robert Brown, article entitled “Exploring New Speech Recognition and Synthesis APIs in Windows Vista,” published in MSDN Magazine, Retrieved Date: Oct. 12, 2010. http://msdn.microsoft.com/en-us/magazine/cc163663.aspx, 11 pgs.
Lee, et al Abstract entitled “Simplification of Nomenclature Leads to an Ideal IL for Human Language Communication”—Published Date: Oct. 28, 1997, at the AMTA/SIG-IL First Workshop on Interlinguas, San Diego, CA., Oct. 28, 1997; pp. 71-72. Obtained at: http://www.mt-archive.info/AMTA-1997-Lee.pdf, 2 pgs.
Kuansan Wang, Abstract entitled “Semantics Synchronous Understanding for Robust Spoken Language Applications”—Published Date: 2003, pp. 640-645. Obtained at: http://research.microsoft.com/pubs/77494/2003-kuansan-asru.pdf, 6 pgs.
“Antoine, et al., Abstract entitled ”Automatic Adaptive Understanding of Spoken Language by Cooperation of Syntactic Parsing and Semantic Priming“—Published Date: 1994. Obtained at: http://www-clips.imag.fr/geod/User/jean.caelen/Publis_fichiers/SyntaxeSemantique.pdf”,5 pgs.
Tur, et al, Abstract entitled “Semi-Supervised Learning for Spoken Language Understanding Using Semantic Role Labeling”—Published Date: 2005, pp. 232-237. Obtained at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01566523, 6 pgs.
Finkel, et al, Abstract entitled “Incorporating Non-Local Information into Information Extraction Systems by Gibbs Sampling”—Published Date: Jan. 3, 2006. Obtained at: http://nlp.stanford.edu/˜manning/papers/gibbscrf3.pdf, 8 pgs.
Wang, et al, Article entitled “An Introduction to the Statistical Spoken Language Understanding”—Published in the IEEE Signal Processing Magazine, vol. 22, No. 5, pp. 16-31; 2005. http://research.microsoft.com/pubs/75236/2005-Wang-Deng-Acero-SPM.pdf.
Gorin, et al, Abstract entitled “How May I Help You?” Published in Speech Communication 23, Feb. 14, 1997, Revised May 23, 1997; pp. 113-127. http://disi.unitn.it/˜riccardi/papers/specom97.pdf, 14 pgs.
P. J. Price, Abstract entitled “Evaluation of Spoken Language Systems: The ATIS Domain”. Obtained on May 12, 2011 from the following website: http://acl.ldc.upenn.edu/H/H90/H90-1020.pdf, 5 pgs.
Raymond, et al, Abstract entitled “Generative and Discriminative Algorithms for Spoken Language Understanding”, Published Aug. 27-31, 2007 at the Interspeech 2007 Conference in Antwerp, Belgium; pp. 1605-1608, Obtain at:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.2105&rep=repl&type=pdf, 4 pgs.
Jeong, et al, Abstract entitled “Exploiting Non-Local Features for Spoken Language Understanding” Published in the Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 412-419 in Sydney, Australia Jul. 2006. Obtain copy at: http://www.aclweb.org/anthology/P/P06/P06-2054.pdf, 8 pgs.
Moschitti, et al, Abstract entitled “Spoken Language Understanding with Kernels for Syntactic/ Semantic Structures” Published in the 2007 IEEE Proceedings, pp. 183-188. Obtained at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430106, 6 pgs.
Hakkani-Tur, et al Abstract entitled “Using Semantic and Syntactic Graphs for Call Classification” Published in the Proceedings of the ACL Workshop on Feature Engineering for Machine Learingin in NLP, pp. 24-31 in Ann Arbor, Michigan, Jun. 2005. Obtained at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.8566&rep=repl&type=pdf, 8 pgs.
Dowding, et al Article entitled “Gemini: A Natural Language System for Spoken Language Understanding” pp. 54-61. Obtained on May 12, 2011 at website: http://acl.ldc.upenn.edu/P/P93/P93-1008.pdf, 8 pgs.
Stephanie Seneff. Article entitled “TINA: A Natural Language System for Spoken Language Applications” Published in the 1992 Edition of Association for Computational Linguistics, vol. 18, No. 1, pp. 61-86; Obtained at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.1626&rep=repl&type=pdf, 26 pgs.
Ward, et al Abstract entitled “Recent Improvements in the CMU Spoken Language Understanding System.” Obtained on May 12, 2011 at website: http://www.aclweb.org/anthology/H/H94/H94-1039.pdf, 4 pgs.
Vickrey, et al Abstract entitled “Sentence Simplification for Semantic Role Labeling.” Obtained on May 12, 2011 at website: http://ai.stanford.edu/˜dvickrey/underlying.pdf, 9 pgs.
Vanderwende, et al Abstract entitled “Microsoft Research at DUC2006: Task-Focused Summarization with Sentence Simplification and Lexical Expansion.” .Obtained on May 12, 2011 at website: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.2486&rep=repl&type=pdf, 8 pgs.
Petrov et al, Abstract entitled “Learning and Inference for Hierarchically Split PCFGs” Published in 2007 in cooperation with the Association for the Advancement of Artificial Intelligence. Obtained at: http:www.petrovi.de/data/aaai07.pdf, 4 pgs.
Schapire, et al Abstract entitled “BoosTexter: A Boosting-Based System for Text Categorization,” Obtaining May 12, 2011 at website: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.1666&rep=repl&type=pdf, 34 pgs.
He, et al Abstract entitled “A Data-Driven Spoken Language Understanding System.” Obtained on May 12, 2011 at website: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.5688&rep=repl&type=pdf, 6 pgs.
Yaman, et al, Article entitled “An Integrative and Discriminative Technique for Spoken Utterance Classification,” Published in the IEEE Transactions on Audio, Speech, and Language Processing Magazine, vol. 16, No. 6, Aug. 2008. pp. 1207-1214. http://research.microsoft.com/pubs/73918/sibel.pdf, 8 pgs.
Gillick, et al Article entitled “Some Statistical Issues in the Comparison of Speech Recognition Algorithms.” Published in the Proceedings at the IEEE Conference on Acoustics, Speech and Sig. Proc., Glasglow, 1989; pp. 532-535. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.162.2233&rep=repl&type=pdf, 4 pgs.
Tur, et al, Abstract entitled “What is Left to be Understood in ATIS?” Published in the Proceedings of the IEEE SLT Workshop in Berkeley, CA, 2010. (Not readily available on any website), 6 pgs.
Tur, et al, “Sentence Simplification for Spoken Language Understanding”, In Proceedings of International Conference on Acoustics, Speech and Signal Processing, May 22, 2011, 4 pgs.
Hakkani-Tur, et al, “Mining Search Query Logs for Spoken Language Understanding”, In Workshop on Future Directions and Needs in the Spoken Dialog Community: Tools and Data, Jun. 7, 2012, pp. 37-40.
Riezler, et al, “Query Rewriting Using Monolingual Statistical Machine Translation”, In Journal of Computational Linguistics Archive, vol. 36, Issue 3, Sep. 2010, pp. 569-582.
Agichtein, et al, “Improving Web Search Ranking by Incorporating User Behavior Information”, In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 6, 2006, 8 pgs.
Hakkani-Tur, et al, “Exploiting Query Click Logs for Utterance Domain Detection in Spoken Language Understanding”, In Proceedings of International Conference on Acoustics, Speech and Signal Processing, May 22, 2011, 4 pgs.
Hakkani-Tur, et al, “Employing Web Search Query Click Logs for Multi-Domain Spoken Language Understanding”, In Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding, Dec. 11, 2011, 6 pgs.
Jung, J. Jason, “Ontology-based context Synchronization for an ad hoc social collaborations,” Knowledge-Based Systems, vol. 21, 2008, pp. 573-580.
Kok, et al, “Hitting the Right Paraphrases in Good Time”, In Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics, Jun. 2010, 9 pgs.
Koehn, et al, “Moses: Open Source Toolkit for Statistical Machine Translation”, In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Demonstration and Poster Session, Jun. 2007, 4 pgs.
Och, et al, “A Systematic Comparison of Various Statistical Alignment Models”, In Journal of Computational Linguistics, vol. 29, Issue 1, Mar. 2003, 33 pgs.
Tur, et al, “Model Adaptation for Dialog Act Tagging”, In Proceedings of IEEE Spoken Language Technology Workshop, Dec. 10, 2006, 4 pgs.
Haffner, et al, “Optimizing SVMS for Complex Call Classification”, In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 6, 2003, 4 pgs.
Mittal, et al, “A Hybrid Approach of Personalized Web Information Retrieval” Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Aug. 31, 2010, vol. 1, pp. 308-313.
G. Tur and R. D. Mori, Eds., Spoken Language Understanding: Systems for Extracting Semantic Information from Speech. New York, NY: John Wiley and Sons, 2011, 484 pgs.
D. Hakkani-Tur, G. Tur, L. Heck, and E. Shriberg, “Bootstrapping Domain Detection Using Query Click Logs for New Domains,” in Proceedings of Interspeech, Florence, Italy, 2011.
D. Hillard, A. Celikyilmaz, D. Hakkani-Tur, and G. Tur, “Learning Weighted Entity Lists from Web Click Logs for Spoken Language Understanding,” in Proceedings of Interspeech, Florence, Italy, 2011.
A. Celikyilmaz, D. Hakkani-Tur, and G. Tur, “Approximate Interference for Domain Detection in Spoken Language Understanding,” in Proceedings of Interspeech, Florence, Italy, 2011.
Richard A. Bolt, “Put-That-There”: Voice and Gesture at the Graphics Interface, Architecture Machine Group, MIT, 1980, 9 pgs. (Provided to us by MS Dec. 15, 2014).
Diaz et al, “CO-Pretégé: A Groupware Tool for Supporting Collaborative Ontology Design with Divergence”; alicia.diaz@sol.info.unlp.edu.ar; Jul. 18, 2005; [retrieved Mar. 26, 2015]; 4 pgs.
Hu, et al, “SmartContext: An Ontology Based Context Model for Cooperative Mobile Learning”, In Computer Supported Cooperative Work in Design III, May 3, 2006, pp. 717-726.
Siebra, et al, “SmartChat—An Intelligent Environment for Collaborative Discussions”, In Proceedings of 7th International Conference on Intelligent Tutoring Systems, Aug. 30, 2004, pp. 883-885.
Cozzolongo, et al, “Personalized Control of Smart Environments”, In Lecture Notes in Computer Science, vol. 4511, Jul. 25, 2007, 5 Pgs.
Nijholt, et al, “Google Home: Experience, Support and Re-Experience of Social Home Activities”, In Information Sciences, vol. 178, Issue 3, Nov. 6, 2007, 19 Pgs.
Pissinou, et al, “A Roadmap to the Utilization of Intelligent Information Agents: Are Intelligent Agents the Link Between the Database and Artificial Intelligence Communities?”, In IEEE Knowledge and Data Engineering Exchange Workshop, Jan. 1, 1997, 10 Pgs.
International Search Report & Written Opinion in PCT/US2012/031722 dated Oct. 23, 2012, 11 pgs.
International Search Report & Written Opinion in PCT/US2012/031736 dated Oct. 31, 2012, 12 pgs.
International Search Report & Written Opinion in PCT/US2012/030730 dated Oct. 30, 2012, 10 pgs.
International Search Report & Written Opinion in PCT/US2012/030636 dated Oct. 31, 2012, 12 pgs.
International Search Report & Written Opinion in PCT/US2012/030740 dated Nov. 1, 2012, 12 pgs.
International Search Report & Written Opinion in PCT/US2012/030757 dated Nov. 1, 2012, 10 pgs.
International Search Report & Written Opinion in PCT/US2012/030751 dated Sep. 5, 2012, 9 pgs.
International Search Report & Written Opinion in PCT/US2013/055232 dated Nov. 18, 2013, 10 pgs.
EP Communication dated Apr. 20, 2015 in Application No. PCT/US2012/030636, 8 pgs.
EP Supplementary Search Report Received for European Patent Application No. PCT/US2012/031736, dated May 11, 2015, 10 Pgs.
EP Search Report Issued in European Patent Application No. PCT/US2012/030730, dated May 11, 2015, 9 Pgs.
EP Supplementary Search Report Issued in European Patent Application No. PCT/US2012/031722, dated May 11, 2015, 11 Pgs.
EP Search Report Received for European Patent Application No. 12765896.1, dated May 28, 2015, 12 Pgs.
EP Extended Search Report Received for European Patent Application No. 12763913.6, dated Sep. 1, 2015, 13 pgs.
Taiwan Search Report Issued in Patent Application No. 101105673, dated Oct. 16, 2015, 9 Pages.
U.S. Official Action dated Aug. 24, 2012, in U.S. Appl. No. 13/077,431, 23 pgs.
U.S. Restriction Requirement dated Nov. 2, 2012, in U.S. Appl. No. 13/077,368, 14 pgs.
U.S. Official Action dated May 29, 2013, in U.S. Appl. No. 13/077,303, 23 pgs.
U.S. Official Action dated Jun. 11, 2013, in U.S. Appl. No. 13/077,455, 22 pgs.
U.S. Official Action dated Jun. 4, 2013, in U.S. Appl. No. 13/077,368, 7 pgs.
U.S. Official Action dated Jul. 25, 2013 in U.S. Appl. No. 13/077,431, 18 pgs.
U.S. Official Action dated Aug. 1, 2013 in U.S. Appl. No. 13/076,862, 32 pgs.
U.S. Official Action dated Dec. 24, 2013 in U.S. Appl. No. 13/592,638, 31 pgs.
U.S. Official Action dated Jan. 7, 2014, in U.S. Appl. No. 13/077,303, 26 pgs.
U.S. Official Action dated Jan. 28, 2014, in U.S. Appl. No. 13/077,455, 27 pgs.
U.S. Official Action dated Feb. 24, 2014, in U.S. Appl. No. 13/077,396, 50 pgs.
U.S. Official Action dated Feb. 28, 2014, in U.S. Appl. No. 13/077,233, 53 pgs.
U.S. Official Action dated Mar. 20, 2014 in U.S. Appl. No. 13/076,862, 35 pgs.
U.S. Official Action dated Mar. 20, 2014, in U.S. Appl. No. 13/077,368, 22 pgs.
U.S. Official Action dated May 15, 2014 in U.S. Appl. No. 13/106,374, 56 pgs.
U.S. Official Action dated Jun. 26, 2014, in U.S. Appl. No. 13/077,455, 26 pgs.
U.S. Official Action dated Jul. 10, 2014, in U.S. Appl. No. 13/077,303, 31 pgs.
U.S. Official Action dated Sep. 5, 2014, in U.S. Appl. No. 13/077,431, 38 pgs.
U.S. Official Action dated Sep. 15, 2014, in U.S. Appl. No. 13/077,368, 12 pgs.
U.S. Official Action dated Oct. 2, 2014 in U.S. Appl. No. 13/106,374, 42 pgs.
U.S. Official Action dated Oct. 10, 2014, in U.S. Appl. No. 13/077,233, 51 pgs.
U.S. Official Action dated Oct. 29, 2014, in U.S. Appl. No. 13/077,455, 27 pgs.
U.S. Official Action dated Nov. 3, 2014, in U.S. Appl. No. 13/077,303, 28 pgs.
U.S. Official Action dated Nov. 19, 2014, in U.S. Appl. No. 13/077,396, 55 pgs.
Notice of Allowance dated Dec. 3, 2014 in U.S. Appl. No. 13/592,638, 23 pgs.
Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 13/592,638, 12 pgs.
U.S. Official Action dated Mar. 19, 2015, in U.S. Appl. No. 13/077,431, 24 pgs.
U.S. Official Action dated Apr. 9, 2015, in U.S. Appl. No. 13/077,368, 18 pgs.
U.S. Official Action dated May 5, 2015, in U.S. Appl. No. 13/077,455, 14 pgs.
U.S. Official Action dated May 28, 2015 in U.S. Appl. No. 13/106,374, 44 pgs.
U.S. Official Action dated Jun. 4, 2015, in U.S. Appl. No. 13/077,396, 35 pgs.
U.S. Official Action dated Jun. 12, 2015, in U.S. Appl. No. 13/077,303, 25 pgs.
U.S. Official Action dated Jul. 1, 2015 in U.S. Appl. No. 13/076,862, 60 pgs.
Notice of Allowance dated Sep. 18, 2015, in U.S. Appl. No. 13/077,455, 22 pgs.
Notice of Allowance dated Oct. 7, 2015, in U.S. Appl. No. 13/077,368, 24 pgs.
U.S. Official Action dated Nov. 27, 2015, in U.S. Appl. No. 13/077,431, 15 pgs.
U.S. Official Action dated Dec. 4, 2015 in U.S. Appl. No. 13/106,374, 64 pgs.
U.S. Official Action dated Dec. 7, 2015, in U.S. Appl. No. 13/077,303, 32 pgs.
U.S. Appl. No. 13/106,374, Notice of Allowance dated Aug. 4, 2016, 2 pgs.
Chinese 2nd Office Action in Application 201210092263.0, dated Aug. 16, 2016, 5 pgs.
Chinese 2nd Office Action in Application 201210101485.4, dated Aug. 16, 2016, 5 pgs.
U.S. Appl. No. 13/077,303, Office Action dated Oct. 26, 2016, 16 pages.
U.S. Appl. No. 14/733,188, Office Action dated Oct. 25, 2016, 16 pages.
PCT International Search Report in PCT/US2013/049085, dated Nov. 7, 2013, 8 pages.
PCT International Search Report in PCT/US2016/050840, dated Dec. 6, 2016, 12 pages.
U.S. Appl. No. 13/077,303, Advisory Action dated Feb. 2, 2017, 3 pages.
U.S. Appl. No. 14/077,431, Office Action dated Feb. 3, 2017, 16 pages.
U.S. Appl. No. 13/539,674, Office Action dated Mar. 17, 2015, 12 pages.
U.S. Appl. No. 13/539,674, Office Action dated Oct. 27, 2015, 15 pages.
Wang et al., “Web-Based Unsupervised Learning for Query Formation in Question Answering”, Proc 2nd Intl Joint Conf on Natural Language Processing, Oct. 2005, 12 pages.
Cao et al., “Integrating Word Relationships into Language Models,” In Proceedings of 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 15, 2005, 8 pages.
Chu-Carroll et al., “A Hybrid Approach to Natural Language Web Search,” Proc of Conf on Empirical Methods in Natural Language Processing, Jul. 2002, Association for Computational Linguistics, 8 pages.
Di Buccio Emanuele et al., “Detecting verbose queries and improving information retrieval,” Information Processing & Management, vol. 50, No. 2, Oct. 28, 2013, 19 pages.
Goodwin, “Which Search Engine Would be a Jeopardy Champion?” retrieved Apr. 12, 2012 from http://searchenginewatch.com/article/2050114/which-search-engine-would-be-a-jeopardy-champion, Jan. 2011, 2 pages.
Gupta et al., “Information Retrieval with Verbose Queries”, Foundations and Trends in Information Retrieval, vol. 9, No. 3-4, Jul. 31, 2015, pp. 209-354.
Huston et al., “Evaluating verbose query processing techniques”, Proceedings of the 33rd International ACM Sigir Conference on Research and Development in Information Retrieval, Sigir '10, ACM Press, New York, New York, Jul. 19, 2010, pp. 291-298.
Molla et al., “AnswerFinder at TREC 2004,” In Proceedings of the Thirteenth Text Retrieval Conference, TREC, Nov. 16, 2004, 9 pages.
Chinese Office Action in Application 201210101485.4, dated Feb. 20, 2017, 5 pages.
Chinese Notice of Allowance in Application 201210093414.4, dated Feb. 9, 2017, 8 pages.
Japanese Notice of Allowance in Application 2014-502718, dated Feb. 1, 2017, 3 pages. (No English Translation.).
Chinese Notice of Allowance in Application 201210092263.0, dated Feb. 28, 2017, 4 pgs.
Chinese 2nd Office Action in Application 201210090349.X, dated Feb. 28, 2017, 9 pgs.
Chinese 2nd Office Action in Application 201210090634.1, dated Mar. 21, 2017, 9 pgs.
U.S. Appl. No. 13/076,862, Notice of Allowance dated May 3, 2017, 14 pgs.
U.S. Appl. No. 13/077,303, Ex-Parte Quayle Action dated May 4, 2017, 6 pgs.
Chinese Notice of Allowance in Application 201210087420.9, dated May 4, 2017, 3 pgs.
U.S. Appl. No. 13/077,233, Appeal Brief filed Jun. 12, 2017, 32 pages.
U.S. Appl. No. 13/077,431, Office Action dated Jul. 14, 2017, 15 pages.
U.S. Appl. No. 13/077,396, Notice of Allowance dated Jul. 28, 2017, 25 pages.
U.S. Appl. No. 13/077,233, Examiner's Answer to the Appeal Brief dated Aug. 4, 2017, 13 pages.
U.S. Appl. No. 13/077,303, Notice of Allowance dated Aug. 24, 2017, 7 pgs.
Chinese Notice of Allowance in Application 201210101485.4, dated Jun. 29, 2017, 4 pages.
PCT 2nd Written Opinion in International Application PCT/US2016/050840, dated Jul. 24, 2017, 7 pages.
Chinese Decision on Rejection in Application 201210091176.3, dated Aug. 2, 2017, 11 pages.
Chinese Notice of Allowance in Application 201210090349.X, dated Aug. 31, 2017, 4pgs.
U.S. Appl. No. 13/077,396, Notice of Allowance dated Aug. 30, 2017, 20 pgs.
U.S. Appl. No. 14/733,188, Office Action dated Sep. 18, 2017, 15 pgs.
U.S. Appl. No. 13/077,303, Notice of Allowance dated Sep. 18, 2017, 2 pgs.
Chinese 3rd Office Action in Application 201210090634.1, dated Oct. 31, 2017, 11 pages.
PCT International Preliminary Report on Patentability in International Application PCT/US2016/050840, mailed Dec. 12, 2017, 9 pgs. (357571-Wo-PCT).
U.S. Appl. No. 13/077,396, USPTO Response to 312 Amendment dated Nov. 9, 2017, 2 pgs.
U.S. Appl. No. 14/856,139, Office Action dated Nov. 9, 2017, 18 pgs.
U.S. Appl. No. 15/818,432, Office Action dated Dec. 29, 2017, 15 pages.
Chinese Office Action in Application 201210091176.3, dated Feb. 2, 2018, 5 pages.
Korean Office Action in Application 10-2013-7025540, dated Jan. 31, 2018, 13 pages.
Japanese Notice of Allowance in Application 2017-038097, dated Feb. 5, 2018, 3 pages.
Yasufumi Kaneko et al., Detecting Search Intention by Analyzing Relationship between Keywords with Relaxation Value and an Interface for Inputting Keywords, Jun. 27, 2008, Journal of DBSJ, the 7th volume, No. 1, p. 181-186.
U.S. Appl. No. 15/271,859, Office Action dated Jan. 8, 2018, 44 pages.
U.S. Appl. No. 13/077,431, Office Action dated Jan. 29, 2018, 15 pages.
U.S. Appl. No. 14/733,188, Notice of Allowance dated Apr. 24, 2018, 7 pgs.
Related Publications (1)
Number Date Country
20160118046 A1 Apr 2016 US
Continuations (1)
Number Date Country
Parent 13077455 Mar 2011 US
Child 14989974 US