The present disclosure pertains to security systems and particularly to such systems designed to protect a specific entity.
The disclosure reveals a dynamic integrated security system having a user interface with a display connected to the processor. A plurality of security devices may be situated in a geographical area. A security perimeter may be placed around a high profile entity initiated by a threat level having a predetermined magnitude. The security perimeter may be a geo-fence that encompasses a geo area around the high profile entity. The geo area may encompass one or more security devices. The one or more security devices in the geo area may be connected to the processor. The geo area may move and stay with the high profile entity upon a change of geographic position of the high profile entity. The one or more security devices within the geo area may be monitored and controlled for reducing or preventing effects of the threat level against the high profile entity.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
Aspects of the system or approach may be described in terms of symbols in the drawing. Symbols may have virtually any shape (e.g., a block) and may designate hardware, objects, components, activities, states, steps, procedures, and other items.
An approach may have a location-based dynamic “high security zone” and dynamic geo-fencing to improve the security of the object or person in the integrated security system.
Threat level management may be one of the key features used in an integrated security system. Mainly to change the behavior of the security system based on the security conditions and threats in the premises, threat level management may often be used to detect and define a “high security zone” in the premises. Most of the time, high security zone and high threat level areas may be preconfigured and triggered based on a need. Threat levels and actions may be triggered based on alarms or user actions and most of the time these can be preconfigured.
In a present integrated security system, there is not necessarily logic of location based threat level increasing; for example, if some high profile visitor is entering the premises, then a manned guard or escort may be assigned and these activities can happen outside the system. For instance, a location of the high profile visitor and current security conditions around the visitor are not necessarily known to the system. But there appears to be need to have separate security circle based the movement of the person or object in the premises to have better control and to maintain the security of the person or object. Examples may include a minister visiting a university, high profile customer visiting casino, or a guard is patrolling the secured area, and so on . . . .
A present approach may be based on detecting and tracking a real-time location of the high profile person or object, and defining the dynamic/virtual geo-fencing and applying a high threat level or high security zones to a geo-fenced area. The security devices that fall under the virtual geo-fenced area may be activated with a high threat level. Device details and camera feeds that fall under geo-fenced area may be monitored at a central or remote monitoring station.
A high profile person or object may be a minister/president is visiting university or school, a high profile visitor in the campus/premises/airport, high profile visitors in power plant, a high profile customer visiting casino for gambling, a guard patrolling and guard tour in a secured area or premises, a guard patrolling in a prison, or an ATM cash loading vehicle entering premises.
All the security devices that fall under the virtual geo-fenced area may be activated with a high threat level. This may include a change access cardholder, visitor access rights, an increase camera parameters (e.g., on resolution, quality, FPS, or bit-rates.), locking and unlocking of access doors, and sending notifications to security guards or officials.
An infrastructure may incorporate some of the following features. An integrated security system (access, video and intrusion) may have an integration with indoor location sensing system, and each security device having location sensors or being paired with location sensors. Location sensors may be BLE based or low/long range RF tags, or similar technology. The location sensors, locations of the security devices and sensors may be mapped and configured in a site map, floor map or building information modeling (BIM)/3D model.
A flow of the approach may be noted. Once a critical or high profile visitor or person or object or vehicle is identified, then the visitor or person may be equipped with location tags. If it is a person, location tag may be given to that person at the time of entry. If it is vehicle, then location tag may be attached at the time of entry.
Once the person or object starts moving, location may be tracked and sent to a system. The system may check the location of the person or object and define a geo-fencing. The system may check the security devices that fall under the geo-fenced area, and move them to a high threat level. This check may also include logical devices like camera mapped ones with an access door. This approach may keep updates based on the location of the secured object or person. These data may be saved in the system for further review.
The approach may have dynamic threat level adjustment and dynamic geo-fencing.
The approach may be based on existing access control and a video surveillance system infrastructure. This approach may be put into practice with various products.
Specialized security coverage may be given to high profile visitors, vendors, or any critical moving object/person. As the approach defines the dynamic high threat/secured geo-fencing, not all system resources and environments may be disturbed by a meaning of threat level management but only a certain area. This may result in a controller environment within the geo-fenced area, and at the same time outside the geo-fenced area may function without many changes. This approach may result in increasing the confidence of the high profile visitors.
The approach may be based on existing access control and video surveillance system infrastructure and this may be put into practice with various products.
Components of approach may incorporate: 1) High profile person/visitor or object/vehicle location monitoring, security device (camera, access doors, intrusion sensors, location sensor) locations on map view; 2) Dynamic geo-fencing and applying high threat level to geo-fenced area/(Floor Map)—1; 3) Dynamic geo-fencing and applying high threat level to geo-fenced area/(Floor Map)—2; 4) Dynamic geo-fencing and applying high threat level to geo-fenced area (BIM); and 5) Dynamic geo-fencing and applying high threat level to geo-fenced area (open area/city wide).
The present approach may be based on detecting and tracking the real-time location of the high profile person or object and defining the dynamic/virtual geo-fencing and applying high threat level to geo-fenced area. Device details, and camera feeds may be monitored on the central or remote monitoring station
A claim may focus on the way the present approach updates a threat-level of high profile visitor or vehicle surrounding area and defines the dynamic geo-fencing.
An extension of approach may have, on a need basis, a user that can modify and alter the geo-fencing area and instantly reflects it in the system and activate the high threat level for the added devices by the adjustment of removed few devices.
The approach may be extended to mobile and cloud platforms, and to wearable location sensing.
A threat level of a particular area or facility may be a predetermined value Y, which is between values X and Z. X may represent no threat and Z may represent certain destruction. Numerical values or magnitudes may be used, for example, where X might be equal to zero and Z may be equal to 10. Any other ranges of values may be used. Non-numerical items such as colors or shapes may be used to represent values of X, Y and Z.
A specific height of a profile of a particular entity, such as a person or machine, may be indicated by a predetermined value B, which is between values A and C. A may represent a value of virtually no worldly significance and C may represent a value indicating a most worldly significance. Numerical values or magnitudes may be used, for example, where A might be equal to zero and C may be equal to 10. Any other ranges of values may be used. Non-numerical items such as colors or shapes may be used to represent values of A, B and C.
The threat level of a particular area or facility and the height of the profile of the entity, as indicated by their respective values, may indicate whether there is a need for a geo fence.
To recap, a dynamic integrated security system may incorporate a processor, a user interface having a display connected to the processor, a plurality of security devices situated in a geographical area, and a security perimeter around a high profile entity initiated by a threat level having a predetermined magnitude. The security perimeter may be a geo-fence that incorporates a geo area around the high profile entity. The geo area may encompass one or more security devices. The one or more security devices in the geo area may be connected to the processor. The geo area may move and stay with the high profile entity upon a change of geographic position of the high profile entity. The one or more security devices within the geo area may be monitored and controlled for reducing or preventing effects of the threat level against the high profile entity. A height of a profile of the entity that reveals the entity to be a high profile entity may be equal to or greater than a predetermined magnitude. The predetermined magnitude may be B that is between A and C. A may represent no worldly importance and C may represent a most worldly significance. An increased height of a profile of an entity may require greater security and thus an increase of the geo area.
The high profile entity may be a person or a vehicle. The high profile entity may have at least one location sensor connected to the processor. The at least one location sensor may be selected from a group having a location tag selected from a group having Bluetooth low energy (BLE) beacon tags, radio frequency identification (RFID) tags, global positioning system (GPS) devices, mobile location devices, and wearable location indicators.
One or more security devices may be selected from a group having cameras, location sensors, access points, intrusion sensors, and lockable doors.
As the geo area moves, one or more security devices may be brought into the geo area and one or more security devices may be released from the geo area.
If the threat level exceeds the predetermined magnitude, then the geo area may increase in size. If the threat level becomes less than the predetermined magnitude, then the geo area may decrease in size. The predetermined threat level may be a predetermined magnitude Y between X and Z. X may represent no threat and Z may represent certain destruction.
The display may show the high profile entity, a map of where the high profile entity is located, the geo perimeter on the map, and the security devices in the geo area.
The high profile entity may have a location tag. One or more security devices may indicate to the processor global positioning coordinates of the location tag.
The geo area may be adjustable via the user interface.
The user interface may be accessed via a mobile phone or a cloud platform.
The geo area may be closed within a perimeter around the high profile entity situated within the geo area, even when the high profile entity moves from one geo graphical location to another to maintain the high profile entity within the geo area.
An approach in providing a security zone, may incorporate connecting a user interface having a display to a processor, detecting a threat level relative to an entity, generating a geo fence on the display to define a security zone around the entity, tracking the entity to maintain the security zone around the entity, and connecting security devices within the security zone to the processor. The threat level may exceed a predetermined magnitude to generate the geo fence.
When the entity moves geographically, the security zone around the entity may move with the entity. As the security zone moves with the entity, the processor may disconnect security devices when the security zone moves outside of the security devices, and the processor may connect security devices when the security zone moves over an area that incorporates the security devices.
The security zone, the entity and the security devices may be monitored with a mobile phone.
The processor may be situated in the cloud.
One or more of the security devices may be selected from a group having location sensors, access points, controlled doors, cameras and intrusion sensors.
A mechanism having a dynamic security zone, may incorporate a monitoring station having a processor and a display, a first area subject to a threat level, one or more security devices situated in the first area, connectable to the monitoring station, and a geo-fence forming a perimeter around a place for an entity needing protection to reduce the threat level at the place. The perimeter and a second area within the perimeter may move with the place for an entity. Any of the one or more security devices within the second area may be connected to the monitoring station.
The mechanism may further incorporate a network interface connected to the monitoring station.
The mechanism may further incorporate a cloud interface connected to the monitoring station.
The geo fencing may be based on coordinates generated from a global positioning system.
A smart phone may connect with the monitoring station to monitor and control the geo fence. Security devices under the geo fence area may be extended to one or more other systems selected from a group having fire detection and alarm systems, building management systems (BMSs), public address systems, and HVAC systems, or temperatures and comfort of the geo fenced area may be improved via BMSs and HVAC systems.
U.S. patent application Ser. No. 14/934,543, filed Nov. 6, 2015, is hereby incorporated by reference.
Any publication or patent document noted herein is hereby incorporated by reference to the same extent as if each publication or patent document was specifically and individually indicated to be incorporated by reference.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
6255988 | Bischoff | Jul 2001 | B1 |
6356282 | Roytman et al. | Mar 2002 | B2 |
6400956 | Richton | Jun 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6529137 | Roe | Mar 2003 | B1 |
6604023 | Brown et al. | Aug 2003 | B1 |
6665613 | Duvall | Dec 2003 | B2 |
6909891 | Yamashita et al. | Jun 2005 | B2 |
6990335 | Shamoon et al. | Jan 2006 | B1 |
7083109 | Pouchak | Aug 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7155305 | Hayes et al. | Dec 2006 | B2 |
D535573 | Barton et al. | Jan 2007 | S |
7159789 | Schwendinger et al. | Jan 2007 | B2 |
7257397 | Shamoon et al. | Aug 2007 | B2 |
7327250 | Harvey | Feb 2008 | B2 |
7385500 | Irwin | Jun 2008 | B2 |
D580801 | Takach et al. | Nov 2008 | S |
7451017 | McNally | Nov 2008 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7571865 | Nicodem et al. | Aug 2009 | B2 |
7614567 | Chapman, Jr. et al. | Nov 2009 | B2 |
7636604 | Bergman et al. | Dec 2009 | B2 |
7668532 | Shamoon et al. | Feb 2010 | B2 |
7768393 | Nigam | Aug 2010 | B2 |
7801646 | Amundson et al. | Sep 2010 | B2 |
7812274 | Dupont et al. | Oct 2010 | B2 |
7908211 | Chen et al. | Mar 2011 | B1 |
7949615 | Ehlers et al. | May 2011 | B2 |
7953518 | Kansal et al. | May 2011 | B2 |
7973678 | Petricoin, Jr. et al. | Jul 2011 | B2 |
8018329 | Morgan et al. | Sep 2011 | B2 |
8064935 | Shamoon et al. | Nov 2011 | B2 |
8065342 | Borg et al. | Nov 2011 | B1 |
8095340 | Brown | Jan 2012 | B2 |
8115656 | Bevacqua et al. | Feb 2012 | B2 |
8125332 | Curran et al. | Feb 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
8205244 | Nightingale et al. | Jun 2012 | B2 |
8232877 | Husain | Jul 2012 | B2 |
8255090 | Frader-Thompson et al. | Aug 2012 | B2 |
8269620 | Bullemer | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8301765 | Goodman | Oct 2012 | B2 |
8332055 | Veillette | Dec 2012 | B2 |
8350697 | Trundle et al. | Jan 2013 | B2 |
8386082 | Oswald | Feb 2013 | B2 |
8390473 | Krzyzanowski et al. | Mar 2013 | B2 |
8412381 | Nikovski et al. | Apr 2013 | B2 |
8412654 | Montalvo | Apr 2013 | B2 |
8428867 | Ashley, Jr. et al. | Apr 2013 | B2 |
8433344 | Virga | Apr 2013 | B1 |
8442695 | Imes et al. | May 2013 | B2 |
8457797 | Imes et al. | Jun 2013 | B2 |
8509954 | Imes et al. | Aug 2013 | B2 |
8531294 | Slavin et al. | Sep 2013 | B2 |
8554374 | Luncek et al. | Oct 2013 | B2 |
8554714 | Raymond et al. | Oct 2013 | B2 |
8571518 | Imes et al. | Oct 2013 | B2 |
8587445 | Rockwell | Nov 2013 | B2 |
8626344 | Imes et al. | Jan 2014 | B2 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8648706 | Ranjun et al. | Feb 2014 | B2 |
8670783 | Klein | Mar 2014 | B2 |
8686841 | Macheca et al. | Apr 2014 | B2 |
8718826 | Ramachandran et al. | May 2014 | B2 |
8798804 | Besore et al. | Aug 2014 | B2 |
8810454 | Cosman | Aug 2014 | B2 |
8812024 | Obermeyer et al. | Aug 2014 | B2 |
8812027 | Obermeyer et al. | Aug 2014 | B2 |
8840033 | Steinberg | Sep 2014 | B2 |
8874129 | Forutanpour et al. | Oct 2014 | B2 |
8886178 | Chatterjee | Nov 2014 | B2 |
8890675 | Ranjan et al. | Nov 2014 | B2 |
8909256 | Fraccaroli | Dec 2014 | B2 |
8918219 | Sloo et al. | Dec 2014 | B2 |
8941489 | Sheshadri et al. | Jan 2015 | B2 |
8965401 | Sheshadri et al. | Feb 2015 | B2 |
9026261 | Bukhin et al. | May 2015 | B2 |
9033255 | Tessier et al. | May 2015 | B2 |
9055475 | Lacatus et al. | Jun 2015 | B2 |
9071453 | Shoemaker et al. | Jun 2015 | B2 |
9113298 | Qiu | Aug 2015 | B2 |
9167381 | McDonald et al. | Oct 2015 | B2 |
9168927 | Louboutin | Oct 2015 | B2 |
9183530 | Schwarz et al. | Nov 2015 | B2 |
9210545 | Sabatelli et al. | Dec 2015 | B2 |
9215560 | Jernigan | Dec 2015 | B1 |
9219983 | Sheshadri et al. | Dec 2015 | B2 |
9247378 | Bisson et al. | Jan 2016 | B2 |
9288620 | Menendez | Mar 2016 | B2 |
9292022 | Ramachandran et al. | Mar 2016 | B2 |
9307344 | Rucker et al. | Apr 2016 | B2 |
9311685 | Harkey et al. | Apr 2016 | B2 |
9313320 | Zeilingold et al. | Apr 2016 | B2 |
9363636 | Ganesh et al. | Jun 2016 | B2 |
9363772 | Burks | Jun 2016 | B2 |
9414422 | Belghoul et al. | Aug 2016 | B2 |
9432807 | Kern, Jr. et al. | Aug 2016 | B2 |
9433681 | Constein et al. | Sep 2016 | B2 |
9449491 | Sager et al. | Sep 2016 | B2 |
9477239 | Bergman et al. | Oct 2016 | B2 |
9495866 | Roth et al. | Nov 2016 | B2 |
9521519 | Chiou et al. | Dec 2016 | B2 |
9552002 | Sloo et al. | Jan 2017 | B2 |
9560482 | Frenz | Jan 2017 | B1 |
9589435 | Finlow-Bates | Mar 2017 | B2 |
9594384 | Bergman et al. | Mar 2017 | B2 |
9618227 | Drew | Apr 2017 | B2 |
20020147006 | Coon et al. | Oct 2002 | A1 |
20050172056 | Ahn | Aug 2005 | A1 |
20050225634 | Brunetti | Oct 2005 | A1 |
20060063522 | McFarland | Mar 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20070037605 | Logan | Feb 2007 | A1 |
20070099626 | Lawrence et al. | May 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070249319 | Faulkner et al. | Oct 2007 | A1 |
20080094230 | Mock | Apr 2008 | A1 |
20100034386 | Choong et al. | Feb 2010 | A1 |
20100081375 | Rosenblatt et al. | Apr 2010 | A1 |
20100127854 | Helvick et al. | May 2010 | A1 |
20100156628 | Ainsbury et al. | Jun 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20110153525 | Benco et al. | Jun 2011 | A1 |
20120172027 | Partheesh et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120209730 | Garrett | Aug 2012 | A1 |
20120259466 | Ray et al. | Oct 2012 | A1 |
20120284769 | Dixon et al. | Nov 2012 | A1 |
20130073094 | Knapton et al. | Mar 2013 | A1 |
20130225196 | James et al. | Aug 2013 | A1 |
20130310053 | Srivastava et al. | Nov 2013 | A1 |
20130318217 | Imes et al. | Nov 2013 | A1 |
20140156087 | Amundson | Jun 2014 | A1 |
20140164118 | Polachi | Jun 2014 | A1 |
20140172176 | Deilmann et al. | Jun 2014 | A1 |
20140200718 | Tessier | Jul 2014 | A1 |
20140302879 | Kim et al. | Oct 2014 | A1 |
20140330435 | Stoner et al. | Nov 2014 | A1 |
20140337123 | Nuernberg et al. | Nov 2014 | A1 |
20140370911 | Gorgenyi et al. | Dec 2014 | A1 |
20150094860 | Finnerty et al. | Apr 2015 | A1 |
20150140994 | Partheesh et al. | May 2015 | A1 |
20150141045 | Qiu et al. | May 2015 | A1 |
20150163631 | Quam et al. | Jun 2015 | A1 |
20150163945 | Barton et al. | Jun 2015 | A1 |
20150186497 | Patton et al. | Jul 2015 | A1 |
20150193936 | Warzelhan | Jul 2015 | A1 |
20150237470 | Mayor | Aug 2015 | A1 |
20150271638 | Menayas et al. | Sep 2015 | A1 |
20150301543 | Janoso et al. | Oct 2015 | A1 |
20160048128 | Schmidt et al. | Feb 2016 | A1 |
20160057572 | Bojorquez Alfaro et al. | Feb 2016 | A1 |
20160071399 | Altman | Mar 2016 | A1 |
20160142872 | Nicholson et al. | May 2016 | A1 |
20160223998 | Songkakul et al. | Aug 2016 | A1 |
20160261424 | Gamberini | Sep 2016 | A1 |
20160286033 | Frenz et al. | Sep 2016 | A1 |
20160313749 | Frenz | Oct 2016 | A1 |
20160313750 | Frenz et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2015201441 | Oct 2015 | AU |
101689327 | May 2013 | CN |
1515289 | Mar 2005 | EP |
2675195 | Dec 2013 | EP |
2012000906 | Sep 2012 | MX |
2009034720 | Mar 2009 | WO |
2009036764 | Mar 2009 | WO |
2011011404 | Jan 2011 | WO |
2012000107 | Jan 2012 | WO |
2013170791 | Nov 2013 | WO |
2014016705 | Jan 2014 | WO |
2014047501 | Mar 2014 | WO |
2014144323 | Sep 2014 | WO |
2014197320 | Dec 2014 | WO |
2014200524 | Dec 2014 | WO |
2015047739 | Apr 2015 | WO |
2015089116 | Jun 2015 | WO |
Entry |
---|
Balaji et al., “Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure Within Commercial Buildings,” SenSys '13, 14 pages, Nov. 11-15, 2015. |
“Petition for Inter Partes Review of U.S. Pat. No. 8,571,518 Pursuant to 35 U.S.C. 311-319, 37 CFR 42,” Inventor Imes et al., dated Oct. 29, 2014. |
The Extended European Search Report and Opinion for EP Application No. 16156760.7-1862, dated Jul. 8, 2016. |
The Extended European Search Report for EP Application No. 1619416, dated Feb. 2, 2017. |
The Extended European Search Report for EP Application No. 16196128.9, dated Mar. 7, 2017. |
U.S. Appl. No. 14/934,543, filed Nov. 6, 2015. |
U.S. Appl. No. 14/938,595, filed Nov. 11, 2015. |
U.S. Appl. No. 14/938,642, filed Nov. 11, 2015. |
U.S. Appl. No. 14/964,264, filed Dec. 9, 2015. |
U.S. Appl. No. 15/048,902, filed Feb. 19, 2016. |
Do, “Programmable Communicating Thermostats for Demand Response in California,” DR ETD Workshop, 26 pages, Jun. 11, 2007. |
Gentec, “Feature Focus, Threat Level Management,” 2 pages, 2013. |
Green, “PM's Thermostat Guide,” Popular Mechanics, pp. 155-158, Oct. 1985. |
Gupta et al., “Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges,” Pervasive, LNCS 5538, pp. 95-114, 2009. |
Gupta, “A Persuasive GPS-Controlled Thermostat System,” 89 pages, Sep. 2008. |
http://community.lockitron.com/notifications-geofencing-scheduling-sense-bluetooth/633, “Lockitron Community, Notifications, Geofencing, Scheduling, Sense/Bluetooth,” 14 pages, printed Oct. 29, 2014. |
http://stackoverflow.com/questions/14232712/tracking-multiple-20-locations-with-ios-geofencing, “Tracking Multiple (20+) Locations with iOS Geofencing—Stack Overflow,” 2 pages, printed Oct. 29, 2014. |
http://www.allure-energy.com/aenf_jan9_12.html, “CES Gets First Look at EverSense,” Allure Energy, 2 pages, printed Feb. 17, 2015. |
http:/IWww.prnev.tswire.com/nev.ts-releases/allure-energy-unveils-a-combination-of-ibeacon-and-nfc-enabled-smart-sensor-technology-known-as-aura-23885 . . . , “Allure Energy Unveils a Combination of iBeacon and NFC Enabled Smart Sensor Technology Known as Aura,” 6 pages, Jan. 6, 2014. |
Mobile Integrated Solutions, LLC, “MobiLinc Take Control of Your Home, MobiLinc and Geo-Fence Awareness,” 9 pages, downloaded Mar. 27, 2015. |
Pan et al., “A Framework for Smart Location-Based Automated Energy Controls in a Green Building Testbed,” 6 pages, downloaded Jan. 30, 2015. |
SmartThings Inc., “2 Ecobee Si Thermostat + Geofencing,” 17 pages, downloaded Nov. 3, 2014. |
Number | Date | Country | |
---|---|---|---|
20180160260 A1 | Jun 2018 | US |