Not applicable.
Not applicable.
This invention relates generally to methods and apparatus for use in automated facilities and more specifically to systems that control automated equipment as a function of the locations of materials and the equipment itself.
This section of this document is intended to introduce various aspects of art that may be related to various aspects of the present invention described and/or claimed below. This section provides background information to facilitate a better understanding of the various aspects of the present invention. It should be understood that the statements in this section of this document are to be read in this light, and not as admissions of prior art.
Mass production techniques have evolved over time such that massive amounts of product can be produced extremely efficiently and in minimal time. Machine line automation has been a particularly important mass producing technology that has driven costs down and minimized production mistakes. To this end, an exemplary automated machine line includes a plurality of work stations arranged along one or more transfer lines where the lines transfer work product form one station to the next. Machines (e.g., drills, mills, sprayers, soldering machines, clamps, component mounting robots, etc.) at each station perform various sub-processes that together comprise a complete process required to provide a final product.
In addition to machines, each station typically includes a plurality of sensors and actuators that are linked to programmable logic controllers (PLCs) via a communication network where the PLCs run programs to control the machines and to sequence machine activities along the transfer line. In this regard, the PLC programs use signals from the sensors as inputs and provide signals as outputs to the actuators.
In most cases, automated line PLCs are programmed to perform a single process to manufacture a single type of work product. Thus, for instance, a line may include twenty different stations including a first loading station and a final unloading station where the same type of initial product is always loaded at the loading station, the PLCs control the machines at each of the line stations to perform identical sub-processes on each product and then essentially identical final products are unloaded at the unloading station.
Hereinafter, unless indicated otherwise, the following discussion will be focused on an exemplary automobile seat manufacturing facility where machines and, in at least some cases, technicians, integrate seat components together to form various types of automobile seats. Thus, for instance, a first seat may be a standard upright seat having a first shape, no moveable parts and an inexpensive fabric cover, a second seat may have a second contoured shape and may include seven motors for multi-position adjustment, a heating element, a moveable headrest and that is covered in top grain leather, a third seat may include a manual pull for reclining the seat, a mid-grade fabric and a pull for sliding the seat forward and backward. Here other seat types are also contemplated that may have various combinations of features and it is contemplated that each of the seats may be provided in several different colors.
While automated systems produce undifferentiated products exceptionally well (i.e., a single type of computer), automated systems are not easily adaptable to produce customized or differentiated products. For instance, in the case of the seat example above, while one seat may require the full compliment of motors, another seat may not require any motors while still another seat may require a set of manual internal cables to facilitate reclining and forward-reverse motion. Where customization is required, the typical solution has usually been to provide more than one automated line or sub-line and/or to have technicians facilitate the customizing portions of the processes. For instance, to produce the first (i.e., basic or standard) and second (i.e., fully automated high end) seat types described above, one solution has been to provide two different lines, one for the first seat type and another for the second seat type. Another solution has been to provide a first line to manufacture elements that are common to the two seat types, a second line to add features that are only included in the standard seat design and a third line to add features that are only included in the high end seat. In either of the two above cases, even though the major portions of the process are automated, usually a technician performs some part of the process. For instance, where a line produces a high end seat that may be any of five different colors, a technician may be provided to load seat material into the fabric attaching machine, the technician selecting which color material to be placed on each seat.
One other way to facilitate customization is to perform more process steps along a manual line. For instance, in at least some cases a technician may, after selecting the fabric type to be installed on a seat, actually perform the seat fabric installation process including a stitching or gluing process where required. Yet one other solution for producing seats having different characteristics has been to configure a line to produce a large number of a first seat type and then re-configure the line to produce a large number of a second seat type, and so on.
While past automated systems have attempted to strike a balance between automation and customization to provide an acceptable number of choices to customers, unfortunately, past systems have several shortcomings. First, despite efforts to provide choices to customers, in many cases customer choice is still relatively limited due to inability to automate the customization process. Thus, for instance, rather than allowing a customer to select from all seat fabric types for a standard seat, many automobile companies only offer a small number (e.g., 2-3) of different colors of a single fabric type for a standard seat. Similarly, to obtain heated seats a customer typically has to upgrade to a high end seat instead of obtaining a heating element in a low end standard seat.
Second, inflexibility of lines often means that a company can lose revenue when a product manufactured on the line does not sell well. To this end, a typical machine line is extremely expensive to design, construct and render operational. Because machine lines are expensive, where demand for an end product is less than expected, the costs of designing and constructing the line may not be offset by revenue attributable thereto. For instance, where a specific seat is designed for use in a certain type of automobile and the specific type of automobile does not sell well, the line may not be fully utilized and the company owning the line may sustain a financial loss. While line resources can often be reconfigured to produce other product types, reconfiguration is extremely costly and time consuming and therefore, only in rare cases, is considered a viable option.
Third, some line machines may not be fully utilized despite full operation of a machine line. For instance, in the case of a seat machine line, a drill press at a twelfth station that drills holes in a seat frame may require far less time to perform its process than a machine that installs motors at an eleventh station or a machine that installs fabric seat covers at a thirteenth station. Here, while the drill press is required to perform its function, even during full line operation, the drill press will remain underutilized while waiting for the line to transfer a seat assembly from the eleventh station after motor installation and may have to wait for an assembly to be moved from the thirteenth station prior to transfer thereto.
As another instance, a drill press at the twelfth station may have to drill fifteen holes in each seat frame transferred to the station and the total process of drilling a first of the holes, moving the drill head to the location to drill the second hole, drilling the second hole, moving the head to the location to drill the third hole, and so on, may take 40 seconds. In addition, transfer of a first frame from the drill station and of a second frame to the drill station may require another 7 seconds (i.e., a transfer period is 7 seconds). Here, if seat frames are provided by the eleventh station at different rates (e.g., sometimes one per every 55 seconds, some times one every 10 seconds), the drill station may be underutilized at times (e.g., when the frames are provided every 55 seconds) while waiting for the next frame to be delivered and, at other times (e.g., when the frames are provided every 10 seconds), may itself slow down the overall line process as frames become bottlenecked at the drill station. Where the drill station cannot keep up with the rate at which frames are provided thereto, machines at stations that follow the drill station and that may be fully utilized during normal rates of product flow, may be underutilized at times.
Fourth, where technicians are required to perform processes, as with any endeavor in which humans are involved, inevitably, mistakes are made. For instance, in the case of a seat line where left and right lumbar support pads are manually added to a seat product or are fed into an automated machine, where the left and right pads are inadvertently manually placed in the wrong sides of the seat or are fed incorrectly into the automated machine, imperfect product results. While such an error may, at first blush, appear to be easy to correct, if the error is not identified quickly and additional components (e.g., motors, other pads, seat fabric covers, etc.) are added to the seat or processes are performed, the cost to correct the error typically increases appreciably and, in some cases, the resulting product may not be cost effectively salvageable.
Fifth, while most line stations require some way to determine the precise locations of products and machine components during line operation, sensors are a relatively expensive solution for several reasons. In addition to hardware costs, other sensor costs typically include the costs associated with installing the sensors (some times several thousand per line), manually associating sensors with PLC program inputs, repair and maintenance costs and costs associated with line down time when a sensor fails or is damaged.
Therefore, it would be advantageous to have a flexible automated system that facilitates greater product customization, that increases asset utilization and that, in at least some cases, can verify that intended product differentiation occurs.
Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
It has been recognized that, in at least some applications, a separate information device may be provided for each moveable item within a facility that can be used to determine the location of the item within the facility. After item location is determined, in some embodiments, facility resources (i.e., line machines) are controlled as a function of the item locations. Thus, for instance, in one example, a drill press may be activated to form a hole in a seat frame when an information device on the seat frame is at a specific position with respect to the drill station and there is no need for a separate sensor for determining the seat position. As another instance, the drill press may also include a single information device that can be used to determine when the press is parked, in a partially extended position, in a fully extended position, so that the single device can be used to replace multiple position sensors (i.e., a parked sensor, a partial extend sensor, a full extend sensor, etc.).
As another example, in at least some cases, it is contemplated that multiple parallel stations may be provided for line stations that perform relatively long processes. For instance, where a seat fabric installing station requires three times as much time as the next slowest station along a line, in some cases three separate fabric installing stations may be provided in parallel where the station preceding the installing station feeds a branching transfer line station that may feed any one of the installing stations. Here, which installing station to feed a next seat assembly may be controlled by determining the locations of seat assemblies at each of the installing stations. Thus, where the first and second parallel installing stations are backlogged but the third station is free, a PLC may cause the next seat assembly to be transferred to the third station.
As one other example, it is contemplated that, in at least some embodiments, certain machines or stations may be moveable along a section of a line with respect to product to be moved there along to increase asset utilization. For instance, where the rate of product provided by a station that precedes a drill press varies between a rate at which the drill press is underutilized and a rate at which the drill press creates a backlog, the drill press may be mounted to slide along a space between the preceding and following stations to reduce the required transfer time and thereby reduce the bottleneck effect caused by the press. Here, press and product information device positions movement may be aligned or, in some cases, may be used to roughly align the press and the product after which some other components may be used to facilitate precise alignment.
In at least some cases, in addition to determining the device location, the information device may also be useable to determine the identity of the item and to control the automated process as a function thereof. In the case of a seat manufacturing line, it is contemplated that where at least basic seat components are the same for several seat types (e.g., standard, fully functional, etc.), a single line may automatically modify control as a function of a specification associated with a specific seat. Thus, when the presence of a specific seat at a station is identified, a PLC may access an associated specification and cause one of several different processes to be performed on the seat. For instance, at a seat cover installing station, the covers to be installed may be different for a fully functional seat that includes motors than for a standard seat that does not include motors. Here, the PLC is programmed to identify the correct covers to install and then to install the correct covers.
As another example, where fully functional seats need a series of motors and standard seats do not require a series of motors, a transfer line splitting station may be controlled to transfer all fully functional seats to a sub-line that installs motors and associated cushions and to transfer all standard seats to a sub-line that does not install motors, but installs a standard set of seat cushions. After motors and cushions are installed, the two sub-lines may again converge to feed a first of several cover installation stations and then a stitching station. In this case information (i.e., location and seat identity) from the information devices is used to determine which of the two sub-lines a seat assembly should be directed to, the types of covers that should be added to the seat assemblies, the types of stitching to be applied to the covers, and so on.
Consistent with the above comments, at least some embodiments of the invention include a method for controlling resources integrated to perform a process on a work product within an environment where at least one of a first of the resources and the work product is a moveable item that moves during the process, the method comprising the steps of providing an information device on the moveable item, ascertaining the location of the information device and controlling at least a first of the resources as a function of the location of the information device.
In addition some embodiments include a method for verifying that a component is a first component prior to integrating the component with a product assembly, the method comprising the steps of providing a separate information device on each of at least a subset of components and on the product assembly where each of the information devices indicates the identity of the component/assembly on which the device is located, specifying that the first component is to be integrated with the assembly at a first station, when the assembly is located at the first station, identifying the assembly via the information device on the assembly and the specified integration of the first component with the assembly and, when a component is present at the assembly to be integrated with the assembly and prior to integrating the component with the assembly, determining the identity of the component via the information device on the component and integrating the component with the assembly only when the component is the first component.
Other embodiments include a method for verifying that components to be integrated by a machine line station within an enterprise are the correct components prior to integration, the method comprising the steps of providing a separate information device on each component within the enterprise where each of the information devices indicates the identity of the component on which the device is located, specifying that a first component is to be integrated with a second component at a first station, when the first component is located at the first station, identifying the identities of the first and at least another component at the first station via the information devices prior to integrating the components and, when the another component is other than the second component, performing a secondary function.
Moreover, some embodiments include a method for tracking work product within an environment, the method comprising the steps of providing environment information within the environment from which information device location can be ascertained, providing an information device on each of the products, at least periodically obtaining environment information via each of the information devices and using the environment information to determine the locations of the information devices within the environment.
The invention further includes a method for tracking components within an environment wherein resources assemble the components to form products, the method comprising the steps of providing an information device on each of at least a sub-set of the components within the environment, determining the locations of each of the sub-set components and storing the location of each component in the information device that is on the component.
In addition, some embodiments include an apparatus for tracking a component within an environment wherein resources assemble the component with other components to form products, the apparatus comprising a processor spatially associated with the component, a data collector linked to the processor, the collector obtaining information from the environment from which collector location can be determined and a memory linked top the processor, the processor storing current collector location within the memory.
Moreover, some embodiments include an assembly for tracking components within an environment wherein resources assemble the components to form products, the assembly comprising a server linked to at least a sub-set of the resources and programmed to control resources as a function of the locations of components within the environment and a plurality of tags, a separate tag spatially associated with each of the components, wherein, at least one of the tags and the server is programmed to determine the locations of the tags within the environment.
These and other objects, advantages and aspects of the invention will become apparent from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown an embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention and reference is made therefore, to the claims herein for interpreting the scope of the invention.
The invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
a is a schematic diagram illustrating a drill press assembly including a wireless information device for identifying the location/position of the drill assembly according to one aspect of the present invention;
One or more specific embodiments of the present invention will be described below. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Hereinafter, unless indicated otherwise, a labeling convention will be adopted in order to simplify this explanation. To this end, according to the adopted labeling convention, any letter or number followed by a subscripted number will indicate a specific instance of a component, signal or position associated with the preceding letter or number. For example, an “M” followed by a subscripted number “1” will be used hereinafter to refer to a first machine line, an “M” followed by the number “2” will be used to refer to a second machine line, and so on. In addition, a subscript “a” will be used to refer to a component or position associated with a product assembly (e.g., a seat frame in the present example), a subscript “d” will be used to refer to a component or position associated with a drill assembly and a subscript “s” will be used to identify a position or a component associated with a stationary proximity or position sensor.
The invention is described herein in the context of a simplified exemplary manufacturing facility and more specifically, in the context of a machine line for performing at least some process steps required to manufacture automobile seats. Nevertheless, it should be appreciated that the present inventions are also applicable to other manufacturing and material handling applications.
Referring now to the drawings wherein like reference numerals correspond to similar elements throughout the several views and, more specifically, referring to
Exemplary facility 10 includes ten separate machine lines labeled M1 through M10. Lines M1 through M10 are shown as being different sizes to visually illustrate that the lines may have different physical footprints. For the purposes of this invention, the nature of each of lines M1 through M10 is similar and therefore, unless indicated otherwise, the present invention will be described in the context of line M1 to simplify this explanation.
Referring still to
It is also contemplated that most, if not all, of lines the line stations will include a plurality of actuators for causing station components to perform station functions. For instance, a first actuator at a mill station may be for controlling rotation of a mill head, a second actuator may be for controlling a slide arm of the mill head, a third actuator may be for controlling movement of a clamping device for clamping a product in a specific location prior to beginning a milling process, and so on.
Each of the sensors and actuators associated with machine lines M1 through M10 is linked to a programmable logic control (PLC) via a communication data bus 34 so that the PLCs can receive signals from the sensors and can provide control signals to the actuators. To this end, nine separate PLCs, PLC, through PLC9 are provided for controlling machine lines M1 through M10. As illustrated, in most cases, a single PLC is provided for controlling a single one of the machine lines (e.g., PLC1 controls proximate line M1, PLC2 controls proximate line M2, etc.). However, as illustrated, in at least one instance, a single controller PLC7 is provided to control two machine lines M7 and M8. Here it should also be recognized that, in at least some embodiments, although not illustrated, more than one PLC may be required or provided to control a single one of the machine lines. Each of the programmable logic controllers PLC1 through PLC9 is linked via network 34 to a remote network server 105.
In addition to the components described above, facility 10 also includes a plurality of communication sensors or access points 11 (only two numbered). Wireless transceivers like access points 11 are well known in the industry and therefore, in the interest of simplifying this explanation, will not be described here in detail. For the purposes of the present invention, it should suffice to say that each access point 11 includes a two-way wireless transceiver that is capable of transmitting and receiving electro-magnetic (e.g., radio or infrared) signals within an area proximate the transceiver. Each transceiver 11 transmits information signals which decrease in a strength as distance from the transceiver increases. In the illustrated example, six separate access points 11 are provided within area 13 and are generally equi-spaced within area 13.
Typically, access points 11 will be mounted to the ceiling within an area 13 to allow relatively unobstructed communication between an access point 11 and other devices that communicate therewith within area 13. While access points 11 are illustrated as being substantially equi-spaced within area 13, it should be appreciated that other access point arrangements are contemplated and that, in many cases, other access point arrangements may be most suitable given specific machine line layouts, the physical characteristics of each of the machine lines and the layout of the machine lines within space 13.
Server 105 is linked to each of access points 11 via network 34 and can receive information from the access points 11 and provide information to each of the access points 11 for transmission within area 13. Information transmitted from each access point 11 to server 105 is typically labeled by the access point so that server 105 can determine which access point 11 provided the received information. In a similar fashion, server 105 and access points 11 are configured such that server 105 can address information to each separate and specific access point 11 via an access point network address.
Server 105 is also linked to a database 103 that stores various programs that are performed by server 105. More specifically, in at least some applications, server 105 will cooperate with the distributed controllers PLC1 through PLC9 to sequence manufacturing process steps and sub-processes performed by lines M1 through M10. In addition, in at least some inventive embodiments, server 105 may perform a process for identifying the locations of specific product assemblies (e.g., seat assemblies in the present example), components and materials as the product assemblies, components and materials are moved within space 13, may sequence machine line process steps as a function of the locations of the product assemblies, components and materials and may issue warnings when unintended process steps (e.g., unintended assembly of components is identified) are identified.
Referring now to
Referring still to
Referring still to
Referring yet again to
Station S7 is controlled to apply specific covers on specific seat assembly instances as the seat assemblies are presented at station S7. To this end, when a seat assembly that is to be configured as a high end seat including motors and special cushions is presented at station S7, station S7 applies a leather cover received along transfer line section T10. Similarly, when a seat assembly to be configured as a standard seat is received at station S7, station S7 applies a textile fabric cover received along line section T11.
Referring once again to
Referring still to
According to at least some aspects of the present invention, a wireless information device that can communicate with access points 11 (see again
In a similar fashion, referring to
Referring still to
Referring now to
Referring now to
Type column 68 indicates whether or not a product assembly corresponds to a standard type seat configuration or a high end seat configuration. Thus, the assembly associated with tag 22a1 is a standard type seat assembly, the assembly associated with tag 22a2 is a high end assembly, the assembly associated with tag 22a3 is a high end assembly, and so on. Here, it should be recognized that column 68 is not required for server 105 to perform the exemplary processes described herein. Instead, column 68 is simply provided in the interest of simplifying the present explanation by clearly enunciating the types of seat assemblies indicated in column 66.
Referring still to
In table 58, three separate locations TT1, S7 and S8 are specified for the seat assembly to be associated with tag 22a1 meaning that assembly specific machine operations will occur when the assembly associated with tag 22a1 is located at each of those locations. Similarly, locations TT1, S7 and S8 are specified for each of the seat assemblies to be associated with tags 22a2 and 22a3, and so on.
Instruction column 72 includes instructions for each of the locations specified in column 70. Thus, referring once again to
The instruction for the location of station S8 is that stitching process XX, as opposed to process YY, is to be performed. Thus, when seat assembly 21a1 associated with tag 22a1 arrives at table TT1, the assembly is transferred to line section T2. When the assembly 21a1 arrives at station S7, station S7 applies a textile fabric cover and, when assembly 21a1 arrives at station S8, station S8 performs the XX stitching process. Similarly, instruction column 72 requires that table TT1 transfer assembly 21a2 associated with tag 22a2 to transfer line section T0, that station S7 apply a leather cover from feeder CF1 as opposed to a textile fabric cover from feeder CF2 when assembly 21a2 associated with tag 22a2 arrives at station S7 and that station S8 perform high-end stitching process YY when assembly 21a2 arrives at station S8.
Referring now to
Referring to
Referring still to
Continuing and referring also to
Referring still to
Various methods and processes may be used to determine the locations of tags mounted to the seat assemblies. To this end, referring now to
Referring to
In at least some applications, it should be appreciated that the process performed on a seat assembly that arrive at a particular location along machine line M1 may be identical for all seat assemblies. For example, referring to
Referring to
Referring now to
While the example above is described in the context of a single transfer line axis 154, it should be appreciated that the principles described are applicable in more complex two and three dimensional applications where tags are located in two or three dimensional space. Thus, for instance, in
In at least some embodiments it is contemplated that, in addition to controlling machine line resources as a function of the locations of tags associated with separate seat assemblies, machine line resource control may also be tied to the locations of tags mounted to the machine line resources themselves thereby further reducing sensor count. For example, referring now to
Referring once again to
In addition to controlling machines along a machine line as a function of the locations of specific instances of seat assemblies, it has also been recognized that, in at least some applications, it may be advantageous to provide machine line components that automatically move to different locations within a space corresponding to an associated station to expedite product throughput. For instance, referring again to
Referring also to
Continuing, referring to
Referring now to
In the above example corresponding to
While information device location may be determined wirelessly using access points in any of the manners described above, it should be appreciated that other processes for determining information device location are also contemplated herein that may, in at least some applications, be used to reduce sensor count. For example, referring to
Once again, when tag 22a1 is proximate sensor 130s2, the assembly 21a1 position can be updated and, thereafter, the timer started again so that the transfer line velocity and timer count can be used to determine the position of assembly 21a1 between sensor 130s2 and drill assembly 124. Where sensor positions and velocity are precisely known, a server 105 should be able to stop assembly 21a1 precisely with respect to drill assembly 124.
Referring now to
Continuing, at block 194, server 105 monitors for tags proximate each of the stationary sensors. At block 196, where a tag is proximate one of the sensors, control passes to block 198 where device location is updated. After block 198, control passes to block 200. Referring again to block 196, where no tags are proximate sensors, control passes down to block 200. At block 200, server 105 determines the tag velocity by determining the velocity of transfer line T. Next, at block 202, server 105 estimates device location from the most recent updated location, the velocity of the transfer line T and the time since the most recent update. After block 202, control passes back to block 174 in
In the preceding example it should be recognized that more complex algorithms for surmising locations of tags are contemplated. For instance, where the speed of the transfer line T is not continuous, in at least some examples, an algorithm that takes into account varying transfer rates and durations of transfer at each rate are contemplated.
Referring again to
According to one additional aspect of the present invention, it is contemplated that tags like tags 22a1, 22a2, 22d, and so on, may be used by server 105 to reduce assembly errors by automatically checking whether or not particular components that are present at a station to be assembled should be assembled or should be identified as inconsistent with an assembly order. To this end, in at least some applications, it is contemplated that tags may be provided on each component to be added to an assembly that can be used to identify the location and identity of the components. In the above-referenced case, referring again to
Consistent with the above comments, a method 300 for verifying components prior to assembly is illustrated in
At decision block 306, server 105 monitors to determine when a component seat assembly is present at station S7. Where no component is present at block 306, control loops back through block 306 until a component is present. Eventually, once a component is present, control passes to block 308 where server 105 obtains the tag ID from the seat assembly. In addition, at block 308, server 105 identifies the characteristics of the seat cover to be applied to the seat assembly including color by accessing database 103 and locating the color information associated with the tag ID.
Continuing, at block 312, server 105 monitors to determine when a seat cover is presented by transfer line section T11. Eventually, once a seat cover is presented by section T11, control passes to block 314 where server 105 obtains the tag ID number from the presented seat cover and correlates the ID number with cover characteristics in database 103. At block 316, server 105 compares the cover characteristics identified at block 308 (i.e., the characteristics of the cover to be applied to the seat assembly) with the cover characteristics identified at block 314 (i.e., the characteristics of the cover presented for application at station S7). Where the cover characteristics match, control passes to block 320 where the cover is applied to the seat assembly. Where the cover characteristics do not match, control passes to block 318 where some other function (e.g., notice of an incorrect cover type) is performed. After each of blocks 318 and 320 control passes back up to block 306 where the process continues.
In some cases it is contemplated that feeders CF1, CF2, etc, may be able to re-shuffle components therein so that the line M1 can locate specific components and automatically correct problems associated with wrong component sequences. Thus, in at least some cases, when an incorrect component is present to be combined with a product assembly, another function at block 318 may include locating a component of the type to be combined with the assembly, obtaining the located component and combining the component with the assembly. In the seat cover example above (i.e., at station S7), feeder CF1 would simply attempt to locate a leather cover of the correct color to be combined with an assembly and would then reshuffle the cover orders when a sequencing error is identified.
Referring again to
According to one additional inventive concept, it has been recognized that wireless location and position determining systems have been getting progressively more precise such that, in addition to determining general product position from tags or the like, orientation can also be at least generally and, in some cases, relatively precisely determined by placing two, three or more tags at different positions on a component or product assembly. For instance, in the seat example discussed throughout this document, a seat assembly may be positioned such that a back rest portion of the assembly faces in the direction of transfer line travel or in the direction opposite line travel. In this case, where a series of eight holes have to be provided along a front edge of a seat member and two holes have to be provided along the rear edge of the seat member, the relative juxtapositions of two or three tags can be used to determine seat orientation and modify drill head operations/movements accordingly. Assembly 21a1 in
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. For example, while the tags described above each include a processor, a memory and a transceiver, it is contemplated that, in at least some applications, other types of tags may be employed to facilitate some of the inventive concepts. For instance, in the case of the method described in the context of
As another example, while the examples above assume tags are mounted to seat assemblies, components and/or moveable machine components, it is contemplated that tags may simply be proximate components and/or resources. For example, in some cases a tag may be provided on a pallet on which a specific seat assembly resides or tag may be located on a stationary portion of a sliding drill head.
In cases where tags are relatively inexpensive, the tags will likely remain attached to components assuming they are not aesthetically objectionable. Nevertheless, in some cases the tags may be re-useable by being removed and then re-associated with new seat orders or other product orders or components.
Moreover, while the tags are described above as storing tag IDs that are correlated with location and tag specific instructions or characteristics in a database 103 after the ID numbers are obtained, in some cases, all of the information regarding instructions and characteristics may be stored in the tags themselves for use at specific facility locations. Here, for instance, referring again to
Furthermore, product location within a wireless environment may be determinable via two sensors on a product receiving signals from one or more access points.
In addition, in at least some cases, two or more identical machine stations may be arranged in series and, depending upon work flow travel, work product may be transferred to any one of the series stations. For instance, three series drill press stations may perform the same functions.
Thus, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
To apprise the public of the scope of this invention, the following claims are made: