Lock and release mechanisms for trans-catheter implantable devices

Information

  • Patent Grant
  • 11311399
  • Patent Number
    11,311,399
  • Date Filed
    Monday, December 16, 2019
    4 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
Delivery systems and catheters including lock and release connectors for implantable devices and methods for retaining, positioning, and deploying a medical device are disclosed. The lock and release connectors can include a body and at least one door engaged with the body, wherein the door is moveable from a first position to a second position. The lock and release connectors can further include at least one fastener connecting at least one end of the door to the body. The door can be integral with the body or connected and can comprise a shape memory material and/or other materials.
Description
FIELD OF THE INVENTION

The present invention relates to delivery systems for implantable devices and, including lock and release mechanisms for implantable medical devices that can be used with a trans-catheter delivery system for use in canals, vessels, lumens, passageways, or cavities of the anatomy including the heart and vasculature. Trans-catheter implantable devices include docking stations, cardiac valve implants such as replacement valves and trans-catheter heart valves (“THV”), stents, annuloplasty rings, other annuloplasty implants, etc.


BACKGROUND OF THE INVENTION

Implantable medical devices can be used in many different parts of the body for various applications, including orthopedics, pacemakers, cardiovascular stents, defibrillators or neural prosthetics. A trans-catheter technique can be used for introducing and implanting a prosthetic heart valve or other medical devices using a flexible catheter in a manner that is less invasive than open heart or other traditional surgeries. In this technique, a medical device can be mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel, canal, or other body passageways until the device reaches the implantation site. The device at the catheter tip can then be expanded to its functional size at the intended implantation site, such as by inflating a balloon on which the device is mounted. Optionally, the device can have a resilient, self-expanding stent or frame that expands the device to its functional size when it is advanced from a delivery sheath at the distal end of the catheter. The implantable medical devices are maintained in the catheter until there are deployed and expanded in the patient.


SUMMARY

This summary is meant to provide examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the feature. The description discloses exemplary embodiments of lock and release connectors for trans-catheter implantable devices and catheters for medical device implantation. The lock and release connectors and catheters can be constructed in a variety of ways.


In one exemplary embodiment, a lock and release connector for a trans-catheter implantable device can comprise a body and at least one door engaged with the body, wherein the door is moveable from a first position to a second position. Optionally, the door can be integral with the body. In some exemplary embodiments, the door can be connected to the body. Optionally, the door can be hingedly connected to the body. The door can be constructed in a variety of ways and can comprise a variety of different materials, e.g., the door can comprises a nickel titanium alloy. The lock and release connector can further comprise one fastener or multiple fasteners connecting at least one portion or end of the door to the body.


In one exemplary embodiment, a system and/or catheter comprises an outer tube having a distal opening. An inner tube can be disposed in the outer tube. An implantable medical device is disposed in the outer tube wherein the medical device has an extension. A lock and release connector having a body and a door is engaged with the body. The door is moveable from a first position to a second position. If an inner tube is used, the lock and release connector can be connected to the inner tube. The extension can be interposed between the body and the door. Optionally, the implantable medical device can further comprise at least a second extension. In some exemplary embodiments, the lock and release connector further comprises a second door. Optionally, the implantable medical device can be a docking station. The body can be hingedly connected to the door.


In one exemplary embodiment, a method for positioning a medical device comprises connecting a lock and release connector to an inner tube of a catheter. The method can further include placing the inner tube inside an outer tube of the catheter. Additionally, an extension can be interposed at a proximal end of the medical device between a body and a door of a lock and release connector that is connected to the inner tube. The method can further include positioning the medical device in the outer tube of the catheter and positioning a distal end of the catheter at a delivery site. Additionally, the outer tube can be displaced with respect to or relative to the inner tube and the lock and release connector until a distal end of the medical device is positioned outside the outer tube. The method can further include continuing to displace the outer tube with respect to or relative to the inner tube and the lock and release connector until the door opens and releases the extension from between the body and the door. Additionally, the proximal end of the medical device and the extension can be deployed to the delivery site. In some exemplary embodiments, the method further comprises returning the lock and release connector to a position inside the outer tube.


Various features as described elsewhere in this disclosure can be included in the examples summarized here and various methods and steps for using the examples and features can be used, including as described elsewhere herein and in various combinations.


Further understanding of the nature and advantages of the disclosed inventions can be obtained from the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify various aspects of embodiments of the present disclosure, a more particular description of the certain embodiments will be made by reference to various aspects of the appended drawings. These drawings depict only typical embodiments of the present disclosure and are therefore not to be considered limiting of the scope of the disclosure. Moreover, while the figures might be drawn to scale for some embodiments, the figures are not necessarily drawn to scale for all embodiments. Embodiments of the present disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings.



FIG. 1A is a cutaway view of the human heart in a diastolic phase;



FIG. 1B is a cutaway view of the human heart in a systolic phase;



FIG. 2A is a schematic illustration of a compressed medical device being positioned in a circulatory system;



FIG. 2B is a schematic illustration of the medical device of FIG. 2A expanded to set the position of the medical device in the circulatory system;



FIG. 3 is a cutaway view of the human heart in a systolic phase with a medical device deployed in a pulmonary artery;



FIG. 4 is a side view of an exemplary embodiment of a frame of an implantable medical device;



FIG. 5 illustrates a side profile of the frame illustrated by FIG. 4;



FIG. 6 illustrates the frame of FIG. 4 in a compressed state;



FIG. 7 is a perspective view of the frame of FIG. 4;



FIG. 8 is a perspective view of the frame of FIG. 4;



FIG. 9 is a perspective view of an exemplary embodiment of a covered frame of an implantable medical device having a plurality of covered cells and a plurality of open cells;



FIG. 9A is a perspective view of an exemplary embodiment of a covered frame of an implantable medical device having a plurality of covered cells and a plurality of open cells;



FIG. 9B is a perspective view of an exemplary embodiment of a covered frame of an implantable medical device having a plurality of covered cells and a plurality of open cells;



FIG. 10 illustrates a perspective view of the covered frame illustrated by FIG. 9 when installed in a vessel of the circulatory system;



FIG. 11A is a sectional view of an exemplary embodiment of a catheter;



FIG. 11B is a sectional view of an exemplary embodiment of a catheter with an exemplary implantable medical device crimped and loaded in the catheter;



FIGS. 12A-12D illustrate an exemplary deployment of an exemplary implantable medical device from a catheter;



FIG. 13 is a perspective view of a holder for retaining an implantable medical device in a catheter;



FIG. 14A is a perspective view of a holder for retaining an implantable medical device in a catheter;



FIGS. 14B and 14C illustrate side views of exemplary extensions of an implantable medical device disposed in the holder;



FIG. 15A is a perspective view of an exemplary embodiment of a lock and release connector in a closed position;



FIG. 15B is a perspective view of the exemplary lock and release connector of FIG. 15A in an open position;



FIG. 16 is an exploded view of an exemplary embodiment of the lock and release connector;



FIGS. 17A-21B are partial views of exemplary embodiments of a lock and release connector in various positions with respect to a catheter;



FIGS. 22-23 are cut-away partial views of exemplary embodiments of a lock and release connector and the catheter;



FIGS. 24A-25B are partial views of exemplary embodiments of a lock and release connector deploying the extensions and being retracted into the catheter;



FIGS. 26A-26B are perspective views of exemplary embodiments of a lock and release connector;



FIG. 27 is a perspective view of an exemplary embodiment of a lock and release connector;



FIG. 28A is a side view of a first exemplary embodiment of an extension, which can be, for example, an extension of the frame of FIG. 9, 9A, or 9B;



FIG. 28B is a side view of a second exemplary embodiment of an extension, which can be, for example, an extension of the frame of FIG. 9, 9A, or 9B;



FIG. 29A is a left side view of an exemplary embodiment of a connector body usable with the frame of FIG. 9B;



FIG. 29B is a front view of the connector body of FIG. 29A;



FIG. 29C is a right side view of the connector body of FIG. 29A;



FIG. 29D is a perspective view of an exemplary embodiment of a door for use with the connector body of FIGS. 29A through 29C;



FIG. 29E is a perspective view of an exemplary embodiment of a door of the connector body of FIGS. 29A through 29C;



FIG. 30A is a left side view of an exemplary embodiment of a connector body useable with the frame of FIG. 9A;



FIG. 30B is a front view of the connector of FIG. 30A;



FIG. 30C is a right side view of the connector of FIG. 30A;



FIG. 30D is a perspective view of an exemplary embodiment of a first door of the connector of FIGS. 30A through 30C; and



FIG. 30E is a perspective view of an exemplary embodiment of a door of the connector of FIGS. 30A through 30C.





DETAILED DESCRIPTION

The following description refers to the accompanying drawings, which illustrate specific embodiments of the invention. Other embodiments having different structures and operation do not depart from the scope of the present invention. Exemplary embodiments of the present disclosure are directed to lock and release connectors (see e.g., lock and release connectors 7000 in FIGS. 15A and 15B) for implantable medical devices 10 (e.g., for trans-catheter implantable devices) and catheters, systems, and assemblies for medical device implantation. In some exemplary embodiments, the medical devices 10 are illustrated as being docking stations, e.g., docking stations for THVs used within the pulmonary artery. However, the lock and release connectors described and shown herein can be used for various medical devices in other areas of the anatomy, including for orthopedics, pacemakers, cardiovascular stents, grafts, coils, defibrillators, neural prosthetics and for use in many other canals, lumens, vessels, passageways, or cavities of the anatomy, including those in the heart and vasculature. The use of the lock and release connectors and the inventive concepts disclosed herein is only limited by the creativity of the designer.



FIGS. 1A-12D show a human heart and illustrate examples of medical devices with which the lock and release mechanism 7000 can be used, and these figures are discussed in more detail later in this disclosure. The implantable medical devices illustrated in FIGS. 2A-12D are only examples of the many types of medical devices with which the lock and release connectors 7000 can be utilized. FIGS. 1A-12D are taken from pending U.S. application Ser. No. 15/422,354, which is incorporated herein by reference in its entirety. FIGS. 1A-14C are described in more detail below to provide examples of applications for the lock and release mechanisms and associated concepts.


It should be noted that various embodiments of lock and release connectors (see e.g., lock and release connectors 7000 in FIGS. 15A and 15B), medical devices, and anchors/extensions on medical devices are disclosed herein, and any combination of the various features and options described or shown herein can be made unless specifically excluded. For example, any of the lock and release connectors disclosed, can be used with any type of medical device, valve, and/or any delivery system, even if a specific combination is not explicitly described. Likewise, the different constructions of lock and release connectors and medical devices can be mixed and matched, such as by combining any lock and release connector type/feature, medical device type/feature, etc., even if not explicitly disclosed. In short, individual components of the disclosed systems can be combined unless mutually exclusive or otherwise physically impossible.


For the sake of uniformity, in these Figures and others in the application the medical devices, such as docking stations are depicted such that the pulmonary bifurcation end is up, while the ventricular end is down. These directions can also be referred to as “distal” as a synonym for far, up, and/or the pulmonary bifurcation end, and “proximal” as a synonym for near, down, and/or the ventricular end, which are terms relative to the physician's perspective.



FIGS. 11A, 11B and 12A-12D illustrate a distal portion of an exemplary embodiment of a catheter 3600 for delivering and deploying an implantable medical device 10. In the exemplary embodiment, the medical device 10 is described and discussed herein as being a docking station, but the frame/covered frame is also representative of a stent, stent frame, stent-graft, a frame including a valve (e.g., representative of a transcatheter heart valve THV), and other medical devices. The catheter 3600 can take a wide variety of different forms. In the illustrated example, the catheter 3600 includes an outer tube/sleeve 4910, an inner tube/sleeve 4912, a connector 4914 that is connected to the inner tube 4912, and an elongated nosecone 28 that is connected to the connector 4914 by a connecting tube 4916. In the some embodiments, the connector 4914 is a lock and release connector 7000. (See e.g., FIGS. 15A and 15B). While the implantable medical device 10 is described/discussed as a docking station, any medical device can be used. Inner tube 4912 can be disposed in the outer tube 4910.


The implantable medical device 10 can be disposed in the outer tube 4910. (See FIG. 11B). Extensions 5000 can connect the medical device 10 to the connector 4914, which can be a lock and release connector 7000 described herein or a connector that incorporates the inventive concepts described herein. The extensions 5000 can be retaining portions that are longer than the remainder of the retaining portions 414. (See FIG. 12C-12D). The catheter 3600 can include a guidewire lumen 6390 and be routed over a guidewire 5002 to position the medical device 10 at the delivery site.


Referring to FIGS. 12A-12D, when the medical device 10 is a docking station or includes an expandable frame, the outer tube 4910 can be progressively retracted with respect to the medical device 10, the inner tube 4912, the connector 4914 (which can be any of the lock and release connectors 7000 described herein or a connector that incorporates the inventive concepts herein), and the elongated nosecone 28 to deploy the medical device 10. While it is preferred to retract the outer tube (as depicted in FIGS. 12A-12D) relative to the medical device, inner tube, nose cone, connector etc. (i.e., while these remain stationary, e.g., stationary relative to a proximal handle), it is also possible to advance the medical device, inner tube, nose cone, and/or connector relative to the outer sheath. In FIG. 12A, the medical device 10 begins to expand from the outer tube 4910. In FIG. 12B, a distal end 14 of the medical device 10 expands from the outer tube 4910. In FIG. 12C, the medical device 10 is expanded out of the outer tube 4910, except the extensions 5000 remain retained by the connector 4914, such as the lock and release connector 7000 in the outer tube 4910. In FIG. 12D, connector 4914, such as a lock and release connector 7000 extends from the outer tube 4910 to release the extensions 5000, thereby allowing the frame to expand and fully deploying the medical device. During deployment of a medical device in the circulatory system, similar steps can be used and the medical device can be deployed in a similar way.



FIGS. 13, 14A, 14B, and 14C illustrate one non-limiting example of how the medical device 10 can be coupled to the connector 4914, specifically the lock and release connector 7000. As is illustrated by FIGS. 12A-12D, when the medical device 10 is pushed out of the outer tube 4910, it self-expands in one exemplary embodiment. One approach to controlling expansion of the medical device 10 is to anchor at least one end, such as the proximal end 12, of the stent to the connector 4914, such as the lock and release connector 7000. This approach allows a distal end 14 of the stent to expand first, without the proximal end expanding (See FIG. 12B). Then when the outer tube/sheath 4910 is moved backward or is retracted relative to the device 10 (or when the stent is moved forward relative to the outer tube 4910), the proximal end 12 disengages from the connector 4914, e.g., the lock and release connector 7000, and the proximal end 12 of the medical device is permitted to expand (See FIG. 12D).


This can be facilitated by including one or more anchors or extensions 5000 on at least the proximal end of the device 10. In the illustrated examples, one or two extensions are included. However, any number of extensions 5000, such as one, two, three, four, five, etc. can be included. The extensions 5000 and/or heads 5636 of the extensions can take a wide variety of different forms, shapes, sizes, etc. The extensions 5000 can engage with the connector 4914, e.g., the lock and release connector 7000, within the outer tube 4910. The extensions 5000 can include a face 5600 and can include heads 5636 with sides 5640 that extend away from a straight portion 5638 at an angle beta β (See FIG. 14B), such as between 30 and 60 degrees. Such heads 5636 can be generally triangular as illustrated or another shape (e.g., round, spherical, rectangular, pyramidal, etc.), for example, the angularly extending sides 5640 can be connected together by another shape, such as a rounded shape, a rectangular shape, pyramidal shape, or another shape. That is, the heads 5636 can function in the same manner as the illustrated triangular head, without being triangular.


Referring to FIGS. 14A and 14B, a head 5636 with sides 5640 that extend away from one another at an angle β, such as a triangular head. Referring to FIGS. 13, 14A, 14B, and 14C, the heads 5636 fit into the T-shaped recesses 5710 in a holder to hold the proximal end 12 of the medical device while the distal end self-expands within the body. The connector 4914, or specifically the lock and release connector 7000, remains in the delivery catheter until moved relatively out of the catheter (e.g., by retracting the outer tube/sleeve 4910 or by advancing the connector 4914, see FIG. 12D). Referring to FIG. 13, the outer tube/sleeve 4910 of the catheter 3600 can be closely disposed over the connector 4914, such that the heads 5636 are captured in the recesses 5710, between the outer tube/sleeve 4910 and the body of the connector 4914 (or between the recesses 5710 and the doors 7020 of the lock and release assembly, see FIG. 22). This capturing in the recesses 5710 holds the end of the medical device 10 as the medical device expands. In this manner, delivery of the medical device 10 is controlled and recapture of at least a partially deployed device is possible (e.g., FIGS. 12A and 12B show examples of partially deployed devices that could be recaptured).


Referring back to FIG. 12D, at the end of the expansion of the medical device 10, when the distal end of the medical device has already expanded, the connector 4914 or lock and release connector 7000 is moved relatively out of the outer sleeve. The heads 5636 are then free to move radially outward and disengage with the respective recesses 5710 (see FIG. 13) or the recesses 5710 and doors 7020 (see FIG. 24B). The heads 5636 can force the doors 7020 open and/or the doors can be opened in other manners as described below. While referred to as “doors” herein, features 7020 can be called latches, locks, arms, hinged portions, or other descriptors.


In one embodiment, all of the extensions 5000 are the same length. As the connector is moved relatively out of the outer tube/sleeve 4910, the recesses 5710 are simultaneously relatively moved out of the outer sleeve 4910. Since the extensions 5000 are all the same length, the recesses 5710 with the heads 5636 will all emerge from the delivery outer sleeve 4910 at the same time. Consequently, the heads 5636 of the docking station and/or doors 7020 will move radially outward and release all at once.



FIG. 15A is a perspective view of one embodiment of a lock and release connector 7000 for a trans-catheter implantable device 10. The lock and release connector 7000 can be used to deploy the medical device 10 as illustrated in FIGS. 12A-12D. In one exemplary embodiment, a lock and release connector 7000 for a trans-catheter implantable device 10 comprises a body 7010 and at least one door 7020 engaged with the body 7010, wherein the door 7020 is moveable from a first position to a second position. In some exemplary embodiments, a first position can be a closed position, including without limitation a partially closed position. In other exemplary embodiments, a second position can be an open position, including without limitation a partially open position. In some exemplary embodiments, the door 7020 can be integral with the body 7010 (not shown). In some exemplary embodiments, the door 7020 can be connected to the body 7010. The lock and release connector 7000 can comprise a body 7010 and at least one door 7020 hingedly connected to the body 7010. In the illustrated embodiment, the lock and release connector has two doors 7020. However the lock and release connector 7000 can possess any number of doors, including without limitation, 1, 2, 1 to 2, 2 to 5, 3 to 4, 1 to 6 doors, or any other number of doors. Each door could be configured to hold/lock/retain a single extension 5000 or one or more doors (e.g., one or more doors 7020) could be configured to hold/lock/retain multiple extensions. FIG. 15A shows an exemplary embodiment of the lock and release connector 7000 wherein the doors 7020 are in a closed and/or first position. FIG. 15B illustrates a perspective view of the lock and release connector 7000 wherein the doors 7020 are in an open and/or second position. FIG. 16 is an exploded view of the lock and release connector 7000. In some embodiments, the lock and release connector 7000 can further include at least one fastener 7040 connecting at least one end of the door(s) 7020 to the body 7010. The body 7010 and the door(s) 7020 can be hingedly connected by a fastener 7040. In some embodiments, the fastener 7040 can be a hinge pin. The fastener 7040 can be a wire, a screw, hinge, suture, tie, latch, a pin, etc. The body 7010 and the door 7020 can be hingedly connected by any fastener known in the art.


In some exemplary embodiments the door 7020 is passively moved from the closed position to the open position. That is, in some embodiments, the lock and release connector 7000 does not include any mechanism that moves the doors 7020 to the open position from the closed position or to the closed position from the open position. For example, the doors 7020 can be forced open by an external force, such as the force of expansion of the stent, docking station or other medical device 10 when the device is deployed/released from the catheter.


In another exemplary embodiment, the door 7020 of the lock and release connector 7000 can optionally utilize a mechanism that causes the door 7020 to translate from a first position to a second position, including from a closed state to the open state and vice versa. In some exemplary embodiments, the door can be actively controlled to move from a first position to a second position. For example, the lock and release connector 7000 can further comprise at least one spring 7050 (or similar mechanism) exerting force on the door 7020 to bias the door open. In other examples, the door 7020 can be controlled by a control wire to translate the door 7020 from a first position to a second position, including from the closed state to the open state and vice versa. In some exemplary embodiments, the door 7020 can be made from shape memory or pseudo-elastic materials, such as shape-memory alloys, including without limitation, a copper-aluminum-nickel alloy, and a nickel-titanium alloy, one example of which includes nitinol. These shape memory materials allow the door 7020 to be compressed to a closed state to engage the body 7010, including without limitation a partially closed position, and then when the compression force is released (e.g., when deployed from the catheter), the door 7020 will self-expand back to its pre-compressed open state. In this embodiment, the illustrated fastener 7040 can be omitted. For example, the body 7010 and the door(s) 7020 can be integrally formed or fixed together and the door(s) 7020 can flex from a first position to a second position, including from a closed position to an open position.



FIGS. 17A-17B illustrate a partial view of the catheter 3600 having an outer tube 4910 having a distal opening 7060. In the illustrated embodiment the connector 4914 is specifically the lock and release connector 7000 having a body 7010 and a door 7020 connected to the body 7010. The lock and release connector 7000 can be used to retain an implantable medical device 10 in the delivery catheter 3600 until the medical device is moved relatively out of the catheter 3600 or outer tube/sleeve/sheath 4910 (e.g., by retracting the outer tube/sleeve/sheath 4910 or by advancing the lock and release connector 7000).


In some exemplary embodiments, the lock and release connector 7000 is connected to the inner tube 4912 in a manner similar to the connector 4914 (See FIG. 11B). FIGS. 18A-21B illustrate one manner in which one or more extension 5000 of an implantable medical device 10 are placed between the body 7010 and the door 7020 of the lock and release connector 7000. Referring to FIG. 18A, outer tube 4910 is progressively retracted with respect to the lock and release connector 7000, which allows the door 7020 to reach the open position. Alternatively, the lock and release connector 7000 can be progressively advanced with respect to the outer tube 4910 to allow the door 7020 to reach the open and/or second position.


The door 7020 can be passive and opened by extensions 5000 of a medical device or reach the open and/or second position using a variety of active mechanisms. In the passive embodiments, the door is opened or is translate to a second position by the release of the potential energy stored in the implantable device or “stent” itself, when the outer tube 4910 is retracted.


In some embodiments, the resting state of the door 7020 is in the open and/or second position so that the door 7020 changes position passively when the outer tube 4910 is retracted. In some embodiments, the door 7020 opens or translates to a second position by releasing the potential energy stored in a spring 7050 placed between the door 7020 and the body 7010 (shown schematically in FIG. 27). In some embodiments, the door 7020 can be controlled by a control wire or guidewire 5002 to translate the door 7020 from a first position to a second position, including from the closed state to the open state and vice versa. In some embodiments, the door 7020 is configured from shape memory materials, such as a nickel titanium alloy like nitinol. These shape memory materials allow the door 7020 to be compressed to a closed state when confined inside the outer tube 4910, and then when the compression force is released, the door 7020 will self-expand back to its pre-compressed open state. In this embodiment, the illustrated moveable connection between the door 7020 and the body 7010 can be omitted. The door(s) can be fixedly attached to the body and flex from the closed position to the open position.


As shown in FIGS. 18B-20B, to connect the implantable medical device 10 (See for example FIGS. 9 and 11B) to the lock and release connector 7000, the extensions 5000 are interposed between the body 7010 and the door 7020 of the lock and release connector 7000. As shown in FIG. 18B, the extensions 5000 are brought into proximity with the lock and release mechanism 7000. In FIG. 19A, the extensions 5000 are compressed toward one another. In FIG. 19B, the extension 5000 are moved into the spaces between the doors 7020 and the body 7010. FIG. 20A illustrates the extension 5000 being placed in a cutout or recess 5710 in the body 7010. FIG. 20B illustrates the doors 7020 being closed to connect the implantable medical device to the lock and release connector. The doors 7020 can be closed as illustrated by FIG. 20 when the doors are controlled by a control wire (not shown) that is connected to the door and extends through the catheter 3600, to the proximal end of the catheter. However, the doors 7020 can be closed by merely advancing the outer tube/sleeve/sheath 4910 over the lock and release connector 7000 or by retracting the lock and release device 7000 into the outer tube 4910 of the catheter. That is, the distal opening 7060 or outer surface of the outer tube 4910 engages the doors 7020 to close the doors as the lock and release device is covered by the tube 4910.


As illustrated in FIGS. 21A-21B, once the extensions have been placed, the outer tube 4910 is advanced (or the lock and release device 7000 is retracted) to cover the lock and release connector 7000 until each door 7020 closes to lock each extension 5000 in place into the cutout or recess 5710. FIGS. 22-23 are cut-away views showing the lock and release connector 7000 inside the outer tube 4910 wherein the door 7020 is in the closed and/or first position having the extensions locked in place. The heads 5636 of each extension 5000 fit into the T-shaped recesses 5710 in the lock and release device 7000 to hold the proximal end 12 of the medical device 10. When the outer tube/sleeve 4910 of the catheter 3600 is closely disposed over the lock and release connector 7000, the heads 5636 are captured in the recesses 5710, between the body 7010 and the door 7020. This capturing in the recesses 5710 holds the end of the medical device 10 as the medical device expands. In this manner, delivery of the medical device 10 is controlled. When the device 10 is partially deployed, the device 10 can also be recaptured by advancing the outer tube/sheath over the device 10 again or retracting the device 10 into the outer tube/sheath.



FIGS. 24A-25B illustrate an exemplary embodiment of release of the extensions 5000 of the implantable medical device 10 from between the body 7010 and the door 7020 of the lock and release connector 7000. Referring to FIGS. 24A-24B, outer tube 4910 is progressively retracted with respect to the lock and release connector 7000, which allows the door 7020 to reach the open and/or second position. Optionally, the lock and release connector 7000 can be progressively advanced with respect to the outer tube 4910 to allow the door 7020 to reach the open and/or second position, or the lock and release connector 7000 can be advanced simultaneously with retraction of the outer tube/sheath. Once the door 7020 opens the extensions 5000 are released. For example, the potential energy stored in the extensions 5000 can force the doors 7020 open and cause the extensions to expand outward, out of the doors. Referring to FIGS. 25A-25B, as the outer tube 4910 is advanced over the lock and release connector 7000, the door 7020 is pressed to the closed and/or first position by the outer tube 4910.



FIGS. 26A-26B illustrate another embodiment of the lock and release connector 7000 where the door 7020 is simplified and minimized. In this example, the door 7020 has a small, simple rectangular shape. However, the door 7020 can have any shape including, without limitation, t-shaped, triangular, octagonal, square, cylindrical, or any other shape adapted to retain the extension 5000 in the lock and release connector 7000.


The lock and release connector 7000 can be configured to allow the medical device to be retrieved or retracted back into the catheter assembly after partial deployment, e.g., when the outer tube 4910 is advanced enough to expose a portion of the medical device but still prevent the lock and release connector 7000 from releasing the extensions 5000. For example, 30%-90% of the length of the implantable medical device 10 (or any range between 30% and 90%, including without limitation 20%-80%, 30%-60%, 40%-90%, 60%-40%, 50%-80%, etc.) may be exposed from the outer tube 4910 while the doors 7020 still retain the implantable medical device 10 and allow the implantable medical device 10 to be pulled back into the tube 4910. If the lock and release connector 7000 is prevented from releasing the extensions 5000, then the implantable medical device 10 can be retracted back into the catheter to reposition the catheter before redeployment of the medical device, thus allowing the medical device to be recovered and repositioned after partial deployment.


As mentioned above, the lock and release connector 7000 can be used to controllably deploy a wide variety of different medical devices in a wide variety of different applications. The human heart H is one of the many places where the lock and release connector 7000 can be used. The lock and release connectors 7000 can be used to deploy a wide variety of different devices in the heart. Some details of the human heart and a docking station for providing a landing zone are described below to provide an example of one of the many applications where the connector 7000 can be used.


Referring back to FIGS. 1A and 1B, the human heart H is illustrated in diastolic and systolic phases, respectively. The right ventricle RV and left ventricle LV are separated from the right atrium RA and left atrium LA, respectively, by the tricuspid valve TV and mitral valve MV; i.e., the atrioventricular valves. Additionally, the aortic valve AV separates the left ventricle LV from the ascending aorta (not identified) and the pulmonary valve PV separates the right ventricle from the pulmonary artery PA. Each of these valves has flexible leaflets extending inward across the respective orifices that come together or “coapt” in the flowstream to form the one-way, fluid-occluding surfaces.


The right atrium RA receives deoxygenated blood from the venous system through the superior vena cava SVC and the inferior vena cava IVC, the former entering the right atrium from above, and the latter from below. The coronary sinus CS is a collection of veins joined together to form a large vessel that collects deoxygenated blood from the heart muscle (myocardium), and delivers it to the right atrium RA. During the diastolic phase, or diastole, seen in FIG. 1A, the venous blood that collects in the right atrium RA passes through the tricuspid valve TV as the right ventricle RV expands. In the systolic phase, or systole, seen in FIG. 1B, the right ventricle RV contracts to force the venous blood through the pulmonary valve PV and pulmonary artery into the lungs. During systole, the leaflets of the tricuspid valve TV close to prevent the venous blood from regurgitating back into the right atrium RA.


As mentioned above, the lock and release connector can be used to retain and release a wide variety of different implantable medical devices. Referring to FIGS. 2A-2B, in one exemplary embodiment an implantable medical device 10 is depicted as an expandable docking station that includes one or more sealing portions 410, a valve seat 18, and one or more retaining portions 414. The sealing portion(s) 410 provide a seal between the medical device 10 and an interior surface 416 of the circulatory system. The valve seat 18 provides a supporting surface that can be used mounting a valve in the device 10 or for implanting or deploying a valve (e.g., a THV) in the device 10 (configured as a docking station) after the device/docking station is implanted in the circulatory system. The retaining portions 414 can help retain the medical device 10 (e.g., docking station) and the valve at the implantation position or deployment site in the circulatory system. The expandable docking station(s) as described or shown in various embodiments herein are also representative of a variety of docking stations, valves, and/or other medical devices 10 that might be known or developed.



FIGS. 2A-2B schematically illustrate an exemplary deployment of the medical device 10. In some exemplary embodiments, the medical device is in a compressed form/configuration and is introduced to the deployment site in the circulatory system. For example, the medical device 10, can be positioned at a deployment site in a pulmonary artery by a catheter (e.g., catheter 3600 as shown in FIGS. 12A-12D). Referring to FIG. 2B, the medical device 10 is expanded in the circulatory system such that the sealing portion(s) 410 and the retaining portions 414 engage the inside surface 416 of a portion of the circulatory system.


The medical device can be made from a highly flexible metal, metal alloy, or a polymer. Examples of metals and metal alloys that can be used include, but are not limited to, nitinol, elgiloy, and stainless steel, but other metals and highly resilient or compliant non-metal materials can be used. For example, the medical device 10 can have a frame or portion of a frame (e.g., a self-expanding frame, retaining portion(s), sealing portion(s), valve seat, etc.) made of these materials, e.g., from shape memory materials, such as nitinol. These materials allow the frame to be compressed to a small size, and then when the compression force is released, the frame will self-expand back to its pre-compressed diameter.


Referring to FIG. 3, the medical device 10 is shown, for example, retained in the pulmonary artery PA by expanding one or more of the retaining portions 414 radially outward into an area of the pulmonary artery PA. For example, the retaining portions 414 can be configured to extend radially outward into the pulmonary bifurcation 210 and/or the opening 212 of the pulmonary artery to the right ventricle.



FIGS. 4-8 illustrate an exemplary embodiment of a frame 1500 or body of an implantable medical device 10 (e.g., a docking station, stent, stent-graft, THV, etc.). The frame 1500 or body can take a wide variety of different forms and FIGS. 4, 5, 6, 7, and 8 illustrate just one of the many possible configurations. The device 10 has a relatively wider proximal inflow end 12 and distal outflow end 14, and a relatively narrower portion 16 that forms the seat 18 (e.g., can be used for mounting/attaching or docking a valve therein) in between the ends 12, 14. In the examples illustrated by FIGS. 4, 5, 7, and 8, the frame 1500 of the device 10 is depicted as a stent comprised of a plurality of metal struts 1502 that form cells 1504. In the example of FIGS. 4, 5, and 7-10, the frame 1500 has a generally hourglass-shape that has a narrow portion 16, which forms the valve seat 18 and is covered by a covering/material 21, in between the proximal and distal ends 12, 14.



FIGS. 4, 5, 7, and 8, illustrate the frame 1500 in its unconstrained, expanded condition/configuration. In this exemplary embodiment, the retaining portions 414 comprise ends 1510 of the metal struts 1502 at the proximal and distal ends 12, 14. The sealing portion 410 is shown between the retaining portions 414 and the waist 16. In the unconstrained condition, the retaining portions 414 extend generally radially outward and are radially outward of the sealing portion 410. FIG. 6 illustrates the frame 1500 in the compressed state for delivery and expansion by a catheter. The device 10 can be made from a very resilient or compliant material to accommodate large variations in the anatomy. For example, the docking station can be made from a highly flexible metal, metal alloy, and/or polymer. An example of a highly resilient metal is nitinol, but other metals and highly resilient or compliant non-metal materials can be used. The device 10 can be self expandable, manually expandable (e.g., expandable using balloon), mechanically expandable, or a combination of these.



FIGS. 9, 9A, and 9B illustrate a frame 1500 with a covering/material 21 (e.g., an impermeable or semi-permeable material) attached to the frame 1500. A band 20 can extend about the waist or narrow portion 16, or can be integral to the waist to form an unexpandable or substantially unexpandable valve seat 18. The band 20 can stiffen the waist and, once deployed as a docking station is deployed and expanded, can make the waist/valve seat unexpandable or relatively unexpandable in its deployed configuration.



FIG. 10 illustrates the implantable device 10 of FIG. 9 after being implanted in the circulatory system (e.g., in the pulmonary artery, IVC, SVC, aorta, etc.) using the connector 4914, such as the lock and release connector 7000. The sealing portions 410 provide a seal between the device 10 and an interior surface 416 of the circulatory system. The sealing portion 410 can comprise a covering/material 21 and the lower, rounded, radially outward extending portion 2000 of the frame 1500, and can form an impermeable or substantially impermeable portion 1404. In one embodiment, this directs blood flow to the valve seat 18 (and a valve once installed or deployed in the valve seat). In one embodiment, blood may be able to flow between the device 10 and the surface 416, i.e., into and out of the areas 2100, until the sealing portion 410 is reached. An optional permeable portion 1400 can allow blood to flow into and out of the area 2130 as indicated by arrows 2132.


Referring to FIGS. 9, 9A, and 9B, the frame 1500 can include one or more of a variety of extensions 5000. As described, the frame 1500 can include one or more extensions 5000 that can be longer than the remainder of the retaining portions 414 and which can be retained by a connector 4914, for example, this can be a lock and release connector 7000 in the outer tube 4910. The extension(s) 5000 are designed such that at least one extension 5000 (e.g., the full extension or a portion of the extension, for example the head 5636) can be retained by the connector 4914. In one embodiment, the extension(s) (e.g., the full extension or a portion thereof) is/are releasably retained between the T-shaped recess 5710 and the door 7020 of the lock and release connector 7000. The extension(s) 5000 allow the position of the frame 1500 to be maintained or otherwise controlled after all or substantially all (e.g., 90% or more) of the frame 1500 has been moved distally past the distal opening 7060 of the outer tube 4910 and/or after the frame 1500 has substantially or completely expanded radially outwardly.


As shown in FIG. 9, the frame 1500 can include two extensions 5000 extending from one end of the frame 1500, such as the proximal end 12. The extensions 5000 can be substantially the same length such that the head 5636 of each extension 5000 are substantially the same distance from the remainder of the frame 1500. In such a configuration, the extensions 5000 can be released from the connector 4914, such as the lock and release connector 7000, at substantially the same time, as described below. The extensions 5000 can be spaced radially around the proximal end 12 of the frame 1500 in any configuration. In the illustrated embodiment, the extensions 5000 are disposed substantially on opposite sides of the frame 1500. However, the extensions 5000 can be disposed in other configurations. For example, there can be any number of equally spaced extensions, any number of unequally spaced extensions, and/or the extensions 5000 can extend from adjacent struts 1502.


As shown in FIG. 9A, the frame 1500 can include one or more first extensions 5000a and one or more second extensions 5000b extending from one end of the frame 1500, such as the proximal end 12. The first and second extensions 5000a, 5000b are longer than the remainder of the optional additional retaining portions 414 and can be retained by the connector 4914, such as the lock and release connector 7000 in the outer tube 4910. The first and second extensions 5000a, 5000b can be substantially similar to the extensions 5000 of FIG. 9; however, the lengths of the first and second extensions 5000a, 5000b can be different from one another. For example, the second extension 5000b can be longer than the first extension 5000a. The first extension 5000a can be the same length as the extensions 5000 of FIG. 9. However, the first extension 5000a can be shorter or longer than the extensions 5000 of FIG. 9. In such a configuration, the first extension 5000a can be released from the connector 4914, such as the lock and release connector 7000, while the second extension 5000b is still retained by the connector 4914, as detailed below. The first and second extensions 5000a, 5000b can be spaced distally around the proximal end 12 of the frame 1500 in any configuration. In the illustrated embodiment, the first and second extensions 5000a, 5000b are disposed substantially on opposite sides of the frame 1500. However, the first and second extensions 5000a, 5000b can be disposed in other configurations. For example, there can be one, two, three, four, five, or any number of first extensions 5000a and one second extension 5000b. For example, there can be any number of equally spaced extensions 5000a, any number of unequally spaced extensions 5000b, and/or the extensions 5000a and/or 5000b can extend from adjacent struts 1502. The various extensions can be spaced radially around the frame in a variety of configurations.


As shown in FIG. 9B, the frame 1500 can include a single extension 5000 extending from one end of the frame 1500, such as the proximal end 12. The extension 5000 can be any size, the extension 5000 can extend proximally beyond the remainder of the frame 1500, and the extension 5000 can be retained by the connector 4914, such as the lock and release connector 7000 in the outer tube 4910. The extension 5000 can be substantially similar to the extensions 5000 of FIG. 9.


While the frame 1500 has been described as having one or two extensions 5000, any number of extensions 5000 can be included. For example, the frame 15000 can include, without limitation, 1, 2, 1 to 2, 2 to 5, 3 to 4, 1 to 6 extensions, or any other number of extensions.



FIGS. 28A and 28B show some examples of extensions that can be used. The one or more extensions 5000, or one or more first or second extensions 5000a, 5000b, can take a variety of forms. For example, as shown in FIG. 28A, the extensions 5000 can be spring-like (other spring-like configurations are also possible, e.g., coiled). The inclusion of a spring-like second extension 5000 can permit the frame 1500 to extend smoothly out of the outer tube 4910 as the frame 1500 radially expands as it is distally moved out of the distal opening 7060 of the outer tube 4910. As shown in FIG. 28B, the second extension 5000 can be rod-like and stiffer than the extension of FIG. 28A. The inclusion of a rod-like extension 5000 can permit the frame 1500 to be positioned or otherwise moved as the frame 1500 radially expands as it is distally moved out of the outer tube 4910. However, the one or more second extension 5000 can take other forms as well. For example, the extension 5000 can be curved, twisted, bent, coiled, or otherwise shaped according to the desired deployment and/or control of the frame 1500 out of the outer tube 4910.


Turning now to FIGS. 14A through 16 and FIGS. 29A through 30E, the connector body 4914, such as the connector body of the lock and release connector 7000, can take a variety of forms. Some variety in forms can be based on the proximal end 12 of the frame 1500. For example, the connector body 4914 can have one recess 5710 (e.g., a T-shaped recess) (FIGS. 29A-29C) to hold one extension 5000 or can include multiple recesses to hold multiple extensions (e.g., two T-shaped recesses 5710 to hold two extensions 5000 while the distal end of the frame 1500 expands). Each recess 5710 can include a door 7020 connected (e.g., hingedly connected, flexibly connected, etc.) to the connector body 4914, as described above, to receive the head 5636 of the corresponding extension 5000. The recesses 5710 and doors 7020 can correspond to the number, shape, spacing, and size of the extensions 5000 of the frame 1500. Optionally, one or more fasteners 7040 (See FIG. 16) can be used to connecting the doors 7020 to the connector body 4914. In some embodiments, the fastener 7040 can be a hinge pin. The fastener can be a wire, screw, hinge, suture, tie, pin, etc. The body 7010 and the doors 7020 can be hingedly connected by any fastener known in the art or be flexibly attached.


The connector 4914, such as the lock and release connector 7000, can further comprise a mechanism that can exert a force on the door(s) 7020 to bias the door(s) open (e.g., one or more springs 7050 or similar mechanisms). In some embodiments, the door(s) 7020 can be controlled by one or more control wires to translate the door(s) 7020 from a first position to a second position, including from the closed state to the open state and vice versa. In some embodiments, the door 7020 can be made from shape memory or pseudo-elastic materials, such as shape-memory alloys, including without limitation, a copper-aluminum-nickel alloy, and a nickel-titanium alloy, one example of which includes nitinol. Shape memory materials or superelastic materials can allow the door 7020 to be compressed to a closed state to engage the body 7010, including without limitation a partially closed position, and then when the compression force is released (e.g., when deployed from the catheter), the door 7020 will self-expand back to its pre-compressed open state. In this embodiment, the fastener 7040 can be omitted. For example, the body 7010 and the door(s) 7020 can be integrally formed or fixed together and the door(s) 7020 can flex from a first position to a second position, including from a closed position to an open position.


Turning to FIG. 29A through 29E, the connector 4914 cab include a recess 5710 (e.g., one T-shaped recess or a recess of another type of shape) to receive the head 5636 of an elongated extension 5000, such as the single elongated extension 5000 of FIG. 9B. The length of the recess 5710 can correspond to the length of the elongated extension 5000 and can be longer than the recess 5710 of FIGS. 14A through 16. The cross portion of the recess 5710 can be farther from the distal end of the connector 4914 such that the door 7020 does not move to the open and/or second position until the connector body 4914 is moved further out of the catheter. As the recess 5710 (e.g., a T-shaped recess) is disposed distally farther back on the connector body 4914, the connector assembly 7000 can retain the extension 5000 of the frame 1500 longer as the outer tube/sheath 4910 is moved backward or is retracted relative to the device 10 (or when the stent is moved forward relative to the outer tube 4910) than the connector of FIGS. 14A through 16.


The door 7020 can have a variety of different sizes and shapes. The door 7020 can be shorter, such that the end of the door 7020 does not reach the end of the connector body 4914 (FIG. 29D) or the door 7020 can be longer such that the end of the door 7020 aligns with or extends beyond the end of the connector body 4914 (FIG. 29E). As shown in FIG. 29D, the shorter door 7020 may retain the head 5636 of the elongated extension 5000 while the remainder of the extension 5000 is free. The shorter door 7020 allows the elongated extension 5000 to flex or otherwise adjust more before opening the door 7020 and releasing of the frame 1500. This can permit the frame 1500 to radially expand more smoothly as the frame 1500 is moved distally past the distal opening 7060 of the outer tube 4910. As shown in FIG. 29E, the elongated door 7020 is aligned with the end of the connector body and can retain the head 5636 and a substantial portion of the elongated extension 5000. The elongated door 7020 would allow for more control over the position of the extension 5000 before opening the door 7020 and releasing of the frame 1500. This permits the position of the frame 1500 to more easily be maintained or otherwise controlled as the frame 1500 is moved distally past the distal opening 7060 of the outer tube 4910. In any of these configurations, the elongated extension 5000 of the frame 1500 can be retained by the door 7020 after the frame 1500 has been substantially deployed from the outer tube 4910 and either substantially or completely expanded radially outwardly.


Turning to FIG. 30A through 30E, the connector body 4914 may include a first recess 5710a (e.g., a first T-shaped recess or other shape) and a second recess 5710b (e.g., a second T-shaped recess or other shape) to receive the heads 5636 of two different length extensions 5000a, 5000b (e.g. the two heads of FIG. 9B). The first and second recesses 5710a, 5710b can be disposed on the connector body 4914 in any manner corresponding to the extensions 5000a, 500b of the frame 1500. In the illustrated embodiment, the first and second recesses 5710a, 5710b are disposed on substantially opposite sides of the connector body 4914. However, the first and second recesses 5710a, 5710b can be disposed in other arrangements. For example, the first and second recesses 5710a, 5710b can be disposed adjacently to correspond to extensions 1500 disposed on adjacent struts 1502 of the frame 1500. The first recess 5710a can be covered by a corresponding first door 7020a and the second recess 5710b can be covered by a corresponding second door 7020b hingedly connected to the connector body 4914, such as the lock and release connector 7000, in any manner described above.


The first recess 5710a can be elongated to receive the head 5636 of an elongated extension 5000, such as the elongated second extension 5000b of FIG. 9A. Similarly to the recess 5710 of FIGS. 29A through 29C, in the T-shaped embodiment shown, the cross portion of the first recess 5710a can be disposed proximally farther from the distal end of the connector body 4914 such that the pivot connection of the first door 7020a is disposed farther back on the connector body 4914. As the pivot connection of the first door 7020a is disposed farther back on the connector body 4914, the first door 7020a can retain the extension 5000 of the frame 1500 longer as the outer tube/sheath 4910 is moved backward or is retracted relative to the device 10 (or when the stent is moved forward relative to the outer tube 4910) than the connector of FIGS. 14A through 16. Similar to the doors 7020 of FIGS. 29D and 29E, the first door 7020a can be either elongated or shortened.


The second recess 5710b can be sized similarly to the recess 5710 of FIGS. 14A through 16 to receive the head 5636 of the shorter extension 5000a of FIG. 9A. In the T-shaped embodiment shown, the cross-portion of the second recess 5710b and the pivot connection of the door are disposed proximally closer to the distal end of the connector body 4914 than the first recess 5710a and the pivot connection of the first door. As the pivot connection of the second door 7020b is disposed closer to the distal end of the connector body 4914, the second door 7020b can release the extension 5000a of the frame 1500 sooner as the outer tube/sheath 4910 is moved backward or is retracted relative to the device 10 (or when the stent is moved forward relative to the outer tube 4910) than the first door 7020a.


In use, one elongated extension 5000b of the frame 1500 can be retained in the first recess 5710a by the first door 7020a and one shorter extension 5000a of the frame 1500 can be retained in the second recess 5710b by the second door 7020b. As the outer tube/sheath 4910 is moved backward or is retracted relative to the device 10 (or when the stent is moved forward relative to the outer tube 4910), the second door 7020b will move through the distal opening 7060 of the outer tube 4910 and release the retained extension 5000a, while the elongated extension 5000b is retained in the first recess 5710a by the first door 7020a. While the elongated extension 5000b is maintained in the first recess 5710a, the position of the frame 1500 can be maintained or otherwise controlled. Once the frame 1500 is radially expanded in the desired position, the outer tube/sheath 4910 can then be moved backward or retracted relative to the device 10 (or the stent can be moved forward relative to the outer tube 4910) such that the first door 7020a is moved distally past the distal opening 7060 of the outer tube 4910 and thereby release the elongated extension 5000b. The sequential release of the extensions 5000a, 5000b can permit the frame 1500 to radially expand more smoothly as the frame 1500 is moved distally past the distal opening 7060 of the outer tube 4910 and may permit the position of the frame 1500 to more easily be maintained or otherwise controlled as the frame 1500 is moved distally past the distal opening 7060 of the outer tube 4910.


Having only one extension or only one elongated extension on a self-expandable frame acts to help prevent the frame from jumping out of the distal end of the catheter and throwing off the placement. As the proximal end of the frame approaches the distal opening of the delivery catheter, forces can build between the proximal end of the frame and distal opening of the catheter that can cause the frame to jump forward out of the catheter. Having multiple extensions at the proximal-most end of the frame can make jumping more likely, as the extensions can act against each other and create opposing forces against the distal end of the catheter. When the frame has only one elongated extension (e.g., with or without additional shorter extensions) or only one extension at all, the frame is allowed to fully expand while retained by only one extension, then this one remaining extension can release the frame without causing jumping.


In view of the many possible embodiments to which the principles of the disclosed invention can be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. All combinations and subcombinations of features of the foregoing exemplary embodiments are contemplated by this application. Similarly, all combinations and subcombinations of steps/methods of the foregoing examples are contemplated as well and the steps described can be combined in various ways and orders. The scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.

Claims
  • 1. A system comprising: a lock and release connector comprising a body, at least one door engaged with the body, and at least one fastener connecting at least one end of the door to the body, wherein the door is moveable from a first position to a second position;an outer tube having a distal opening;an implantable medical device disposed in the outer tube wherein the medical device has an extension; andwherein the extension is interposed between the body and the door.
  • 2. A system comprising: a lock and release connector comprising a body, at least one door engaged with the body, and at least one spring exerting force on the door, wherein the door is moveable from a first position to a second position;an outer tube having a distal opening;an implantable medical device disposed in the outer tube wherein the medical device has an extension; andwherein the extension is interposed between the body and the door.
  • 3. The system of claim 2, wherein the door is integral with the body.
  • 4. The system of claim 2, wherein the door is connected to the body.
  • 5. The system of claim 1, wherein the door is hingedly connected to the body.
  • 6. The system of claim 2, wherein the door comprises a shape memory material.
  • 7. The system of claim 2, further comprising at least one fastener connecting at least one end of the door to the body.
  • 8. The system connector of claim 1, wherein the door is actively controlled to move from the first position to the second position.
  • 9. A system comprising: a lock and release connector comprising a body, at least one door engaged with the body, and a wire, a screw, a separate hinge, or a pin connecting the body and the door, wherein the door is moveable from a first position to a second position;an outer tube having a distal opening;an implantable medical device disposed in the outer tube wherein the medical device has an extension; andwherein the extension is interposed between the body and the door.
  • 10. The system of claim 1, further comprising a second door moveable from a first position to a second position; wherein the first and second doors are sequentially moveable from the respective first position to the respective second position.
  • 11. A lock and release connector for a trans-catheter implantable device comprising: a body;at least one door engaged with the body, wherein the door is moveable from a first position to a second position; andat least one fastener connecting at least one end of the door to the body.
  • 12. A lock and release connector for a trans-catheter implantable device comprising: a body;
  • 13. The lock and release connector of claim 12, wherein the door is integral with the body.
  • 14. The lock and release connector of claim 12, wherein the door is connected to the body.
  • 15. The lock and release connector of claim 11, wherein the door is hingedly connected to the body.
  • 16. The lock and release connector of claim 12, wherein the door comprises a shape memory material.
  • 17. The lock and release connector of claim 12, wherein the door comprises a nickel titanium alloy.
  • 18. The lock and release connector of claim 12, further comprising at least one fastener connecting at least one end of the door to the body.
  • 19. The lock and release connector of claim 11, wherein the door is actively controlled to move from the first position to the second position.
  • 20. A lock and release connector for a trans-catheter implantable device comprising: a body;at least one door engaged with the body, wherein the door is moveable from a first position to a second position; anda wire, a screw, a separate hinge, or a pin connecting the body and the door.
  • 21. The lock and release connector of claim 11, further comprising a second door moveable from a first position to a second position; wherein the first door and the second door are sequentially moveable from the respective first position to the respective second position.
  • 22. The lock and release connector of claim 21, further configured to move the first door to the second position such that a first extension of an implantable medical device can be released therefrom while a second extension continues to be held under the second door.
  • 23. The system of claim 9, wherein the door is hingedly connected to the body.
  • 24. The system connector of claim 9, wherein the door is actively controlled to move from the first position to the second position.
  • 25. The system of claim 9, further comprising a second door moveable from a first position to a second position; wherein the first and second doors are sequentially moveable from the respective first position to the respective second position.
  • 26. The system of claim 2, wherein the door is hingedly connected to the body.
  • 27. The system connector of claim 2, wherein the door is actively controlled to move from the first position to the second position.
  • 28. The system of claim 2, further comprising a second door moveable from a first position to a second position; wherein the first and second doors are sequentially moveable from the respective first position to the respective second position.
  • 29. The lock and release connector of claim 20, wherein the door is hingedly connected to the body.
  • 30. The lock and release connector of claim 20, wherein the door is actively controlled to move from the first position to the second position.
  • 31. The lock and release connector of claim 20, further comprising a second door moveable from a first position to a second position; wherein the first door and the second door are sequentially moveable from the respective first position to the respective second position.
  • 32. The lock and release connector of claim 31, further configured to move the first door to the second position such that a first extension of an implantable medical device can be released therefrom while a second extension continues to be held under the second door.
  • 33. The lock and release connector of claim 12, wherein the door is hingedly connected to the body.
  • 34. The lock and release connector of claim 12, wherein the door is actively controlled to move from the first position to the second position.
  • 35. The lock and release connector of claim 12, further comprising a second door moveable from a first position to a second position; wherein the first door and the second door are sequentially moveable from the respective first position to the respective second position.
  • 36. The lock and release connector of claim 35, further configured to move the first door to the second position such that a first extension of an implantable medical device can be released therefrom while a second extension continues to be held under the second door.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of International Application No. PCT/US2018/040337 filed on Jun. 29, 2018, which claims priority to U.S. Provisional Patent Application No. 62/527,577, filed Jun. 30, 2017, and is related to U.S. patent application Ser. No. 15/422,354, filed Feb. 1, 2017, which claims priority to U.S. Provisional Patent Application No. 62/292,142, filed Feb. 5, 2016, the entire disclosures of the foregoing are incorporated herein by reference as though recited herein in their entirety.

US Referenced Citations (285)
Number Name Date Kind
519297 Bauer May 1894 A
4035849 Angell et al. Jul 1977 A
4592340 Boyles Jun 1986 A
4790843 Carpentier et al. Dec 1988 A
4955895 Sugiyama et al. Sep 1990 A
4994077 Dobben Feb 1991 A
5059177 Towne et al. Oct 1991 A
5176698 Burns et al. Jan 1993 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5325845 Adair Jul 1994 A
5358496 Ortiz et al. Oct 1994 A
5411552 Andersen et al. May 1995 A
5554185 Block et al. Sep 1996 A
5591195 Taheri et al. Jan 1997 A
5599305 Hermann et al. Feb 1997 A
5632760 Sheiban et al. May 1997 A
5639274 Fischell et al. Jun 1997 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5782809 Umeno et al. Jul 1998 A
5824044 Quiachon et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5908405 Imran et al. Jun 1999 A
5916147 Boury Jun 1999 A
5961536 Mickley et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
6019777 Mackenzie Feb 2000 A
6027510 Alt Feb 2000 A
6033381 Kontos Mar 2000 A
6143016 Bleam et al. Nov 2000 A
6162208 Hipps Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6217585 Houser et al. Apr 2001 B1
6235050 Quiachon et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6273909 Kugler et al. Aug 2001 B1
6379372 Dehdashtian et al. Apr 2002 B1
6383171 Gifford et al. May 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6432134 Anson et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6471672 Brown et al. Oct 2002 B1
6500147 Omaleki et al. Dec 2002 B2
6514228 Hamilton et al. Feb 2003 B1
6527979 Constantz et al. Mar 2003 B2
6579305 Lashinski Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6652578 Bailey et al. Nov 2003 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6764504 Wang et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6776791 Stallings Aug 2004 B1
6797002 Spence et al. Sep 2004 B2
6830584 Seguin Dec 2004 B1
6887268 Butaric et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
7011094 Rapacki et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077861 Spence Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7137993 Acosta et al. Nov 2006 B2
7276084 Yang et al. Oct 2007 B2
7318278 Zhang et al. Jan 2008 B2
7320702 Hammersmark et al. Jan 2008 B2
7320704 Lashinski et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7445632 McGuckin, Jr. et al. Nov 2008 B2
7510575 Spenser et al. Mar 2009 B2
7585321 Cribier Sep 2009 B2
7594926 Linder et al. Sep 2009 B2
7597709 Goodin Oct 2009 B2
7618446 Andersen et al. Nov 2009 B2
7637946 Solem et al. Dec 2009 B2
7708775 Rowe et al. May 2010 B2
7737060 Strickler et al. Jun 2010 B2
7780723 Taylor Aug 2010 B2
7785366 Maurer et al. Aug 2010 B2
7951195 Antonsson et al. May 2011 B2
7959661 Hijlkema et al. Jun 2011 B2
8029556 Rowe Oct 2011 B2
8142492 Forster et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8236049 Rowe et al. Aug 2012 B2
RE43882 Hopkins et al. Dec 2012 E
8323335 Rowe et al. Dec 2012 B2
8377115 Thompson Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8449605 Lichtenstein et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8475523 Duffy Jul 2013 B2
8568472 Marchand et al. Oct 2013 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8734507 Keranen May 2014 B2
8801776 House et al. Aug 2014 B2
9061119 Le et al. Jun 2015 B2
9078747 Conklin Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119716 Lee et al. Sep 2015 B2
9119718 Keranen Sep 2015 B2
9192471 Bolling Nov 2015 B2
9237886 Seguin et al. Jan 2016 B2
9314335 Konno Apr 2016 B2
9364326 Yaron Jun 2016 B2
9463268 Spence Oct 2016 B2
9474599 Keranen Oct 2016 B2
9597205 Tuval Mar 2017 B2
9622863 Karapetian et al. Apr 2017 B2
9795477 Tran et al. Oct 2017 B2
10786351 Christianson et al. Sep 2020 B2
20010002445 Vesely May 2001 A1
20010007082 Dusbabek et al. Jul 2001 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020107535 Wei et al. Aug 2002 A1
20020107536 Hussein Aug 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020165461 Hayzelden et al. Nov 2002 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030093087 Jones et al. May 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130611 Martin Jul 2003 A1
20030225420 Wardle Dec 2003 A1
20040093061 Acosta et al. May 2004 A1
20040111006 Alferness et al. Jun 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040143197 Soukup et al. Jul 2004 A1
20040148008 Goodson, IV Jul 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040204749 Gunderson Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050043790 Seguin Feb 2005 A1
20050080474 Andreas et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050119682 Nguyen et al. Jun 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050149160 McFerran Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050245894 Zadno-Azizi Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070112422 Dehdashtian May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070186933 Domingo et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070219612 Andreas et al. Sep 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070293808 Williams et al. Dec 2007 A1
20080004696 Vesely Jan 2008 A1
20080033542 Antonsson et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080077235 Kirson Mar 2008 A1
20080125853 Bailey et al. May 2008 A1
20080188923 Chu Aug 2008 A1
20080208330 Keranen Aug 2008 A1
20080294230 Parker Nov 2008 A1
20090024428 Hudock, Jr. Jan 2009 A1
20090069889 Suri et al. Mar 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090228093 Taylor et al. Sep 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090299456 Melsheimer Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100030318 Berra Feb 2010 A1
20100036472 Papp Feb 2010 A1
20100036473 Roth Feb 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100063573 Hijlkema et al. Mar 2010 A1
20100076402 Mazzone et al. Mar 2010 A1
20100076541 Kumoyama Mar 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100094394 Beach et al. Apr 2010 A1
20100121425 Shimada May 2010 A1
20100145431 Wu et al. Jun 2010 A1
20100145440 Keranen Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100174363 Castro Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100274344 Dusbabek et al. Oct 2010 A1
20100298927 Greenberg Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100318184 Spence Dec 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054596 Taylor Mar 2011 A1
20110137331 Walsh et al. Jun 2011 A1
20110160846 Bishop et al. Jun 2011 A1
20120041550 Salahieh et al. Feb 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120123529 Levi et al. May 2012 A1
20120150287 Forster et al. Jun 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120283820 Tseng et al. Nov 2012 A1
20130030519 Tran et al. Jan 2013 A1
20130035636 Beasley et al. Feb 2013 A1
20130190865 Anderson Jul 2013 A1
20130274855 Stante et al. Oct 2013 A1
20130310918 Taylor et al. Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20140012373 Chau et al. Jan 2014 A1
20140074299 Endou et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140155996 Wilson et al. Jun 2014 A1
20140172070 Seguin Jun 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140257452 Slazas et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140316513 Tang Oct 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20150025623 Granada et al. Jan 2015 A1
20150100114 Shahriari Apr 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150245910 Righini et al. Sep 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150335428 Keranen Nov 2015 A1
20150335430 Loulmet et al. Nov 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150374493 Yaron et al. Dec 2015 A1
20160015514 Lashinski et al. Jan 2016 A1
20160074165 Spence et al. Mar 2016 A1
20160095705 Keranen et al. Apr 2016 A1
20160143732 Glimsdale May 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160199177 Spence et al. Jul 2016 A1
20160256276 Yaron Sep 2016 A1
20160346080 Righini et al. Dec 2016 A1
20170007399 Keranen Jan 2017 A1
20170007402 Zerkowski et al. Jan 2017 A1
20170065415 Rupp et al. Mar 2017 A1
20170217385 Rinkleff et al. Aug 2017 A1
20170231756 Armer et al. Aug 2017 A1
20170266005 McGuckin, Jr. Sep 2017 A1
20170273788 O'Carroll et al. Sep 2017 A1
20170273789 Yaron et al. Sep 2017 A1
20170281337 Campbell Oct 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180085217 Lashinski et al. Mar 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180206074 Tanasa et al. Jul 2018 A1
20180289481 Dolan Oct 2018 A1
20180303606 Rothstein et al. Oct 2018 A1
20180318073 Tseng et al. Nov 2018 A1
20180318080 Quill et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
20200205962 Karavany et al. Jul 2020 A1
Foreign Referenced Citations (49)
Number Date Country
19532846 Mar 1997 DE
19907646 Aug 2000 DE
0592410 Oct 1995 EP
0850607 Jul 1998 EP
1432369 Jun 2004 EP
1521550 Apr 2005 EP
1296618 Jan 2008 EP
1827314 Dec 2010 EP
2620125 Jul 2013 EP
2726018 May 2014 EP
2806829 Dec 2014 EP
2815844 May 2002 FR
9117720 Nov 1991 WO
9829057 Jul 1998 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0247575 Jun 2002 WO
02060352 Aug 2002 WO
03030776 Apr 2003 WO
53028558 Apr 2003 WO
03047468 Jun 2003 WO
2004019825 Mar 2004 WO
2005084595 Sep 2005 WO
2006011127 Feb 2006 WO
2006032051 Mar 2006 WO
2006111391 Oct 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2009155561 Dec 2009 WO
2010121076 Oct 2010 WO
2012009006 Jan 2012 WO
2012063228 May 2012 WO
2013059747 Apr 2013 WO
2013110722 Aug 2013 WO
2013114214 Aug 2013 WO
2015023579 Feb 2015 WO
2015023862 Feb 2015 WO
2015127264 Aug 2015 WO
2015198125 Dec 2015 WO
2016038017 Mar 2016 WO
2016040881 Mar 2016 WO
2016128983 Aug 2016 WO
2016130820 Aug 2016 WO
2017103833 Jun 2017 WO
Related Publications (1)
Number Date Country
20200113719 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62527577 Jun 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/040337 Jun 2018 US
Child 16716027 US