1. The Field of the Invention
Implementations of the present invention relate generally to systems and components for sealing and locking doors, including sliding doors for use with modular walls.
2. Background and Relevant Art
Office space can be relatively expensive, not only due to the basic costs of the location and size of the office space, but also due to any construction needed to configure the office space in a particular way. For example, an organization might purchase or rent a large open space in an office complex, and then subdivide or partition the open space into various offices, conference rooms, or cubicles, depending on the organization's needs and size constraints. Rather than having to find new office space and move as an organization's needs change, it is often necessary to have a convenient and efficient means to reconfigure the existing office space. Many organizations address their configuration and reconfiguration issues by dividing large, open office spaces into individual work areas using modular walls and partitions.
In particular, at least one advantage of modular systems is that they are relatively easy to configure. In addition, another advantage is that modular systems can be less expensive to set up, and can be reconfigured more easily than more permanently constructed office dividers. For example, a set of offices and a conference area can be carved out of a larger space in a relatively short period of time with the use of modular systems. If needs change, the organization can readily reconfigure the space.
In general, modular office partitions typically include a series of individual wall modules (and/or panels). The individual wall modules can either be free-standing or rigidly attached to one or more support structures. In addition, the wall modules are typically designed so that they can be assembled together to form a range of different configurations. In particular, a manufacturer or assembler can usually align and join the various wall modules together in almost any particular design, and then secure the design in place with any number of fasteners. These designs can include anything from large conference spaces to individual offices. A “finished” look is generally completed by adding gaskets or trim pieces in the joints between wall modules.
One will appreciate that modular wall systems may also include door openings to allow a person to enter and exit rooms or other enclosures defined by the modular wall systems. Closure apparatuses, such as doors, can facilitate opening and closing the door openings. In some cases, a manufacturer or designer will opt for a conventional swinging door, while in other cases, the manufacturer might opt for a sliding door configuration, whether for various aesthetic or space-saving purposes.
As will be appreciated, it is often desirable to isolate rooms and other enclosures created by modular systems from light and/or sound from outside sources. Gaps associated with doors, however, are often difficult to seal because doors open and close, and lack a static location to seal. This tends to be true for sliding doors used in modular wall systems as well in that gaps between a sliding door and a movable wall panel may be difficult to seal.
In the past, modular wall system manufacturers have placed astragal or other sealing beads along the lead edge of sliding doors to provide a seal between the sliding door and a surface with which the sliding door comes into contact when closed, whether that contact is with another door or a movable wall. Although this approach may provide a successful seal along the lead edge of the sliding door when the door is closed, it does not provide a seal elsewhere around the perimeter of the sliding door, and it requires the door to be fully closed to function properly. Furthermore, such sealing devices remain visible when the door is open, and may be unsightly.
One will appreciate that regardless of the type of door used, it is often desirable to secure doors in an open or closed position. For example, one may wish to secure a door in a closed position in order to secure a room and any articles contained therein. One will also appreciate that securing doors and spaces in a modular wall system presents a particularly difficult challenge due to the reconfigurable and non-permanent nature of the modular wall system. For example, it may be difficult to secure a sliding door used in conjunction with a modular wall system if the sliding door does not interface with a permanent structure.
To address the need to secure doors used in modular wall systems, conventional modular wall systems incorporate latches that may be located along the top or bottom of the sliding door. The latches may engage features in the floor or ceiling, such as holes. In order to engage the latch, the person must either reach down to turn a thumb lock (or similar device) along the bottom of the door, or reach up to the top of the door to engage a similar mechanism. In addition to being difficult to engage, such devices often do not provide a secure and stable position for the door.
Accordingly, these are a number of difficulties with securing and sealing doors in modular environments that can be addressed.
Implementations of the present invention overcome one or more problems in the art with systems, methods, and apparatuses configured to provide flexibility in the design of modular wall systems including sliding doors. In particular, implementations of the present invention provide for aligning and locking a sliding door in place, while simultaneously providing a non-obtrusive sealing mechanism between the door and other components.
For example, a locking system is provided including a sliding door having one or more receiving channels. The receiving channels can be configured to receive a pin extending from a support surface. The sliding door can further comprise a locking mechanism configured to selectively capture the pin when received by the receiving channel. In at least one implementation, the operating means of the locking mechanism can be located near a standard handle location to facilitate operation of the locking mechanism by a user. As a result, a user can operate the locking mechanism to capture the pin within the receiving channel and thereby secure the sliding door in a closed position.
In addition, a sealing system, in accordance with an implementation of the present invention, for sealing a gap between a modular wall and an adjacent sliding door can include a sliding door coupled to the modular wall. The sliding door can be configured to open and close a doorway in the modular wall. In at least one implementation, the sliding door can define one or more transverse gaps between the sliding door and the modular wall. In particular, the transverse gaps can be perpendicular to the direction of travel of the sliding door. A gasket seal can be coupled to the modular wall and configured to seal the transverse gaps.
A further implementation can include a method of providing a locking and sealing system for a sliding door. In particular, the method can include identifying a doorway in a modular wall system and coupling a sliding door to the doorway, for opening and closing the doorway. The sliding door can include one or more receiving channels. The receiving channels can be configured to receive a pin extending vertically from a support surface. In addition, the sliding door can include a locking mechanism configured to selectively drive a shaft to capture and release the pin when received by the receiving channel. In at least on implementation of the present invention, the method can include attaching the pin to a support surface proximate the doorway. In addition, the pin can be configured to engage the receiving channel of the sliding door when the sliding door is in a closed position. In a further implementation, the method can include coupling a gasket seal to a modular wall. The gasket seal can be configured to seal one or more transverse gaps between the sliding door and the modular wall when the sliding door is in a closed position.
Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention extends to systems for locking and sealing sliding doors in a modular wall environment. In particular, implementations of the present invention provide for aligning and securing a sliding door (or “barn door”) in place, while simultaneously providing a non-obtrusive sealing mechanism between the door and other components.
As will be more fully understood herein, the sliding door of the system can include a receiving channel configured to receive a pin. An assembler can couple the pin of the system to a support surface proximate the door, such as a floor or ceiling. In addition, the system can include a locking mechanism configured to capture a pin that has engaged the receiving channel in order to secure the sliding door in a closed position. The locking mechanism can include an operating means located at a standard door handle height, so that a user can conveniently lock and unlock the door without having to bend down or reach up to engage the locking mechanism.
In addition, the system can include a means for sealing a gap between a sliding door and other components. For example, the system can include a sealing gasket configured to seal a gap between the sliding door and an adjacent modular wall. The sealing gasket can be integrated into an existing component, such as a connecting extrusion configured to connect a vertical trim to a modular wall, thereby reducing the quantity of parts required for the entire assembly. In addition, the sealing gasket can be attached to the modular wall, rather than the door itself, which can improve the aesthetics of the system, as well as provide the functional benefit of an improved light and sound barrier between modular spaces separated by the sliding door.
Referring now to the Figures,
As further illustrated in
To further facilitate opening and closing the sliding door 130, the system can include a mounting track 126 coupled to the modular wall 110 and/or doorframe header 124. An assembler can then insert the mounting hardware (not shown) of the sliding door 130 into the mounting track 126 in order to couple the sliding door 130 to the mounting track 126. In at least one implementation, an assembler/manufacturer can configure the mounting track 126 for sliding the sliding door 130 along the mounting track 126 in order to open and close the doorway 120. For example, in at least one implementation, the mounting track 126 can include a roller track configured to receive and allow travel along the mounting track 126 of rollers coupled to the sliding door 130.
In the illustrated example of
As shown in
In at least one implementation, the system 100 can further comprise a locking mechanism 140 coupled to the sliding door 130. In particular, a manufacturer can configure the locking mechanism 140 to capture the pin 138 once it engages the receiving channel 136. As a result, a user can secure the sliding door 130 in a closed position by sliding the sliding door 130 until the pin 138 engages the receiving channel 136 and then operating the locking mechanism 140 to capture the pin 138 within the receiving channel 136.
The locking mechanism 140 of the present invention can comprise an operating means. In at least one implementation, the operating means comprises a pin tumbler lock 141, also known as a key tumbler lock. In particular, as illustrated in
In at least one implementation, the assembler can couple the pin tumbler lock to a tie rod (not shown) extending from the location of the pin tumbler lock 141 to a point near the receiving channel 136. As a result, a manufacturer can couple the tie rod to a shaft (e.g., 142,
Although the system 100 illustrated in
As previously mentioned, a manufacturer can configure the system 100 to include multiple pins 138 and receiving channels 136 on opposite sides of the sliding door 130 such that the sliding door 130 can be secured in either an open or closed position with respect to the doorway 120. Furthermore, a manufacturer can include pins 138 near a top and bottom of the doorway 120 to simultaneously engage multiple receiving channels 136 near a top and bottom of the sliding door 130. To facilitate the use of multiple receiving channels 136, the locking mechanism 140 can further comprise multiple tie rods extending from the operating means to the multiple receiving channels 136 in order to capture and release multiple pins 138. In a further embodiment, the sliding door 130 can include multiple locking mechanisms 140 to interact with the multiple receiving channels 136 and pins 138.
These and other components/mechanisms for locking the sliding door 130 are shown in greater detail in
Thereafter, and as illustrated in
As illustrated by
In at least one implementation, and referring again to
In particular, a manufacturer can couple the pin tumbler lock 141 of the locking mechanism 140 to a tie rod (not shown) extending from the pin tumbler lock 141 to the receiving channel 136. In at least one implementation, the sliding door 130 can include a cavity extending from the pin tumbler lock 141 to the receiving channel 136, through which the tie rod can pass. As previously mentioned, in at least one implementation, the sliding door 130 can include multiple receiving channels 136 configured to receive multiple pins 138. In such a case, the sliding door 130 can further comprise multiple cavities extending from the pin tumbler lock 141 to the receiving channels 136. In turn, the locking mechanism 140 can include multiple tie rods extending through the cavities to the receiving channels 136.
As a result, an assembler can further couple a tie rod to a shaft 142 for driving the shaft 142. In at least one implementation, the shaft 142 has a hexagonally-shaped cross section and includes threading at one end for attachment to the tie rod. The hexagonally-shaped cross section of the shaft 142 allows a manufacturer to configure the shaft 142 so that a flat, rather than rounded, surface of the shaft 142 interfaces with the pin 138 to securely capture the pin 138 within the receiving channel 136. Furthermore, a manufacturer can configure the shaft 142 to pass through a hexagonally-shaped housing or hole (not shown) so as to maintain the orientation of the shaft 142 with respect to the receiving channel 140 and pin 138.
Accordingly, a user can operate the pin tumbler lock 141 of the locking mechanism 140 to drive the tie rod, which in turn drives the shaft 142. By so doing, the user is able to capture and release a pin 138 within the receiving channel 136. As previously discussed, this allows the user to secure and release the sliding door 130 in an easy, reliable, and efficient manner.
These and other components/mechanisms for sealing the sliding door are shown in greater detail in
As further illustrated by
One will appreciate that the connection plate 112 can be an integrated part of the modular wall 110, or can be a separate component. In at least one implementation of the present invention, the connection plate 112 extends along the full height of the modular wall 110 and/or doorway 120.
In general, a manufacturer/assembler can repeat the connection of the connection plate 112 of the modular wall 110 and the vertical trim 122 multiple times from the bottom to the top of the modular wall 110, depending on the height of the modular wall 110 and/or the need for stability. In at least one implementation, a manufacturer/assembler can continuously connect the connectors 128 to the connector plate 112 and/or the vertical trim 122 along the full height of the modular wall 110.
After coupling a sliding door 130 to the doorway 120, as illustrated by
As further illustrated by
Along these lines,
In at least one implementation, the material used to manufacture the gasket seal 129 comprises any number of flexible plastic, rubber, or metallic materials. However configured, the manufacturer chooses the flexible material to optimize a seal. For example, the manufacturer can configure the gasket seal 129 to maintain a seal between the modular wall 110 and the sliding door 130 through the sliding door's 130 travel into a closed position. In at least one implementation, a manufacturer can form the gasket seal 129, particularly the closed cell portion 129a of the gasket seal 129, using a flexible PVC material, while the connectors 128 are formed using a rigid PVC material.
In addition to the foregoing, implementations of the present invention can also be described in terms of one or more steps in a method of accomplishing a particular result. For example, at least one implementation of the present invention comprises a method of providing a locking and sealing system for a sliding door. This method is described more fully below.
For example, at least one method in accordance with the present invention can comprise an act of determining a doorway to be locked and sealed. This act can include identifying a doorway in a modular wall system. For example, an assembler can identify a doorway 120 in a modular wall 110.
The method can also comprise an act of mounting a sliding door to the doorway. This act can include coupling a sliding door to the doorway, wherein the sliding door is configured to open and close the doorway. In particular the sliding door comprises one or more receiving channels. Each receiving channel is configured to receive a pin extending vertically from a support surface. The sliding door also comprises a locking mechanism configured to selectively drive a shaft to capture and release the pin, when received by the receiving channel, to secure and release the door. For example, an assembler can mount a sliding door 130 to a roller track 126 coupled to the upper portion of the doorway 120, such that sliding the sliding door 130 along the roller track 126 opens and closes the doorway 120. The sliding door 130 can include a receiving channel 136 along a bottom edge of the sliding door 130, configured to receive a corresponding pin 138. The assembler can further include a locking mechanism 140 configured to capture the pin 138 when received by the receiving channel 136 to secure the sliding door 130 in a closed position.
In addition, the method can comprise an act of coupling a pin to a support structure. This act can include attaching a pin to a support surface proximate the doorway, wherein the pin is configured to engage the receiving channel of the sliding door when the sliding door is in a closed position. For example, an assembler can couple the pin 138 to the floor's surface so that it engages the receiving channel 136 when the sliding door 130 is closed.
Furthermore, the method can comprise an act of installing a gasket seal around the doorway. This act can include coupling a gasket seal to a modular wall, wherein the gasket seal is configured to seal one or more transverse gaps between the sliding door and the modular wall when the sliding door is in a closed position. The gaps sealed by the gasket seal are perpendicular to the direction of travel for the sliding door. For example, an assembler can use connector 128b, including an integrated gasket seal 129, to couple the vertical trim 122 to the connector plate 112 of the modular wall 110. As a result, the gasket seal 129 can seal the transverse gap between the sliding door 130 and the modular wall 110.
The present invention can be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/942,919, filed Jun. 8, 2007, entitled “LOCK AND SEAL SYSTEM FOR SLIDING DOORS,” the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60942919 | Jun 2007 | US | |
60942915 | Jun 2007 | US |