The invention relates to a cabinet construction having a door assembly that includes an improved lock assembly mounted thereto.
Cabinets as used in offices comprise a conventional cabinet housing and one or more hinged doors mounted thereto. Many such cabinets are formed of sheet steel or other similar metal and include lock mechanisms mounted to such doors for selectively latching or locking the door in a closed position.
The invention relates to an improved door assembly and associated lock mechanism which lock mechanism is readily mountable to the door and positionable in proper alignment with a lock aperture formed in the front face of the door.
Generally, the door construction comprises an outer panel which defines the finished aesthetic appearance of the door, and an inner liner which mounts in facing relation to the outer panel. The outer panel includes the lock aperture through which a key is insertable to actuate the lock mechanism for locking and unlocking thereof.
The inner liner includes a lock mounting window in which the lock mechanism is mounted. The lock mechanism initially is mounted in the mounting window by a clamp ring on the lock mechanism. Thus, the lock mechanism is preliminarily mounted on the inner liner, after which the inner liner is then mounted to the outer panel with the lock mechanism preliminarily positioned adjacent to the lock aperture.
The inventive lock mechanism includes an alignment tool which is insertable through the lock aperture from the front thereof and into a corresponding cylinder bore in which a lock cylinder or plug will subsequently be seated. Before the lock plug is inserted, however, the alignment tool is inserted in the bore so that the lock bore may be aligned with the corresponding lock aperture. Once the bore and aperture are aligned, the clamp ring is then tightened in a fixed, final position so that the lock assembly is properly and stationarily aligned with the lock aperture. Thereafter, the lock plug is inserted into the bore to permit key-operation of the lock mechanism.
The lock mechanism of the invention further includes a cam driven arrangement of lock racks which are moveable upwardly and downwardly in opposite directions. The mechanism further includes elongate locking rods or latches which extend from the lock mechanism upwardly to the upper and lower perimeter edges of the door so as to be selectively extended and retracted for respective locking and unlocking of the door. The inventive lock mechanism includes an improved connector arrangement between the locking rod and the corresponding lock rack.
More particularly, the lock rack includes a sideward opening engagement slot which opens sidewardly, transversely to the direction of movement of the lock rack. The locking rod includes a drive end which is slidably received within this slot in the sideward, transverse direction so that vertical displacement of the lock rack causes a corresponding longitudinal displacement of the locking rod. To prevent disengagement of the drive end of the locking rod from the lock rack, a snap fit cover is snap lockingly connected to the lock window. This cover includes guide sections or flanges which define vertically spaced guide slots that each slidably fits over a respective one of the locking rods and permits longitudinal movement of the respective locking rod while preventing sideward, transverse movement of the drive end which thereby prevents disengagement of the locking rod from the corresponding lock rack. This cover also closes off the lock mechanism from the interior of the cabinet to provide a finished appearance.
Generally therefor, the invention relates to a door assembly for a storage cabinet which comprises a door having a lock window therein within an interior portion thereof, and at least one locking rod which is slidably supported by the door so as to be movable along a slide path. The locking rod has a lock end disposed adjacent an edge of the door so as to be movable to an extended position to lock the door and a retracted position to permit opening of said door. The locking rod further includes a drive end disposed within the area of the lock window. The door assembly also includes a lock mechanism having a lock housing mounted to the door such that the lock mechanism is disposed within the lock window. The lock mechanism further includes at least one lock rack which is slidable along a drive path and further includes an actuator accessible from an exterior of the door to effect selected displacement of the lock rack. The lock rack and the drive end of the locking rod are engagable with each other such that displacement of the locking rod effects displacement of the locking rod along the respective slide path to effect locking and unlocking of said door. The drive end of the locking rod and the respective lock rack include cooperating engagement portions which are inter-fitted with each other by displacement of the drive end transverse to said drive path. Still further, the door assembly has a lock mechanism cover which is releasably fixed to the door so as to overlie the lock mechanism. The cover includes a rod guide for the locking rod which fits over the locking rod and prevents transverse displacement of the locking rod and prevents disengagement of the locking rod from the respective lock rack. The rod guide permits longitudinal sliding of the locking rod when driven by the lock rack.
With this arrangement, an improved lock mechanism and door configuration is provided which allows for ready assembly and alignment of the lock mechanism and the connection of the slide rods to the remaining components of the lock mechanism.
Other objects and purposes of the invention, and variations thereof, will be apparent upon reading the following specification and inspecting the accompanying drawings.
Certain terminology will be used in the following description for convenience and reference only, and will not be limiting. For example, the words “upwardly”, “downwardly”, “rightwardly” and “leftwardly” will refer to directions in the drawings to which reference is made. The words “inwardly” and “outwardly” will refer to directions toward and away from, respectively, the geometric center of the arrangement and designated parts thereof. Said terminology will include the words specifically mentioned, derivatives thereof, and words of similar import.
Referring to
Generally with respect to the cabinet unit 10, this cabinet unit 10 includes a conventional base 15 on which is supported opposite side walls 16 which in turn support a top cabinet wall 17.
The side walls 16 rigidly support a pair of door assemblies 12 at hinged edges 19 which door assemblies have free edges 20 that are disposed adjacent to each other when the door assemblies 12 are in the closed position of
Referring to
More particularly as to the door assembly 12, the preferred door assembly 12 includes an outer panel 30 and an inner panel-like liner 31. The outer panel 30 preferably is formed of sheet metal which is shaped into an appropriate configuration wherein the outer panel 30 comprises a front wall 32 which is inturned to define top, bottom and side flanges 33-36 respectively. The side flange 36 further turns inwardly to define a back flange 37 which extends inwardly partially across the width of the entire outer panel 30. This back flange 37 includes upper and lower patterns of holes 39 and 40 which respectively support upper and lower hinges 41 thereon for hingedly connecting the door assembly 12 to the respective side wall 16.
With this arrangement, the front wall 32 of the outer panel 30 defines the exposed outer face of the door assembly 12.
Referring to the inner liner 31, this inner liner 31 also is formed of a shaped sheet metal having a thin panel portion 43 which essentially defines the back wall of the door assembly 12. The panel portion also includes inturned side flanges 44 and 45 which project forwardly and are adapted to terminate closely adjacent the inside face of the outer panel 30 as can be seen in
The upper and lower edges of the panel portion 43 are provided with fastener holes 47 so that the inner liner 31 may be fastened by screws to the outer panel 30 during assembly of the door assembly 12. It is noted that the side flange 45 of the inner liner cooperates with the corresponding side flange 36 of the outer liner 30 so as to provide support to each other.
As to the opposite side of the inner liner 31, this side flange 44 is spaced inwardly a short distance away from the corresponding side edge 35 of the outer panel 30.
Proximate to the side flange 44, a lock mechanism mounting window 50 is provided which is configured to receive and mount the lock mechanism 25 therein. The window 50 comprises a peripheral window edge 51 that defines upper and lower rectangular portions 52 and 53 and a semi-circular center mounting portion 54. This center mounting portion 54 has an expanded width relative to the upper and lower rectangular portions 52 and 53 which center mounting portion 54 is defined by arcuate window edges. Adjacent to these arcuate window edges, a pair of mounting holes 56 are provided horizontally aligned with each other.
The inner liner 31 further includes rectangular window-like passages 57 and 58 through which the locking rods 26 and 27 exit from the hollow interior 59 that is defined between the outer panel 30 and the inner liner 31. To support the locking rods 26 and 27, each of the windows 57 and 58 has a guide flange 61 (
Referring to
Generally, the lock mechanism 28 is first clamped to the inner liner 31 when the inner liner 31 is still separate from the outer panel 30. This therefore provides for ready access to the inner liner 31 and the lock mechanism 28 after which, the lock mechanism 28 is clamped in place by fasteners 65 (
Referring to
Additionally, the lock housing 70 includes a central hub 81 which projects forwardly of the main body 70 and has a generally circular shape. However, the outer circumferential surface 82 of the hub includes flats 83 on the opposite sides thereof. Additionally, this outer circumferential surface 82 includes a plurality of nubs 84 on the top, bottom and opposite left and right sides thereof. Still further, the central hub 81 includes a cylindrical socket 85 projecting forwardly from the central hub 81 and defining a central bore 87 extending horizontally through the entire thickness of the lock housing 70 so as to open from the opposite front and rear sides thereof. The bore 87 includes side slots 88 and 89 as seen in further detail in
Turning next to
More particularly, referring to
To effect vertical displacement of the locking rods 26 and 27, the aforementioned cam 92 is engaged with a pair of lock racks 109 and 110 (
Referring to
The lock rack 109(110) as seen in
Referring again to
To retain the lock housing 70, rotatable cam 92 and the lock racks 109 and 110 together in an assembled condition, a rear plate 121 is provided (
The rear plate 121 further includes clearance notches 124 on the opposite sides thereof which generally align with the fastener bores 78 so as to permit ready access to these bores 78 from the rear of the lock mechanism 28 (as seen in
More particularly, to affix the lock mechanism 28 in position, the lock assembly 28 further includes a clamping plate 126. The clamping plate 126 includes a center aperture 127 that is adapted to slidably, yet non-rotatably fit over the central hub 81 of the lock housing 70. The aforementioned central housing hub 81 includes the nubs 84 so that the locking plate 126 may be snapped onto the central hub 81 during the pre-assembly phase.
When the locking plate 126 is snapped over the nubs 84, this clamping plate 126 has the window edges 51 of the inner liner 31 sandwiched between this clamping plate 126 and the opposing face of the main housing body 71 as seen in
During mounting of the lock mechanism 28 to the inner liner 31, the lock mechanism 28 is first positioned within the window 50, and then the clamping plate 126 is snapped over the nubs 84 onto the central hub 81. This results in the fastener bores 129, 78 and the additional holes 56 in the inner liner 31 to be coaxially aligned with each other and allow for receipt of the fasteners 65 therethrough. These fasteners 65 fixedly engage with the bores 129 so as to then draw the clamping plate 126 rearwardly and thereby clamp the window edges of the window 50 between the opposing surfaces of the clamping plate 126 and the main housing body 71.
Preliminarily, these fasteners 65 do not need to be tightly fastened to allow some repositioning of the lock mechanism 28 when it is preliminarily mounted to the inner liner 31. Once the inner liner 31 is mounted to the outer panel 30 as will be described in further detail herein, the lock mechanism 28 is positioned as needed to be in alignment with a lock aperture 22 and then fixed in position by final tightening of the fasteners 65.
More particularly as to this assembly process,
To assist in rotation of the tool body 132, this tool body 132 also includes a transverse rod 137 that extends through the tool body 132 and essentially serves as a hand piece for manual rotation of this alignment tool 131. This allows for testing of the various components of the lock mechanism 28. Further, by inserting the alignment tool or fixture 131 through the lock aperture 22, this ensures alignment of the lock aperture 22 with the corresponding socket bore 87. If the bore 87 is slightly out of alignment with the lock aperture 22, the locking tool 132 essentially ensures coaxial alignment of these formations which is accomplished by the necessary displacement of the lock mechanism 28 until such alignment is achieved. With the tool 132 still inserted in its aligning position, the fasteners 65 described above are then tightened so as to affix the lock mechanism 28 in its final fixed position.
Thus, during the assembly process, the lock mechanism 28 is preliminarily clamped to the inner liner 31 and then the inner liner 31 is mounted to the outer panel 30. Thereafter, the alignment tool 132 is fitted into and through the lock aperture 22 into the socket bore 85 after which, the fasteners 65 are tightened down to secure the lock mechanism 28 in its fixed position. This step is generally depicted in
In addition to the foregoing unique features of the lock mechanism 28 and the mounting process therefore, the invention further embodies a unique connector arrangement for connecting the slide rods 26 and 27 to their corresponding lock racks 109 and 110.
More particularly, the connection between the sliding rods 26 and 27 is readily accomplished without the use of separate fasteners.
With respect to the sliding rods 26 and 27, these rods are illustrated in further detail in
The rod 26 is confined within the hollow interior 59 defined between the outer panel 30 and the inner liner 31 wherein the upper end of the rod 26 is slidably supported in the guide flange 61 and within an annular plastic guide 134. The locking end of the rod 26 is then stepped inwardly at stepped portion 135 so as to exit through the respective rod passage or window 57 (58). The rod 26 then extends vertically and terminates at an engagement section 136 which is moveable vertically from the retracted position of
To readily connect the locking rod 26 to the lock mechanism 28, the second end of the rod 26 includes slots 137 which extend sidewardly across opposite sides of the rod 26 at the innermost drive end thereof. These slots define an engagement section 138 which is sized to slide sidewardly or transversely into the corresponding slot 118 on the lock rack 109 or 110 as generally illustrated by reference arrow 140 in
To prevent disengagement of the rod 26 or 27 from the appropriate rack 109 or 110, the aforementioned cover 64 is provided to essentially cover the lock mechanism 28 while performing the secondary function of guiding the locking rod 26 and 27 and preventing transverse or sideward displacement of the rod out of engagement with the corresponding rack 109/110.
Referring more particularly to
Referring to
During the assembly process,
Although particular a preferred embodiment of the invention has been disclosed in detail for illustrative purposes, it will be recognized that variations or modifications of the disclosed apparatus, including the rearrangement of parts, lie within the scope of the present invention.
This application claims the benefit of U.S. Provisional Patent Application No. 60/787,833, filed Mar. 31, 2006, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
446789 | Reed | Feb 1891 | A |
1046438 | Caldwell | Dec 1912 | A |
2188703 | Burke | Jan 1940 | A |
2250036 | Schlage | Jul 1941 | A |
2272145 | Anderson et al. | Feb 1942 | A |
2293363 | Schell | Aug 1942 | A |
2473065 | Miller | Jun 1949 | A |
2486460 | Bonenberger | Nov 1949 | A |
2591111 | Willett et al. | Apr 1952 | A |
2823536 | Watson | Feb 1958 | A |
3834780 | McClellan et al. | Sep 1974 | A |
4114933 | Jankelewitz et al. | Sep 1978 | A |
4368905 | Hirschbein | Jan 1983 | A |
4534192 | Harshbarger et al. | Aug 1985 | A |
4609233 | Walla | Sep 1986 | A |
4823571 | O'Gara | Apr 1989 | A |
5183310 | Shaughnessy | Feb 1993 | A |
5632166 | Wiersma | May 1997 | A |
5660420 | Smith et al. | Aug 1997 | A |
5737950 | Yun-Bin | Apr 1998 | A |
5775145 | Kasper | Jul 1998 | A |
5806353 | Pages | Sep 1998 | A |
6018969 | Haseley et al. | Feb 2000 | A |
6067827 | Haseley et al. | May 2000 | A |
6257154 | Kasper | Jul 2001 | B1 |
6568771 | Gentili et al. | May 2003 | B2 |
6722170 | Squier | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
4202085 | Aug 1993 | DE |
Number | Date | Country | |
---|---|---|---|
20070227205 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60787833 | Mar 2006 | US |