1. Field of the Invention
The present invention relates to a lock assembly, and more particularly to a lock assembly that can be used to implement many different locking methods for many different kind of locks.
2. Description of Related Art
Conventional locks are used to protect property and secure people's safety. Most locks are designed for a specific application such as a door lock, a computer lock or a car lock. One lock means one design. No single lock design is available for multiple applications. Therefore, no lock assembly exists that has been designed for all applications. Many lock manufacturers spend much money to fabricate many difficult kinds of locks.
To overcome the shortcomings, the present invention provides a lock assembly to mitigate the aforementioned problems.
The primary objective of the present invention is to provide an improved lock assembly that allows a lock manufacturer to make many different kinds of the locks.
The lock assembly comprises a lock housing assembly, a driven assembly and a lock core. The lock housing assembly comprises a tubular housing and a shell rotatably mounted in the tubular housing. The driven assembly and the lock core are mounted in the shell. The lock core selectively engages and is rotated by the shell. The driven assembly has a connector that is selectively engaged to the lock core to allow the connector to be rotated to lock or unlock an object. The connector is able to lock two objects together or can connect an object to a stationary fixture with an optional cable, and the connector can be changed so a lock manufacturer can use this lock assembly to make many different kinds of locks.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The lock assembly in accordance with the present invention includes a lock housing assembly, a driven assembly and a lock core. The lock housing assembly comprises a tubular housing and a shell rotatably mounted in the tubular housing. The lock core is mounted in the shell and selectively engages and is rotated by the shell. The driven assembly is mounted rotatably in the shell and has a connector that is selectively engaged to the lock core to allow the connector to be rotated to lock or unlock an object. The connector is able to lock two objects together or can connect an object to a stationary fixture with an optional cable, and the connector can be changed so a lock manufacturer can use this lock assembly to make many different kinds of locks.
With reference to
The housing (10) is tubular and has an outer surface, a rear end, a front end, a rear opening, a front opening and an optional cable connector (12). The rear opening is formed at the rear end of the housing (10). The front opening is formed at the front end of the housing (10). The cable connector (12) is formed on the outer surface of the housing (10) and securely holds one end of a cable (14) adapted to connect to the lock assembly. The cable (14) may be attached to or around an external fixture to lock an object to which the lock assembly is attached.
With further reference to
The through hole (21) is formed longitudinally through the shell (20) and has an inner surface, a lip, an internal annular groove (211), an internal shoulder (212) and a washer (213). The lip is formed at and protrudes radially in from the front end of the shell (20). The internal annular groove (211) is formed in the inner surface of the through hole (21) near the lip. The internal shoulder (212) is formed in the inner surface of the through hole (21) near the internal annular groove (211) toward the rear end of the shell (20). The washer (213) is mounted on the internal shoulder (212).
The fluted grip (22) is formed at the rear end of the shell (20), protrudes radially out from the outer surface of the shell (20) and abuts the rear end of the housing (10).
The external annular groove (23) is formed on the outer surface of the shell (20) near the front end of the shell (20).
The split-ring (24) is mounted in the external annular groove (23) after the shell (20) is slidably and rotatably mounted in the housing (10) to keep the shell (20) from sliding out of the housing (10).
The position hole (25) is formed radially through the shell (20) and communicates with the through hole (21).
The elongated hole (26) has a front end and a rear end, is formed longitudinally through the outer surface of the shell (20) and communicates with the through hole (21). The front end is diametrically opposite to the position hole (25).
The driven assembly is mounted in and protrudes from the front end of the shell (20) and has a bearing (90), an O-ring (91), a bolt (80), a seat (60) and a spring (70).
The bearing (90) is mounted in the through hole (21) in the shell (20) between the lip at the front end of the shell (20) and the internal annular groove (211).
The O-ring (91) is mounted in the internal annular groove (211) to hold the bearing (91) in place inside the shell (20).
The bolt (80) is mounted inside the bearing (90), protrudes from the front end of the shell (20) and has a rear end, a front end, a connector (81), an annular shoulder (85), an annular groove (82), an O-ring (83) and two drive rods (84).
The connector (81) is formed at the front end of the bolt (80). A first embodiment of the connector (81) in accordance with the present invention is a threaded bolt. With further reference to
The annular shoulder (85) is medially formed on the bolt (20) and abuts the bearing (90).
The annular groove (82) is formed around the bolt (80) near the connector (81).
The O-ring (83) is mounted in the annular groove (82) to hold the bolt (80) inside the bearing (90).
With further reference to
The seat (60) is tubular, selectively engages and rotates the bolt (80) and has a rear end, a front end, an outer surface, a through hole (62) and an outer lip (61).
The through hole (62) is formed longitudinally through the seat (60) and has an inner surface and multiple radial segments (621). The radial segments (621) are formed on the inner surface of the through hole (62) near the front end of the seat (60) and form radial drive slots between the radial segments (621). The drive slots between the radial segments (621) selectively engage the drive rods (84) on the bolt (80). When the drive slots engage the drive rods (84), the bolt (80) can be turned by turning the seat (60), and the lock assembly is unlocked. When the drive slots disengage from the drive rods (84), turning the seat (60) has no effect on the bolt (80), and the lock assembly is locked.
The outer lip (61) is formed on and protrudes out from the outer surface at the rear end of the seat (60) and has two cutouts (611). The cutouts (611) are formed opposite to each other through the outer lip (61).
The spring (70) is mounted around the seat (60) between the outer lip (61) on the seat (60) and the washer (213) in the shell (20) and presses the seat (60) away from the front end of the shell (20).
The lock core selectively engages the shell (20) and the seat (60), is mounted inside the rear end of the shell (20) and has a sleeve (30), an inner core (40), an outer core (50) and multiple spring-loaded pins. When the lock core engages the shell (20) and the seat (60), turning the fluted grip (22) on the shell (20) will turn the bolt (80), and the lock assembly is unlocked.
The sleeve (30) is tubular, is mounted in the through hole (21) in the shell (20), selectively protrudes from the rear end of the shell (20) and has a rear end, a front end, an outer surface, a longitudinal through hole (31), a hole (32) and a position hole (33). The longitudinal through hole (31) is formed longitudinally through the sleeve (30) and has an inner surface, an elongated slot (311) and a keyway (312). The elongated slot (311) and the keyway (312) are formed on the inner surface of the longitudinal through hole (31) in the sleeve (30) opposite to each other, communicate with the front end and extend toward the rear end. The hole (32) and the position hole (33) are formed through the outer surface of the sleeve (30) opposite to each other and communicate with the longitudinal through hole (31).
With further reference to
The cylinder has a rear end, a front end, an axial recess (42), multiple pin-spring holes (41), a sidewall, a transverse through hole (45) and two longitudinal keys (43). The axial recess (42) is formed in the rear end of the cylinder and has a bottom. The pin-spring holes (41) are formed longitudinally in the rear end of the cylinder around the axial recess (42). The transverse through hole (45) is formed radially through the cylinder and the bottom of the axial recess (42) and communicates with the axial recess (42). The longitudinal keys (43) are formed on diametrically opposite sides of the sidewall and individually have a front end and a tongue (431). The tongues (431) extend radially out respectively from the front ends of the longitudinal keys (43) and engage the cutouts (611) in the outer lip (61) of the seat (60).
The latch has a latch pin (451), a bushing (454), a guide pin (453) and a spring (452). The latch pin (451) is mounted in and selectively protrudes from the transverse through hole (45) in the cylinder of the inner core (40) and the position hole (33) in the sleeve (30) into the hole (25) in the shell (20) and has a shoulder (4511). The shoulder (4511) is formed on the latch pin (451) and is mounted in the axial recess (42) of cylinder. The bushing (454) is mounted securely in the transverse through hole (45) in the cylinder of the inner core (45), flush with the sidewall of the cylinder and aligned with the hole (32) in the sleeve (30) and the elongated hole (26) in the shell (20). The guide pin (453) is mounted in the transverse through hole (45) and the bushing (454) in the cylinder, protrudes from the bushing (454), extends through the hole (32) in the sleeve (30) and into the elongated hole (26) in the shell (20) and has an enlarged head. The head abuts the bushing (454). The spring (452) is mounted in the transverse through hole (45) between the latch pin (451) and the enlarged head of the guide pin (453).
The outer core (50) is mounted rotatably inside the sleeve (30) near the rear end of the sleeve (30) and has a rear end, a front end, a sidewall, a positive stop, a rear extension (51), a front extension (52), multiple pin holes (53) and multiple push pins (54). The positive stop is formed on and protrudes from the sidewall of the outer core (50) and is mounted rotatably in the elongated slot (311) inside the sleeve (30) to limit the rotation of the outer core (50) relative to the inner core (40). The rear extension (51) is formed coaxially on the rear end of the outer core (50) and extends through the sleeve (30) and rear end of the shell (20). The front extension (52) is formed coaxially on the front end of the outer core (50), extends into the axial recess (42) in the cylinder of the inner core (40) and engages the shoulder (4511) on the latch pin (451) to selectively push the latch pin (451) into the hole (25) in the shell (20). The pin holes (53) are formed longitudinally through the outer core (50) around the rear extension (51), selectively align with the pin-spring holes (41) in the cylinder of the inner core (40) and individually have a rear end and a front end. The push pins (54) are slidably mounted respectively in the pin holes (53) through the outer core (50) and protrude from the rear ends of the pin holes (53) to be selectively pushed into the outer core (50) by a key inserted into the rear end of the sleeve (30).
The spring-loaded pins are mounted respectively in the pin-spring holes (41) in the cylinder of the inner core (40) and individually have a pin (55) and a spring (56). The pins (55) slidably extend respectively into the pin holes (53) in the outer core (50) to lock the outer core (50) relative to the inner core (40). The spring (56) is received into the corresponding pin-spring hole (41) in the inner core (40) and pushes against the pin (53).
With further reference to
With reference to
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description together with details of the structure and function of the invention, the disclosure is illustrative only. Changes may be made in detail especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.