The present disclosure relates generally to lock control systems and in particular to lock control systems using RFID.
In one aspect, the present disclosure is directed to a lock control system. The lock control system includes a detection unit positioned proximate to a lock, an RFID device neighboring at least one RFID antenna, and an RFID reading system detecting identifying information of the RFID device when the detection unit detects an event. The system also includes at least one microcontroller that determines, based on the identifying information, whether to grant the RFID device access to an area secured by the lock and instructs an actuator to unlock the lock when the RFID device is granted access.
The detection unit can be one of a touch sensor and a motion processing module. The motion processing module can include a passive infrared sensor. The microcontroller can activate the RFID reading system to detect identifying information when the detection unit detects the event. The microcontroller can determine whether to grant the RFID device access by matching the identifying information of the RFID devices with identifying information stored in the RFID reading system.
The lock control system can include a second microcontroller in communication with the at least one microcontroller, the second microcontroller instructing the actuator to unlock the lock in response to an instruction from the at least one microcontroller. The at least one microcontroller and the second microcontroller can communicate via infrared or RF wireless communication.
In another aspect, the present disclosure is directed to another lock control system. The lock control system includes a sensor positioned proximate to a lock, and an RFID reading system that detects identifying information of an RFID device when the sensor detects an event, the RFID device neighboring at least one RFID antenna of the RFID reading system. The system includes a microcontroller in communication with an actuator, the microcontroller activating the actuator when the microcontroller matches the identifying information of the RFID device with identifying information stored in the RFID reading system. Activating the actuator can unlock the lock. The event can correspond to motion of a target, the target being associated with the RFID device.
In another aspect, the present disclosure is directed to a method of operating a lock control system. The method includes detecting, by a detection unit, an event. The method includes detecting, by an RFID reading system, identifying information of an RFID device neighboring a RFID antenna in response to the event. The method includes determining, by a microcontroller, to grant access to an area secured by a lock control system based on the identifying information. The method includes instructing, by the microcontroller, an actuator to unlock a lock based on the determination to grant access.
Detecting an event can include detecting, by a touch sensor, a touch. Detecting an event can include detecting, by a motion processing module, motion. Detecting identifying information can include activating, by the microcontroller, the RFID reading system to detect the identifying information. Determining to grant access can include matching, by the microcontroller, the detected identifying information with identifying information stored in the RFID reading system. Instructing an actuator can include receiving, by a second microcontroller, an instruction from the microcontroller to grant access to an area; and instructing, by the second microcontroller, the actuator to unlock the lock.
The features of the lock control system and method will be described with reference to the figures, wherein:
The present disclosure is directed to lock control systems using RFID and methods of using the same. A lock control system can use motion detection or touch sensing to detect the presence of a person. In response, the system can obtain identifying information of neighboring RFID devices. If the identifying information of a neighboring RFID device indicates the holder of the device is authorized to access an area secured by the lock control system, the lock control system operates an actuator to unlock the lock.
Referring now to
In further detail, the detection unit 105 can detect a person by motion detection, touch sensing, or any other method as would be appreciated by one of ordinary skill in the art. In the lock control system of
In the lock control system of
The microcontroller 110 can have two modes of operation, “asleep” and “awake.” In various embodiments, the microcontroller 110 can transition to the “asleep” mode after a predetermined period of inactivity, thereby reducing power consumption. The predetermined period can be 2, 5, 10, 15, 30, or 60 minutes, or any length of time preferred by one of ordinary skill in the art. In response to a signal from the detection unit 105 (e.g., either the motion detector 107 or the touch sensor 108), the microcontroller 110 can transition to an “awake” mode and transmit a signal to activate the RFID reading system 115. Thereafter, the microcontroller 110 can remain in the “awake” mode for the predetermined period of inactivity, after which the microcontroller 110 transitions back to the “asleep” mode.
In response to activation by the microcontroller 110, the RFID reading system 115 can instruct the antenna 120 to search for RFID devices 126. In some embodiments, the RFID reading system 115 delivers power to the antenna 120. Then, the antenna 120 broadcasts power via RF waves to RFID devices 126 neighboring the antenna 120. The broadcasted RF waves can power the RFID devices 126, which transmit their identifying information to the antenna 120. In further embodiments, the RFID reading system 115 sends out a request for identifying information to RFID devices 126 in its neighborhood. Any RFID device 126 that receives the request broadcasts its identifying information in response. The RFID reading system 115 forwards identifying information of detected RFID devices 126 to the microcontroller 110.
The microcontroller 110 can compare the identifying information against information for RFID devices 126 associated with people authorized to access an area secured by the lock control system. In some embodiments, the information for authorized devices and/or people is a list of registered keys. In further embodiments, the information is a list of serial numbers recorded on RFID devices' tag chips. The identifying information can be stored in the RFID reading system. If the identifying information the microcontroller 110 receives matches an entry in the list, the microcontroller 110 can determine access should be granted. In response, the microcontroller 110 electrically communicates with the actuator 125, which unlocks the strike 130 (also referred to herein as a “lock”) to grant access to a secured area.
Referring now to
Referring now to
Similar to the lock control system 100, the motion sensor 106 and motion detector 107 detect motion to wake up microcontroller 110. The microcontroller 110 activates the RFID reading system 115 to obtain identifying information of neighboring RFID devices 126. The microcontroller 110 determines if the RFID device 126 should be granted access to an area secured by the lock. If so, the microcontroller 110 transmits an instruction to unlock the lock to the IR transmitter 155. The IR transmitter 155 broadcasts the instruction to the IR receiver 160, which sends the instruction to the microcontroller 150. In response, the microcontroller 150 electrically communicates with the actuator 125, which unlocks the strike 130 to grant access to a secured area. In some embodiments, receipt of the instruction transitions the microcontroller 150 from an “asleep” mode to an awake “mode,” as described in reference to
Referring now to
In operation, the touch sensor 108 transmits a signal to the microcontroller 160 upon detection of touch. The signal from the sensor 108 awakens the microcontroller 160. The microcontroller 160 transmits an instruction to detect neighboring RFID devices 126 to microcontroller 110 via the transceivers 165, 170. The instruction can awaken the microcontroller 110, which activates the RFID reading system 115 to detect identifying information of neighboring RFID devices 126. If the identifying information matches information for RFID devices 126 associated with people authorized to access an area secured by the lock control system, the microcontroller 110 instructs microcontroller 160, via transceivers 165 and 170, to unlock the lock. In response, the microcontroller 150 electrically communicates with the actuator 125, which unlocks the strike 130 to grant access to a secured area.
Referring now to
Referring now to
Referring now to
Referring now to
While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
The present application claims priority to U.S. patent application Ser. No. 61/262,080, entitled “Door Lock Using RFID” and filed on Nov. 17, 2009, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61262080 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2010/057082 | Nov 2010 | US |
Child | 13474034 | US |