1. Field of the Invention
The invention relates to a lock device, and more particularly, to a lock device whose release button and cover are integrally designed to make the cover lock the base firmly.
2. Description of the Prior Art
If a cover (e.g., a cap, door, etc.) was designed to perform the actions of “locking” or “releasing” relative to a base in the past, a known approach was to make the cover lock a fastener on the base. Besides, a release button was disposed on the base beyond the cover. Each of the foregoing release button and the cover was an individual component. When a user closed the foregoing cover to the base, the cover would push away the fastener of the base first and got locked later. When the user pushed the release button, the release button would push the fastener of the base away to make the fastener release from the cover. Moreover, after the user took off the cover and released the release button, the fastener which was pushed away by the release button would return back to its original position.
With the development of information and the progress of technology, applications of electronic products are getting more and more universal. In order to cope with the developments of industry and commerce, and the frequent and close interaction of business, almost all electronic products are produced to cope with the requirements of lightness and impact size. It can be obviously known that the designs of space are getting very strict and limited. That is to say, the above-mentioned approach and the mechanism of designing a button to release the lock situation at the space beyond the cover will confront a strict test in space design and limit the application scope.
In order to solve the above-mentioned problems, the integration of the foregoing cover into release button is the first approach which can be directly thought of. In other words, the foregoing cover can operated as a release button to comply with the limitations of space design. Thereby, when the user pushes the foregoing cover to close on the base, the cover will push the retainer of the base away and then gets locked; when the user pushes the cover downward, the cover will push the retainer of the base away, so as to release the lock situation between the retainer and the cover.
Besides, if one wants to realize the functions of “pushing to lock” and “pushing to release” toward a cover on the same axle in the profile of the cover, a door lock device will be regarded as a major lock structure in the second approach. Please refer to
In general, the method and mechanism which are used by the foregoing door lock device to release the lock situation can be often seen on door designs of middle-sized or large-sized electronic equipment, such as a photocopier, a printer, a computer, etc. Besides, a common ball-point pen in the market has a switch button. When the switch button is pushed, the pen point of the ball-point pen will expose out for writing; when the switch button is pushed again, the pen point of the ball-point pen will return back to its original position and be stored away. The mechanism is the same as that of the foregoing second approach.
However, the foregoing first approach will encounter the follow-up problems in practical operations. After pushing the cover to push the retainer of the base away, the user must take off the cover in a very short time (approximately in a flash), or the retainer which was pushed away will return to its original position and keep the cover in the lock situation. Therefore, if the foregoing first approach is adopted, the take-off speed of the cover must be faster than the returning speed of the retainer of the base, after pushing the cover.
Moreover, although having the advantages of ease to disassemble and ease to assemble, the second approach still has the follow-up problems. The door lock device is always on the same axle during locking and releasing, and an excess stroke is used to achieve the functions of locking and releasing. Therefore, an idle stroke must be reserved under the cover, which makes the cover be supported improperly and fix on the base unstably. This situation may cause a cover to be released and separated from the base of goods due to an unexpected crash or users' inadvertent pushes during the transportation of the goods. The situation is very dangerous for packing an electronic product (e.g., a hard disk) which is easily damaged. Furthermore, another situation will occur by utilizing the door lock device; that is, when the foregoing excess stroke is not enough, the cover will not be switched and returned back.
Accordingly, the major objective of the invention is to provide a lock device whose release button and cover are integrally designed, so as to make the cover to firmly lock the base. Moreover, by controlling the particular spring stroke which is designed under the release button, the function of taking off the cover under the release situation can be achieved. Thus, the lock device of the invention can achieve the function of locking and releasing certainly and solve the above-mentioned problems.
An objective of the invention is to provide a lock device. The lock device is used to detachably mount a cover on a base. A recess is formed on the cover. A first hole is formed on the bottom of the recess, and a first retainer is extended out of the bottom of the recess. A groove is formed on the base. The lock device includes a first sliding member, a first elastomer, and a second sliding member. The first sliding member is adapted to be accommodated in the recess and is capable of limitedly sliding along a first axle relative to the cover. A column which is capable of passing through the first hole is formed on the first sliding member. The first elastomer is disposed between the cover and the first sliding member along the first axle and is used to support the first sliding member. The second sliding member is adapted to be accommodated in the groove and is capable of limitedly sliding along a second axle relative to the base. A second retainer which is used for the first retainer to lock is formed on the second sliding member. When the first sliding member slides toward the base along the first axle, the column will push the second retainer to make the second sliding member to slide along the second axle, so as to make the second retainer separate from the first retainer.
Accordingly, the release button and cover of the lock device according to the invention are integrally designed, so as to make the cover lock the base firmly. Moreover, by controlling the particular spring stroke which is designed under the release button, the function of taking off the cover under the release situation can be achieved.
The advantage and spirit of the invention may be understood by the following recitations together with the appended drawings.
The invention provides a lock device. And more particularly, the release button and cover of the lock device are integrally designed, so as to make the cover lock the base firmly. With the embodiment of the invention below, the features and spirits of the invention will be hopefully well described.
Please refer to
Please refer to
Please refer to
As shown in
Please refer to
Besides, the lock device of the invention can further include a second elastomer 58, as shown in
It is needed additional explanations that the cover 4 which was in the lock situation originally can be taken off to separate the base 6 by hands after the first sliding member 52 compresses the first compression stroke of the first elastomer 54. However, if the first sliding member 52 is released without taking off the cover 4, the second sliding member 56 will return back to the lock situation again since the second elastomer 58 pushes the first sliding member 52. Therefore, in an embodiment, the cover 4 can further include a third elastomer 44. As shown in
Please refer to
Subsequently, please refer to
It is needed to be emphasized again that the foregoing first elastomer 54 mainly includes the first compression stroke and the second compression stroke. When the first sliding member 52 compresses the first compression stroke of the first elastomer 54 along the first axle A1, the second retainer 562 which is pushed by the column 522 on the first sliding member 52 will separate the first retainer 424 simultaneously. Furthermore, when the second retainer 562 which is pushed by the column 522 on the first sliding member 52 separates the first retainer 424, the compressed third elastomer 44 can push the cover 4 to compress the second compression stroke of the first elastomer 54 along the first axle A1, so as to make the cover 4 separate the base 6. It can be known that the major spirit of the invention is to design the first compression stroke and the second compression stroke on the first elastomer 54 so that the release button (i.e., the first sliding member 52) can be disposed on the cover 4 rather than on the base 6 far from the cover 4 (i.e., the foregoing known approach). It is needed additional explanations that the ratio between the first compression stroke and the second compression stroke of the first elastomer 54 can be designed to be, but not limited to, 6:4. That is to say, the ratio is designed according to the needs of the practical design.
In an embodiment, the foregoing first elastomer 54 is, but not limited to, a first spring, the foregoing second elastomer 58 is, but not limited to, a second spring, and the foregoing third elastomer 44 is, but not limited to, a clip spring. In a word, if the materials (e.g., rubber) or the components (e.g., torsion spring) can provide enough elastic force, they can be embodied in the foregoing first elastomer 54, the second elastomer 58, and the third elastomer 44 of the invention.
In an embodiment, the first axle can be, but not limited to, perpendicular to the second axle. The angle between the first axle A1 and the second axle A2 can be determined based on the space design in the practical application. And, the functions of the invention will not be influenced.
It is needed additional explanations that in order to prevent the first sliding member 52 which is accommodated in the recess 42 of the cover 4 from separating from the recess 42, the first sliding member 52 can has at least one first retaining member 524, as shown in
Similarly, in order to prevent the second sliding member 56 which can slide in the groove 62 of the second sliding member 56 from separating from the base 6, the base 6 can further include at least one second retaining member 66, as shown in
With the foregoing detail descriptions of the preferred embodiments of the invention, it can be clearly known that the release button and cover of the lock device according to the invention are integrally designed, so as to make the cover lock the base firmly. Moreover, by controlling the particular spring stroke which is designed under the release button, the function of taking off the cover under the release situation can be achieved. Not only the problem of being not able to dispose a release button on the cover in the past can be solved, but also the problem of switching to release situation owing to an unexpected crash can be solved.
With the example and explanations above, the features and spirits of the invention will be hopefully well described. Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teaching of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
097211455 | Jun 2008 | TW | national |