This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2012-272497, filed on Dec. 13, 2012, the entire contents of which are incorporated herein by reference.
The present invention relates to a lock device for locking and unlocking a locking subject related to a power port.
Vehicles that emit less carbon dioxide, such as plugin hybrid vehicles and electric vehicles, are environment-friendly and have become popular. Such a vehicle is powered by a battery. When the battery drains after driving the vehicle over a long distance, the battery is recharged. Thus, the body of the vehicle is provided with a power port that is used to charge the battery. A charge cable of a charging facility is connected to the power port to supply power from the charging facility and charge the battery. The battery charging takes a long time. Thus, a charge cable lock device may be used to lock the charge cable to the vehicle body and prevent theft of the charge cable. Japanese Laid-Open Patent Publication No. 2009-081917 describes an example of such a charge cable lock device.
A motor-driven lock device is one type of such a lock device. For example, the motor-driven lock device includes an actuator that moves a transmission member, such as a lock stopper, in a lock direction or unlock direction so that a lock pin is selectively engaged with and disengaged from a charge cable. However, if the actuator fails to function when the lock pin is in a lock state, the motor-driven lock device cannot move the lock stopper in the unlock direction to unlock the charge cable.
One aspect of the present invention is a lock device including a lock member moved between a lock position, at which the lock member restricts removal of a locking subject from a power port, and an unlock position, at which the lock member permits removal of the locking subject from the power port. A transmission member is moved between a first position, at which the transmission member fixes the lock member at the lock position, and a second position, at which the transmission member permits movement of the lock member to the unlock position. A forcible unlocking mechanism includes a movable forcible unlocking member, which manually moves the transmission member to the second position, and a holding unit, which holds the forcible unlocking member while permitting movement of the transmission member between the first position and the second position.
Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
A lock device according to one embodiment of the present invention will now be described with reference to
Outline of Charge System
Referring to
Referring to
When the power plug 11 is connected to the inlet 6, the power plug 11 is fitted straight to the inlet 6. The hook 14 comes into contact with a sloped surface of the catch 17 on the inlet case 7. This lifts the hook 14 against the urging force of the urging member 16. After the hook 14 moves over the sloped surface, the power plug 11 is fully fitted to the inlet 6. Then, the urging force of the urging member 16 pivots the lock arm 13 to the close position. This hooks the hook 14 to the catch 17 so that the power plug 11 is held by the inlet 6.
A plug connection detector 18 is arranged in the power plug 11 to detect connection of the charge cable 9 to the inlet 6. When the charge cable 9 is connected to the inlet 6 and the hook 14 is hooked to the catch 17, the lock arm 13 is arranged at the close position. Thus, the plug connection detector 18 detects that the lock arm 13 is located at the close position and provides a plug connection detection signal, which indicates that the power plug 11 is connected to the inlet 6, to the vehicle body 1 via the terminal units 8 and 12.
Structure of Lock Device
As shown in
Referring to
The housing 23 of the lock device 19 accommodates a lock pin 26, which is engageable with the lid 3 or the power plug 11. The lock pin 26 is movable back and forth in its longitudinal direction (Z axis direction in
An upper portion of the lock pin 26 includes a pushing slope 28 that functions as a pushing surface when moving the lock pin 26 in the lock direction (direction of arrow Z1 in
A link 31 and a rotation member 32 connect the lock pin 26 to a lock motor 33. A worm gear 34 couples a motor shaft of the lock motor 33 to the rotation member 32. The worm gear 34 includes a worm 35, which is arranged on the motor shaft, and a worm wheel 36 formed by the rotation member 32. The link 31 functions as a transmission member.
A shaft 37 extends from the rotation member 32. A pinion 38, which rotates coaxially with the rotation member 32, is formed on one end of the shaft 37. The pinion 38 is coupled to the link 31. The link 31 includes a rack 39, which is engaged with the pinion 38, an engagement pin 40, which is fitted in the rack 39, and an urging member 41, which is arranged between the rack 39 and the engagement pin 40. The urging member 41 may be a coil spring. The engagement pin 40 includes a projection 42 that is fitted into an elongated hole 43 of the rack 39 (refer to
Referring to
Referring to
Referring to
Referring to
Forcible Unlocking Mechanism
Referring to
In the present example, a forcible unlocking wire 46, which is operated when forcibly cancelling the lock state of the lock device 19, is coupled to an end of the link 31. The forcible unlocking wire 46 includes a flat portion 49, which is arranged at one end of the forcible unlocking wire 46, an elongated hole 50, which extends through the central section of the flat portion 49, and a hooking hole 52, which extends through the distal end of the flat portion 49. One end of the forcible unlocking wire 46 is arranged in the vehicle (e.g., luggage compartment). The forcible unlocking wire 46 is pulled in, for example, the luggage compartment toward the direction of arrow Y2 in
The forcible unlocking mechanism 45 includes a wire holding structure that holds the forcible unlocking wire 46 in a fixed state when the lock device 19 performs normal locking and unlocking operations. A claw-shaped projection 47 projects from an upper surface of the rack 39. An opening 48 is formed in the upper surface of the housing 23. Further, the housing 23 includes a position holding projection 51, which projects from the upper surface at a location closer to the end than the opening 48, and two pairs of guide pieces 54, which project from the upper surface at two opposite sides. The two guide pieces 54 guide the movement of the forcible unlocking wire 46. The position holding projection 51 has, for example, a triangular cross-section. The claw-shaped projection 47 is engaged with the forcible unlocking wire 46 and exposed from the housing 23. The claw-shaped projection 47 is extended out of the opening 48 and engaged with the elongated hole 50 of the forcible unlocking wire 46. During a normal locking or unlocking operation, the claw-shaped projection 47 moves in the elongated hole 50 and does not affect the forcible unlocking wire 46. The claw-shaped projection 47, the opening 48, and the elongated hole 50 form a holding unit.
The position holding projection 51 is hooked to the hooking hole 52 of the forcible unlocking wire 46. The distal end of the flat portion 49 is bent to form a returning guide 53. The position holding projection 51 and the hooking hole 52 form an aiding unit.
The operation of the forcible unlocking mechanism 45 will now be described with reference to
Operation of Forcible Unlocking Mechanism During Normal Locking and Unlocking
Referring to
Forcible Unlocking Operation
When the forcible unlocking wire 46 is pulled in the direction of arrow Y2 in
When the link 31 moves in the lock direction (direction or arrow Y1 in
The present embodiment has the advantages described below.
(1) The lock device includes the forcible unlocking mechanism that forcibly unlocks the charge cable when a user moves a lock stopper from the initial position to the cancellation position with a wire or the like.
For example, when a wire is merely connected to the lock stopper, a normal locking or unlocking operation of the lock device may also move the wire in cooperation with the lock stopper. Such movement of the wire may deteriorate the wire or produce noise.
In contrast, the present invention includes the wire holding mechanism that holds the forcible unlocking wire 46 on the housing 23 so that the forcible unlocking wire 46 is not moved during a normal locking or unlocking operation. Thus, even when the link 31 (rack 39) moves back and forth during a normal locking or unlocking operation, the forcible unlocking wire 46 does not move from the initial position. In this manner, during a normal locking or unlocking operation, the forcible unlocking wire 46 is not moved by the rack 39.
(2) The forcible unlocking wire 46 is not moved during a normal locking or unlocking operation. This reduces the load on the lock motor 33 during a normal locking or unlocking operation and lowers the torque required for the lock motor 33.
(3) The wire holding mechanism includes the claw-shaped projection 47, which projects from the upper surface of the rack 39, the opening 48, which extends through the upper wall of the housing 23, and the elongated hole 50, which extends through the forcible unlocking wire 46. Thus, the wire holding mechanism has a simple structure formed by projections and holes.
(4) The position holding projection 51 is hooked to the hooking hole 52 of the forcible unlocking wire 46 to hold the forcible unlocking wire 46 at the initial position. This holds the forcible unlocking wire 46 at the initial position. Thus, the forcible unlocking wire 46 subtly moves from the initial position even when the driven vehicle generates vibrations.
(5) After performing forcible unlocking with the forcible unlocking mechanism 45, for example, the lock motor 33 may be repaired. Then, by performing a normal locking operation with the lock motor 33, the rack 39 may be moved from the second position to the first position to move the forcible unlocking wire 46 in the same direction and return the forcible unlocking wire 46 to the original position. Thus, the pulled forcible unlocking wire 46 may be returned to the original initial position.
(6) The distal end of the flat portion 49 includes the returning guide 53 that extends upward from the upper surface of the housing 23. Thus, when the forcible unlocking wire 46 returns to the initial position, the forcible unlocking wire 46 easily moves over the position holding projection 51. This allows for the forcible unlocking wire 46 to smoothly return to the original initial position.
(7) The same lock pin 26, which is moved between lock and unlock positions by the lock motor 33, is used for charge cable locking and lid locking. Thus, there is no need to provide separate lock pins and lock motors for the charge cable locking and lid locking. This allows for the structure of the lock device 19 to be simplified.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the present invention may be embodied in the following forms.
The lock device 19 does not have to be of a sliding type and may be of a rotating type as shown in
Referring to
The aiding unit may be replaced by an urging member such as a spring. In this case, when the urging member produces a relatively large urging force, after pulling the forcible unlocking wire 46, the forcible unlocking wire 46 is returned from the unlock position to the lock position. Thus, the urging force of the urging member is set to be smaller than the force required to move the forcible unlocking wire 46 from the unlock position to the lock position.
The claw-shaped projection 47 may be arranged on the forcible unlocking wire 46, and the elongated hole 50 may be arranged in the rack 39.
The claw-shaped projection 47 may be arranged on, for example, the engagement pin 40.
As long as the transmission member may be manually moved in the unlock direction, the forcible unlocking mechanism 45 may have any of a variety of structures.
The forcible unlocking member may be replaced by, for example, a knob, a lever, or a dial.
The forcible unlocking wire 46 may be arranged on a side surface or rear surface of the housing 23.
The opening 48 does not have to be an elongated hole and may be a void having a wide opening.
The engaging portion does not have to be claw-shaped and may have any shape as long as it may be hooked to the forcible unlocking wire 46.
The electronic key system may be, for example, a wireless key system or a short-range wireless communication system. A wireless key system performs key verification through narrow-band wireless communication when communication is established with an electronic key. A short-range wireless communication system performs verification through bidirectional short-range wireless communication (communication distance of several centimeters to several tens of centimeters) and may be, for example, an immobilizer system or a near field communication (NFC) system.
The actuator of the lock device 19 may be, for example, a solenoid instead of a motor.
The plug connection detector 18 may be a switch or a sensor arranged in the inlet 6. Further, the plug connection detector 18 may include or not include a contact.
The seal 30 may be arranged on the lock pin 26.
The lid 3 may be opened and closed by a push lifter instead of a torsion spring.
During lid locking, the lock pin 26 may be engaged with a component other than the striker 20.
The lock device 19 does not have to be arranged in the upper portion of the lid box 5 and may be arranged at other locations such as a side portion of the lid box 5.
The lock device 19 may be fastened together with the inlet 6 when coupled to the lid box 5 or coupled to the lid box 5 separately from the inlet 6.
The lock device 19 may be switched to an unlock state by pushing, for example, a trigger switch 22.
The lock device 19 may be manually switched to a lock state or an unlock state by a user.
One of locking and unlocking with the lock device 19 may be performed manually, and the other one of locking and unlocking may be performed automatically.
The lock device 19 may be dedicated for charge cable locking or for lid locking. Further, in broad terms, the lock device 19 only needs to be arranged in the power port 2.
The locking subject does not have to be the lid 3 or the charge cable 9 and may be any component related with the power port 2 of a battery-powered vehicle.
The lock device 19 may have any structure as long as the lock pin 26 may be moved in the lock direction and the unlock direction. Further, the lock member does not have to be a movable pin and may be, for example, a pivotal cylindrical pin member including a cutout portion. In this case, the lock arm 13 is fixed by a location free from the cutout portion, and the cutout portion allows for operation of the lock arm 13. The lock member may be a triangular plate pivoted between a lock position and an unlock position.
In the lock device 19, an urging member may constantly urge the lock pin 26 in an unlock direction or a lock direction.
The lock device 19 may be of a direct-connection type in which, for example, a projection and a sloped groove couples the lock pin 26 to a support, and the movement of the support guides the lock pin 26 with the projection and the sloped groove to the lock position and the unlock position.
The lock device 19 may directly engage the lock pin 26 with the housing (main body) of the power plug 11.
The lock device 19 does not have to be installed in a vehicle and may be applied to a different device or apparatus.
The present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2012-272497 | Dec 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8016604 | Matsumoto et al. | Sep 2011 | B2 |
8075329 | Janarthanam et al. | Dec 2011 | B1 |
8206172 | Katagiri et al. | Jun 2012 | B2 |
8311690 | Tanaka | Nov 2012 | B2 |
8317534 | Osawa et al. | Nov 2012 | B2 |
8357001 | Katagiri et al. | Jan 2013 | B2 |
8357002 | Katagiri et al. | Jan 2013 | B2 |
8454375 | Bauer | Jun 2013 | B2 |
8602804 | Kurumizawa et al. | Dec 2013 | B2 |
8698349 | Kurumizawa et al. | Apr 2014 | B2 |
8712648 | Charnesky | Apr 2014 | B2 |
8823486 | Jung et al. | Sep 2014 | B2 |
8944477 | Proefke et al. | Feb 2015 | B2 |
20080185991 | Harris et al. | Aug 2008 | A1 |
20100228405 | Morgal et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2009-081917 | Apr 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20140170889 A1 | Jun 2014 | US |