The present invention generally relates to drive assemblies for electromechanical locks, and more particularly but not exclusively to drive assemblies for electromechanical mortise locksets.
Certain lock assemblies utilize an electromechanical actuator to transition the assembly between locked and unlocked states. Some such systems have certain limitations, such as failing to transition to a locked state when the handle is rotated. A need remains for further improvements in systems and methods for lock assemblies with electromechanical actuators.
An illustrative motor drive assembly is configured for use in a lockset comprising a case, a longitudinally movable link, and a catch configured to move among a locking position and an unlocking position in response to longitudinal movement of the link. The illustrative motor drive assembly includes a longitudinally extending shaft comprising a worm, a motor operable to rotate the shaft, a driver engaged with the worm, and a longitudinally extending spring. The spring is not directly engaged with the worm, and comprises a first end coupled with the driver and a second end connectable with the link. Engagement between the worm and driver is configured to longitudinally move the driver in response to rotation of the shaft. Further embodiments, forms, features, and aspects of the present application shall become apparent from the description and figures provided herewith.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
With reference to
As used herein, the terms “longitudinal”, “lateral”, and “transverse” are used to denote motion or spacing along or substantially along three mutually perpendicular axes. In the coordinate plane illustrated in
The case 110 is configured for mounting in a mortise cutout in a door (not illustrated), and includes a backplate 112 to which one or more elements of the lockset 100 may be coupled. The case 110 may further comprise a removable cover plate (not illustrated) configured to retain various elements of the lockset 100 within the case 110.
The latch assembly 120 includes a latch bolt 122 coupled with a drive bar 124, and a retractor 126 engaged with the drive bar 124 through a bracket 128. The retractor 126 is further engaged with the hub 130 such that the retractor 126 rotates in response to rotation of the hub 130 in the illustrated clockwise direction. As the retractor 126 rotates in the illustrated clockwise direction, it engages the bracket 128, thereby laterally moving the drive bar 124 and retracting the latch bolt 122. When the latch bolt 122 retracts to an unlatching position, the lockset 100 is in an unlatched state, and the door can be opened.
The hub 130 is rotationally coupled with an actuator (not illustrated) such as a lever or knob, such that the actuator is operable to retract the latch bolt 122 when the hub 130 is free to rotate. In the illustrated embodiment, the hub 130 is coupled with an exterior actuator on an unsecured side of the door, and the lockset 100 further comprises a second hub (not illustrated) coupled with an interior actuator on a secured side of the door. In other embodiments, the hub 130 may be configured for coupling to both an interior actuator and an exterior actuator. In the illustrated form, the hub 130 comprises a radial protrusion 132 operable to engage the catch 140. As described in further detail below, it is also contemplated that the hub 130 may define another form of an engagement feature such as, for example, a recess.
The exemplary catch 140 includes a recess 142 sized and configured to receive the protrusion 132, and is laterally movable among a locking position (
While the illustrated catch 140 is laterally movable between/among the locking and unlocking positions, it is also contemplated that the catch 140 may move between/among the locking and unlocking positions in another manner. In certain embodiments, the catch 140 may be linearly movable in another direction. For example, the catch 140 may move between the locking and unlocking positions in the longitudinal direction, or in a direction which is oblique with respect to the longitudinal and lateral directions. In other embodiments, the catch 140 may rotate or pivot while sliding between/among the locking and unlocking positions.
With the catch 140 in the unlocking position, the protrusion 132 is removed from the recess 142 and the catch 140 is disengaged from the hub 130. With the catch 140 disengaged from the hub 130, the hub 130 is free to rotate. The lockset 100 is thus in an unlocked state, as the latch bolt 122 can be retracted by rotation of the actuator to which the hub 130 is coupled. With the catch 140 in the locking position, the protrusion 132 is received in the recess 142 such that the catch 140 is engaged with the hub 130. With the catch 140 engaged with the hub 130, rotation of the hub 130 is substantially prevented. The latch bolt 122 therefore cannot be retracted by the actuator to which the hub 130 is coupled, thereby defining a locked state of the lockset 100. The term “substantially” as used herein may be applied to modify a quantitative representation which could permissibly vary without resulting in a change in the basic function to which it is related. For example, with the hub 130 engaged with the catch 140, the hub 130 may permissibly be capable of slight rotation, if the actuator to which the hub 130 is coupled remains unable to move the latch bolt 122 to the unlatching position.
In the illustrated form, the hub 130 and the catch 140 include mating engagement features in the form of the protrusion 132 and the recess 142. As noted above, however, it is also contemplated that other forms of mating engagement features may be utilized. For example, the catch 140 may include a protrusion, and the hub 130 may include a recess sized and configured to receive the protrusion on the catch 140. In other embodiments, the mating engagement features need not comprise a protrusion and a recess, and/or may comprise a plurality of protrusions and/or a plurality of recesses.
The exemplary drive assembly 150 includes a rotary motor 152, a controller 154 operable to drive the motor 152 in response to a received command, a link 160 slidably mounted in the case 110 and engaged with the catch 140, and a worm drive mechanism 200 operably coupling the link 160 and the motor 152. The motor 152 may be positioned in a housing 156 coupled with the case 110. As described in further detail below, the worm drive mechanism 200 is configured to translate rotary motion of the motor 152 to longitudinal movement of the link 160, which in turn moves the catch 140 among the locking and unlocking positions.
The illustrated link 160 is longitudinally slidable among a proximal link position (
The link 160 is engaged with the catch 140 such that the catch 140 moves between/among the locking and unlocking positions in response to movement of the link 160 between/among the distal and proximal link positions. In the illustrated embodiment, the link 160 is engaged with the catch 140 via a cam interface 106. The cam interface 106 may include an angled slot 146 formed in the catch 140 and the pin 166 coupled with the link 160. With the catch 140 constrained to lateral movement and the link 160 constrained to longitudinal movement, engagement between the slot 146 and the pin 166 moves the catch 140 laterally in response to longitudinal movement of the link 160. In other embodiments, another form of a cam interface may be utilized. In further embodiments, the link 160 need not be coupled with the catch 140 through a cam interface 106. For example, in embodiments in which the catch 140 is longitudinally movable between/among the locking and unlocking positions, the link 160 may be fixedly coupled with the catch 140, or the catch 140 may be integrally formed with the link 160.
In the illustrated form, the catch 140 is in the locking position when the link 160 is in the proximal link position (
With specific reference to
The shaft 210 extends in the longitudinal direction and is engaged with the motor 152 such that the motor 152 is operable to rotate the shaft 210. In certain embodiments, the shaft 210 may extend into the motor 152 such that the motor 152 directly drives the shaft 210. In other embodiments, the shaft 210 may be coupled with an output shaft of the motor 152. The exemplary shaft 210 comprises the worm 212, and further comprises a proximal unthreaded portion 214 and a distal unthreaded portion 216 positioned on opposite sides of the worm 212. The worm 212 includes a proximal terminal thread 213 positioned adjacent the proximal unthreaded portion 214, and a distal terminal thread 215 positioned adjacent the distal unthreaded portion 216. It is also contemplated that one or both of the unthreaded portions 214, 216 may be omitted.
The driver 220 includes an opening 221 operable to receive the shaft 210, and internal threads 222 engageable with the worm 212. Engagement between the internal threads 222 and the worm 212 is configured to longitudinally displace the driver 220 in response to rotation of the shaft 210. The driver 220 may further include a flat 224 which engages the backplate 112 and substantially prevents rotation of the driver 220. It is also contemplated that rotation of the driver 220 may be substantially prevented in another manner such as, for example, by a sleeve or laterally spaced walls positioned on opposite sides of the driver 220.
The spring 230 comprises a helical spring that includes a proximal first end 232 coupled with the driver 220, a distal second end 234 coupled with the collar 240, and helical coils 236 connecting the proximal and distal ends 232, 234. In the illustrated form, the spring proximal end 232 includes tightly wound coils 233 matingly engaged with external threads 223 on the driver 220, and the spring distal end includes tightly wound coils 235 matingly engaged with external threads 245 on the collar 240. In other embodiments, the spring 230 may be coupled to the driver 220 and/or the collar 240 in another manner. For example, an end of the spring 230 may comprise a hook which engages a tab on the driver 220 or the collar 240, or the spring 230 may be mechanically fastened to the driver 220 and/or the collar 240 by an adhesive or other fastening techniques or devices.
The collar 240 is configured to connect the link 160 to the spring 230, and may include an opening 241 sized to receive the shaft 210 such that the collar 240 does not engage the shaft 210 as the collar 240 moves longitudinally. While other forms of connection between the collar 240 and the link 160 are contemplated, the illustrated collar 240 includes a circumferential channel 244, and the link 160 includes a wall 165 defining a slot 167 having an edge 168. The circumferential channel 244 extends radially inward from a radially outer surface 246 of the collar 240, and is formed along at least a portion of the circumference of the collar 240. When assembled, the collar 240 is seated in the slot 167 such that the edge 168 is received in the channel 244, thereby coupling the collar 240 to the link 160. In the illustrated form, the collar 240 substantially defines a plurality of circular cylinders. It is also contemplated that the collar 240 may have another geometry. For example, the collar 240 may define one or more prisms having a polygonal cross-section.
In order to transition the lockset 100 between the locked and unlocked states, the motor 152 may be operated in an unlocking mode to urge the catch 140 toward the unlocking position, and in a locking mode to urge the catch 140 toward the locking position. The controller 154 may be configured to selectively drive the motor 152 in the locking and locking modes in response to one or more commands. For example, the controller 154 may be in communication with a credential reader or a control system (not illustrated), and may drive the motor 152 in the unlocking mode in response to an unlocking command, and may drive the motor 152 in the locking mode in response to a locking command.
When driven in the unlocking mode, the motor 152 rotates the shaft 210 in a first rotational direction. As the shaft 210 rotates, the worm 212 engages the internal threads 222, thereby moving the driver 220 distally. As the driver 220 moves in the distal direction, the spring 230 urges the link 160 toward the distal link position. When operating in the locking mode, the motor 152 rotates the shaft 210 in a second rotational direction. As the shaft 210 rotates, the worm 212 engages the internal threads 222, thereby moving the driver 220 proximally. As the driver 220 moves in the proximal direction, the spring 230 urges the link 160 toward the proximal link position. With the link 160 in the proximal link position (
In the illustrated embodiment, the lockset 100 is in the unlocked state with the link 160 in the distal link position. As such, the first rotational direction is one in which the worm 212 urges the driver 220 in the distal direction, and the second rotational direction is one in which the worm 212 urges the driver 220 in the proximal direction. In embodiments in which the lockset 100 is in the unlocked state with the link 160 in the proximal link position, the first rotational direction may be one in which the worm 212 urges the driver 220 in the proximal direction, and the second rotational direction may be one in which the worm 212 urges the driver 220 in the distal direction.
In embodiments in which the shaft 210 includes the unthreaded portions 214, 216, longitudinal displacement of the driver 220 may be constrained between a distal driver position and a proximal driver position. For example, when the motor 152 is driven in the unlocking mode, the engagement between the worm 212 and the internal threads 222 urges the driver 220 distally. When the driver 220 becomes aligned with the distal unthreaded portion 214, the internal threads 222 are engaged with the end of the distal terminal thread 213, and the driver 220 is in the distal driver position (
Similarly, when the motor 152 is operating in the locking mode, the engagement between the worm 212 and the internal threads 222 urges the driver 220 proximally. When the driver 220 becomes aligned with the proximal unthreaded portion 216, the internal threads 222 are engaged with the end of the proximal terminal thread 215, and the driver 220 is in the proximal driver position (
The physical characteristics of the spring 230 and/or the worm 212 may be selected such that the spring 230 is elastically deformed when the driver 220 is in the distal driver position and/or the proximal driver position. For example, the spring 230 may be stretched when the driver 220 and link 160 are in their respective proximal positions (
Similarly, the spring 230 may be compressed when the driver 220 and link 160 are in their respective distal positions (
As should be understood from the foregoing, in the illustrated embodiment, with the driver 220 in the distal driver position, rotation of the shaft 210 in the first rotational direction does not cause the driver 220 to distally move beyond the distal driver position. Similarly, with the driver 220 in the proximal driver position, rotation of the shaft 210 in the second rotational direction does not cause the driver 220 to proximally move beyond the proximal driver position. Thus, the unthreaded portions 214, 216 are portions of the shaft 210 that are structured and positioned to not translate rotary motion of the shaft 210 to longitudinal movement of the driver 220. In the illustrated embodiment, each of the unthreaded portions 214, 216 is devoid of threads. However, in other embodiments, one or more of the unthreaded portions 214, 216 may include threads having a diameter less than that of the worm 212 such that the unthreaded portions 214, 216 remain inoperable to engage the internal threads 222 of the driver 220.
With specific reference to
Those having skill in the art will readily realize that in embodiments in which the lockset 100 is in the unlocked state when the link 160 is in the proximal link position, the spring 230 may be compressed when the lockset 100 is in the blocked state. That is to say that with the link 160 trapped in the proximal (unlocking) link position, driving the motor 152 in the locking mode moves the driver 220 to the distal driver position, while the link 160 prevents the collar 240 from moving distally. When the protrusion 132 subsequently becomes aligned with the recess 142, the spring 230 may expand, thereby urging the link 160 to the distal link position with the stored mechanical energy.
With specific reference to
With reference to
As noted above, the worm drive mechanism is similar to the worm drive mechanism 200, and similar reference characters are used to indicate similar elements and features. For example, the shaft 310 includes a proximal terminal thread 313 adjacent a proximal unthreaded portion 314, and a distal terminal thread 315 positioned adjacent a distal unthreaded portion 316.
The driver 320 includes an opening 321 in the form of a slot having an edge 322. The shaft 310 is received in the opening 321, and the edge 322 is engaged with the worm 312. Engagement between the edge 322 and the worm 312 is operable to longitudinally move the driver 320 in response to rotation of the shaft 310. The opening 321 and edge 322 may be defined by a wall 324, which may in turn engage the back plate 112 to substantially prevent rotation of the driver 320 in a manner similar to that described above with regard to the flat 224.
The spring 330 is laterally offset relative to the shaft 310. The spring proximal end 332 is coupled with the driver 320, and the spring distal end 334 is coupled with the link 160. In the illustrated form, the driver wall 324 is wedged between tightly wound coils of the spring proximal end 332, and the link wall 165 is wedged between tightly wound coils of the spring distal end 334. It is also contemplated that the worm drive mechanism 300 may comprise one or more collars coupling the spring 330 to the driver 320 and/or the link 160. Additionally, the one or more collars may be substantially similar to the above-described collar 240.
With reference to
The link 180 includes a link wall 185 positioned between the driver 420 and the motor 152. The link 180 may further comprise a chamber 182 in which the driver 420 is seated. The chamber 182 may be defined, at least in part, by laterally offset sidewalls 184 and the link wall 185. The chamber 182 may be further defined by a ceiling 188 (shown in phantom), and the driver 420 may be positioned between the ceiling 188 and the backplate 112. The non-illustrated distal portion of the link 180 may be substantially similar to that of the above-described link 160 such as, for example, in embodiments in which the motor drive assembly 401 is a retrofit kit configured for use with the above-described lockset 100. It is also contemplated that the distal portion of the link 180 may take another form such as, for example, in embodiments in which the motor drive assembly 401 is a retrofit kit configured for use in another form of a lockset.
In the illustrated form, the worm 412 is rotationally coupled with the shaft 410, but is not integrally formed with the shaft 410 to define a one-piece, unitary structure. The worm 412 may be rotationally coupled with the shaft 410 via a snap-fit connection, a splined connection, or any other form of rotational coupling. In other embodiments, the worm 412 may be integrally formed with the shaft 410 to define a one-piece, unitary structure. The shaft 410 and/or the worm 412 extend into the chamber 182 through a slot formed in the link wall 185 such that the worm 412 is positioned at least partially within the chamber 182.
The driver 420 is seated in the chamber 182, and includes internal threads (not illustrated) engaged with the worm 412. Rotation of the driver 420 may be substantially prevented, for example, by engagement of the driver 420 with the link 180 and/or the backplate 112. In certain embodiments, one or both of the sidewalls 184 may engage the laterally opposite sides of the driver 420 to substantially prevent rotation thereof. In other embodiments, the backplate 112 and/or the ceiling 188 may engage transversely opposite sides of the driver 420 to substantially prevent rotation thereof. In further embodiments, the chamber 182 may closely engage the driver 420 to substantially prevent rotation thereof.
The spring 430 is positioned in the chamber 182 between the driver 420 and the link wall 185, and the link wall 185 is positioned between the spring 420 and the motor 152. The diameter of the spring 430 may correspond to the lateral distance separating the sidewalls 184 such that the sidewalls 184 substantially prevent buckling of the spring 430 when the spring 430 is compressed. Additionally or alternatively, the diameter of the spring 430 may correspond to the transverse distance between the backplate 112 and the ceiling 188 such that the backplate 112 and the ceiling 188 substantially prevent buckling of the spring 430 as the spring 430 is compressed.
The spring 430 comprises a first end 432 coupled with the driver 420, and a second end 434 coupled with the link 180. Due to the fact that the driver 420 is positioned distally of the spring 430, the spring first end 432 is the distal end of the spring 430, and the spring second end 434 is the proximal end of the spring 430. The spring first end 432 may, for example, be coupled with the driver 420 by engagement of a tab formed on the driver 420 and a hook formed on the spring first end 432. The spring second end 434 may, for example, be coupled with the link 180 via a collar, or the link wall 185 may be wedged between tightly wound coils of the spring second end 434.
The motor drive assembly 500 may be utilized in a mortise lockset similar to the lockset 100 depicted in
The spring 530 is engaged with the link 550 such that the link 550 moves longitudinally in response to rotation of the spring 530. For example, the link 550 may comprise a flange 556 extending transversely into the spring 530 such that the spring coils 536 distally urge the link 550 as the spring 530 rotates in a first rotational direction, and proximally urge the link 550 as the spring 530 rotates in a second rotational direction. The coupler 520 and the spring 530 may, for example, be of the type described in the commonly-owned U.S. Patent Application Publication No. 2010/0294008 to Bogdanov et al., FIGS. 4-9 and paragraphs [0037] through [0050] of which are incorporated herein by reference.
The housing 540 comprises a motor housing 542 and a longitudinally extending sleeve 544 including a channel 545. The motor 510 is seated in the motor housing 542, and the coupler 520 and the spring 530 are seated in the sleeve 544 such that the spring 530 longitudinally extends along the channel 545. In the illustrated embodiment, a rear surface 546 of the sleeve 544 may be transversely offset from a rear surface 547 of the motor housing 542. As such, when the housing 540 is coupled with the case 110 (
When assembled (
If the link 550 is blocked from longitudinal movement, rotation of the shaft 512 may cause the spring 530 to elastically deform in a manner similar to that described above with reference to
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
The present application is a divisional of U.S. patent application Ser. No. 15/854,048 filed Dec. 26, 2017 and issued as U.S. Pat. No. 11,174,659, which is a divisional of U.S. patent application Ser. No. 14/476,159 filed Sep. 3, 2014 and issued as U.S. Pat. No. 9,850,685, the contents of each application hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3751086 | Geringer | Aug 1973 | A |
4583382 | Hull | Apr 1986 | A |
5083122 | Clark | Jan 1992 | A |
5473922 | Bair et al. | Dec 1995 | A |
5628216 | Qureshi et al. | May 1997 | A |
6354121 | Frolov | Mar 2002 | B1 |
7275402 | Luling et al. | Oct 2007 | B2 |
7845201 | Meyerle et al. | Dec 2010 | B2 |
7918114 | Walsh, III | Apr 2011 | B2 |
8083273 | Yuan | Dec 2011 | B2 |
8302438 | Lui | Nov 2012 | B2 |
8671723 | Dayanikli et al. | Mar 2014 | B2 |
9617757 | Lowder | Apr 2017 | B2 |
10570645 | Ellis et al. | Feb 2020 | B2 |
20050050928 | Frolov et al. | Mar 2005 | A1 |
20050218659 | Geringer et al. | Oct 2005 | A1 |
20080303290 | Yuan | Dec 2008 | A1 |
20100122561 | Lui | May 2010 | A1 |
20100294008 | Bogdanov et al. | Nov 2010 | A1 |
20110079057 | Frolov et al. | Apr 2011 | A1 |
20110215597 | Weum | Sep 2011 | A1 |
20120025984 | Lu | Feb 2012 | A1 |
20120198897 | Lui | Aug 2012 | A1 |
20120297842 | Gartner | Nov 2012 | A1 |
20130043751 | Yuan | Feb 2013 | A1 |
20150184425 | Ellis et al. | Jul 2015 | A1 |
20160145904 | Lowder | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2014028332 | Feb 2014 | WO |
Entry |
---|
International Search Report; International Searching Authority; US Patent and Trademark Office; International Application No. PCT/US2015/048337; dated Feb. 1, 2016; 4 pages. |
Written Opinion; International Searching Authority; US Patent and Trademark Office; International Application No. PCT/US2015/048337; dated Feb. 1, 2016; 8 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 3,069,364; dated Mar. 30, 2021; 4 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 2,962,571; dated Feb. 18, 2020; 3 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 2,962,571; dated Dec. 3, 2018; 3 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 2,962,571; dated Jan. 10, 2018; 5 pages. |
Number | Date | Country | |
---|---|---|---|
20220325558 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15854048 | Dec 2017 | US |
Child | 17527834 | US | |
Parent | 14476159 | Sep 2014 | US |
Child | 15854048 | US |