The present invention relates to a lock mechanism suitable for locking a first hinged leaf of a double door or gate to a ground surface. It comprising a frame arranged to be fixed within an upright tubular member of the first leaf, a bolt member movably mounted on said frame between a projected and a retracted position, and operator means connected by means of a bolt operating mechanism to the bolt member for moving it from its projected to its retracted position and vice versa. The bolt member is arranged to project through one extremity of the tubular member out of this tubular member into a hole in the ground to immobilize the leaf. The bolt operating mechanism comprises a gear train to increase the travel of the bolt member so that the door or gate can also be installed above an inclined ground surface.
It is known to secure double gates or doors by using a cane bolt on a first leaf of a double door or gate, which bolt can be extended past the lower surface of the leaf and into an opening in the ground. When the cane bolt is in this lowered position, the first leaf cannot be opened. The cane bolt often includes an angled upper end that can be grasped by a user to lift the bolt from the ground so that the leaf can be opened. An example of such a cane bolt is disclosed in EP-A-1 411 197. The first or second leaf of the double door or gate also includes another lock for securing the first leaf to the second leaf. This other lock may be an ordinary key-operated lock with a sliding bolt that extends between the first and second leafs. The first leaf is thus secured with respect to the ground and the second leaf is secured to the first leaf.
A drawback of such cane bolts is that they are mounted on the leaf so that they remain entirely visible. The present invention relates however to a lock mechanism which can be arranged at least partially within an upright tubular member of the leaf. Such a lock mechanism is already disclosed in JP-A-10/176,450. This known lock mechanism comprises a bolt member which is slidably mounted on a frame within a tubular upright of the hinged leaf. The bolt member is operated by means of a drive slider, more particularly by means of a lug on this drive slider which projects through a slot out of the tubular upright. In this way, the drive slider can be moved up and down. The drive slider comprises a rack portion which engages a first gearwheel of a gear train to convert the translational motion of the drive slider into a rotational motion. The second gearwheel of the gear train engages a rack portion on the bolt member to transform the rotational motion of the gearwheel again into a translational motion of the bolt member. The gear train between the drive slider and the bolt member is intended to increase the travel of the bolt member. The travel of the bolt member is more particularly twice as large as the travel of the drive slider. Due to the increased travel of the bolt member, the leaf can be arranged above an inclined ground surface.
A drawback of the lock mechanism disclosed in JP-A-10/176,450 is that quite a large slot has to be made in the lateral side of the tubular upright in order to be able to insert the lock mechanism into the tubular upright. In fact, the entire lock mechanism is inserted through this slot into the upright. Making such a large slot in the tubular upright is quite laborious and weakens moreover the strength of the upright. The length of the drive slider and of the bolt member is further limited by the length of the slot in the tubular upright so that the lock mechanism has to be mounted at a relatively small height above the ground. It is thus not so user friendly. A further drawback of this lock mechanism is that it can quite easily be unlocked by intruders. Indeed, even when the double door or gate is closed, the drive slider can be lifted for example by means of a pair of pointed pincers through the gap which is present between the lateral sides of the two leafs. Still a further drawback is that once the bolt member is installed in the upright, only a small adjustment (fine tuning) of the distance over which the bolt member projects out of the upright is possible by screwing the distal portion of the bolt member further into or out of the proximal portion thereof.
An object of the present invention is therefore to provide a new lock mechanism of the above defined type, which can be installed within an upright tubular member of a leaf of a double door or gate without having to make a large slot therein and which can be prevented quite easily form being unlocked when the first leave of the double door or gate is locked to the second leaf.
To this end, the lock mechanism according to the present invention is characterised in that the operator means are part of a first subunit which is arranged to be fixed on an outer face of said tubular member and in that the frame, the bolt member and the bolt operating mechanism are part of a second subunit which is arranged to be fixed within said tubular member, the lock mechanism further comprising a rotary shaft enabling to couple the bolt operating mechanism to the operator means through a hole in said tubular member, and the operator means comprising a hinged lever movable between a pushed in position and a pulled out position, the bolt member moving from its projected to its retracted position when the lever is moved from its pushed in to its pulled out position and vice versa.
Since the lock mechanism comprises a rotary shaft which enables to couple the bolt operating mechanism to the operator means, the second, internal subunit of the lock mechanism can first be inserted into the tubular member of the hinged leaf before connecting the first, outer subunit thereto. The internal subunit can thus be inserted through one extremity of the tubular member so that it is not required to make a large slot therein. Since both subunits are connected to one another by means of a rotary shaft, only a relatively small hole has to be made in the tubular member. Such a small hole can easily be drilled therein.
A further advantage of the lock mechanism according to the invention is that the hinged lever can easily be blocked between the two facing edges of the two leafs of the double door or gate when both leafs are closed. The hinged lever can more particularly be blocked in its pushed in position wherein the bolt member is in its projected position and wherein the first hinged leaf is thus secured with respect to the ground. Consequently, in order to be able to unlock the lock mechanism, the second hinged leaf has first to be opened, for example by means of a key when a key-operated lock is provided to lock the second leaf. No further lock (for example no padlock) is required to lock the lock mechanism of the first leaf so that once the second leaf is unlocked and opened, the first leaf can also be easily opened.
Another advantage of the lock mechanism according to the invention is that since the second subunit can be inserted in the tubular member through one extremity thereof, the length of the bolt member can be chosen freely and more particularly in such a manner that the hinged lever is on such a height that it can easily be operated to unlock the lock mechanism. The operator means can even be made integral with the reception element provided on the first leaf for receiving the bolt or bolts of the lock which is usually provided on the second leaf of a double door or gate.
The present invention also relates to a hinged leaf which comprises a tubular member provided with a lock mechanism according to the invention and furthermore to a method for installing a lock mechanism according to the invention onto a tubular member of a hinged leaf. This method is characterised in that said second subunit is inserted in said tubular member through one extremity thereof, the first subunit is coupled by means of said rotary shaft to the second subunit and the first subunit is fixed on an outer face of the tubular member.
Other particularities and advantages of the invention will become apparent from the following description of some particular embodiments of the lock mechanism according to the present invention. The reference numerals used in this description relate to the annexed drawings wherein:
The lock mechanism according to the invention is intended to secure a first hinged leaf 1 of a double door or gate with respect to the ground. When the first leaf 1 consists of two hinged leaf portions mounted on top of one another, the lock mechanism can however also be used to secure the upper leaf portion with respect to the lower leaf portion.
The lock mechanism illustrated in the drawings comprises a first subunit 6 which is arranged to be mounted on an outer face of an upright tubular member 7 of the first leaf 1 and a second subunit 8 which is arranged to be mounted within this tubular member 7.
This second subunit 8, illustrated more in detail in
The frame 9 consists of a tubular portion 12 (extruded tubular profile) and of a lid portion 13 which can be screwed by means of screws 14 onto the tubular portion 12. The lid portion 13 is provided with a circular opening through which the bolt member 10 is guided.
The bolt member 10 comprises a first portion consisting of an actual bolt 15 which projects with one extremity out of the tubular member 7 of the leaf 1 and of a screw 16 which is screwed in an axial hole in the other extremity of the bolt 15. The bolt member 10 further comprises a second portion formed by an elongated element 17 which is slidably fixed by means of the screw 16 to the actual bolt 15. A resilient member, more particularly a compression spring 18 is applied over the screw 16 between the elongated element 17 and the bolt 15 to urge the two bolt member portions apart.
The elongated element 17 of the bolt member 10 is arranged to cooperate with the bolt operating mechanism 11. It comprises more particularly a rack portion 19 whilst the bolt operating mechanism 11 comprises a gear train, one gearwheel 20 of which being arranged to engage the rack portion 19 for transforming a rotational motion of this gearwheel 20 into a translational motion of the bolt member 10. The gear train of the bolt operating mechanism 11 further comprises a smaller gearwheel 21 which is co-axial with and fixed to the driven gearwheel 22 and a larger drive gearwheel 22 which engages the smaller gearwheel 21. The number of rotations of the driven gearwheel 20 is thus greater than the number of rotations of the drive gearwheel 22 so that the gear train provides for an increased travel of the bolt member 10. The gear train is preferably selected so that the travel of the bolt member 10 comprises at least 8 cm, more preferably at least 10 cm and most preferably at least 12 cm. In this way the double door or gate can be installed above a quite inclined surface without having to provide a raised ground surface portion for the reception hole of the bolt.
The first subunit 6 of the lock mechanism, which is provided to be fixed on an outer face of the tubular member 7 of the first leaf 1, comprises operator means which are arranged to rotate the drive gearwheel 22 of the bolt operating mechanism so as to be able to move the bolt member 10 between its retracted and projected positions. The operator means illustrated more into detail in
In order to be able to couple the outer subunit 6 to the inner subunit 8, the lock mechanism further comprises a rotary shaft 32 by means of which the operator means 26, 28, 29 can be coupled through a hole 33 in the tubular member 7 to the bolt operating mechanism 20, 21, 22. One extremity of the rotary shaft 32 is provided with a pinion 34 which engages the teeth of the rack member 29 so that the translational motion of the rack member 29 is transformed into a rotational motion of the rotary shaft 32. The other extremity 35 of the rotary shaft 32 is non-circular (for example hexagonal) and is arranged to be received in a corresponding non-circular recess 36 in the shaft of the drive gearwheel 22 of the gear train. The rotation axis of the rotary shaft 32 coincides with the rotation axis of the drive gearwheel 22 so that the rotational motion of the rotary shaft 32 can be transmitted to the drive gearwheel 22.
An important feature of the lock mechanism according to the invention is that when the lever 26 is moved from its pushed in to its pulled out position, the bolt member 10 moves from its projected to its retracted position and, vice versa, when the lever 26 is moved from its pulled out to its pushed in position, the bolt member 10 moves from its retracted to its projected position. This can be seen clearly in
The lock mechanism described hereabove can easily be mounted in the upright tubular member 7 of the first leaf 1 without having to make a large slot therein. Before the second subunit 8 is coupled by means of the rotary shaft 32 to the first subunit 6, the second subunit 8 can simply be inserted through the open extremity of the tubular member 7 into this tubular member. The second subunit 8, more particularly the tubular frame portion 12 thereof, is preferably sized so that it can be inserted in a square tubular member 7 having an inner size of 4 by 4 cm. The face of the tubular member 7 directed towards the second leaf 2 has only to be provided with two holes, namely with the hole 33 for the rotary shaft 32 and with a hole 37 for the screw 24. These holes can easily be drilled in the tubular member 7.
After having inserted the second subunit 8 into the tubular member 7, as illustrated in
The first subunit 6 with the lever 26 is preferably fixed onto the lateral side of the first leaf 1 which is directed towards the second leaf 2. In this way, when the double door or gate is closed (as illustrated in
Instead of mounting the first subunit 6 onto the lateral side of the first leaf, it could also be mounted onto the front or the back side of this leaf, optionally even in a tubular member fixed to the front or back side of the leaf. However, the lever would then not be blocked between the two leafs unless it would be shaped so that its free extremity would extend between the two leafs. In this case, the lever could pivot directly about the longitudinal axis of the rotary shaft so that the rack member 29 could be omitted.
An advantage of the lock mechanism described hereabove is that the length of the second subunit 8 can be chosen so that the first subunit 6 is situated at the most appropriate height, more particularly close to the lock 3 provided on the second leaf 2. Instead of providing a separate keeper or strike box for this lock 3, this keeper can be made integral with the first subunit 6 of the lock mechanism.
Such a variant embodiment is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
07107635 | May 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/055523 | 5/6/2008 | WO | 00 | 11/5/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/135567 | 11/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2431105 | Brinson | Nov 1947 | A |
2576536 | Reynaud | Nov 1951 | A |
4476700 | King | Oct 1984 | A |
5184852 | O'Brien | Feb 1993 | A |
5290077 | Fleming | Mar 1994 | A |
5865479 | Viney | Feb 1999 | A |
5951068 | Strong et al. | Sep 1999 | A |
5992188 | Saunders | Nov 1999 | A |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6354639 | Minter | Mar 2002 | B1 |
6374651 | Thielmann et al. | Apr 2002 | B1 |
6810699 | Nagy | Nov 2004 | B2 |
6971686 | Becken | Dec 2005 | B2 |
6983962 | Keightley | Jan 2006 | B2 |
6994383 | Morris | Feb 2006 | B2 |
7096697 | Keightly | Aug 2006 | B2 |
7305800 | Calfee | Dec 2007 | B1 |
7878034 | Alber et al. | Feb 2011 | B2 |
7905521 | Liang et al. | Mar 2011 | B2 |
20030159478 | Nagy | Aug 2003 | A1 |
20040231660 | Nakamura | Nov 2004 | A1 |
20040239121 | Morris | Dec 2004 | A1 |
20070158951 | Ramsauer et al. | Jul 2007 | A1 |
20070284893 | Davies | Dec 2007 | A1 |
20080156049 | Topfer | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1 411 197 | Apr 2004 | EP |
2 783 858 | Mar 2000 | FR |
10-176450 | Jun 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20100132262 A1 | Jun 2010 | US |