The present invention relates to locks for bicycles and other movable articles. More specifically, to locks having a securing arm that is flexibly obedient, i.e., a securing arm that is reconfigurable into multiple curved positions by the manual application of bending force, and that holds any of said positions after the bending force is removed until it is bent again.
For many years, the most common locks for securing of bicycles in public have been two general types of locking systems, namely, the “U-bar” lock and the “recoiling cable” lock.
Although many companies manufacture U-bar lock systems, most are simply variations an inflexible metal shackle in the shape of a “U” that inserts into a perpendicular crossbar containing a locking mechanism. As is well documented, standard U-bar locks offer very limited security, since they are only large enough to simultaneously secure the bicycle frame and, depending on bicycle design and proximity of securing object, one wheel/tire. This typically leaves at least one wheel/tire and the seat vulnerable to theft. Often times both wheel/tires are unsecured. In order to fully secure all components of a bicycle with a U-bar lock, additional security products, such as steel cables, must be purchased. Generally, U-bar locks are also heavy (average weight: 3 pounds), clunky, aesthetically displeasing, devoid of flexibility, versatility and ergonomics, and are quickly undermined by a variety of cutting tools and other common lock disarming methods employed by thieves such as standard-size bolt-cutters or hacksaws.
As with U-bar locks, many companies manufacture recoiling cable locks, most of which are simply variations of a self-recoiling braided steel cable encased in either plastic, vinyl or rubber, capped by a locking mechanism on one end, and a locking stem insert on the other. As is well documented, standard recoiling cable locks offer extremely limited security. With an average length between five and six feet, most are too short to secure the bicycle frame, both wheels/tires and the seat simultaneously, requiring the purchase of additional security products. Recoiling cable locks are so easily undermined by standard bolt cutters; thus they are often referred to as “gone in sixty seconds” locks. Recoiling cable locks also tangle easily, are aesthetically displeasing, and the exterior coverings may collect excessive amounts of dirt and grime to the point where they may become sticky and unusable.
There are some alternative locking products designed for bicycle security, including heavy steel chains (average weight: 10 pounds), short hard-cable locks (which only secure the bicycle frame and may be as quickly undermined as standard recoiling cable locks), and a variety of products which provide little to no security, for example, a hand-size, thin braided steel retractable cable (easily undermined with standard wire cutters) and “cuffs” (which only secure the bicycle frame). Although there is no such thing as “total security,” all of the locking systems described above suffer from major design and engineering flaws, require the purchase of additional security items (and usually, mounting clips or devices for transport). Further, after many years on the market, thieves have mastered the skills needed to quickly undermine such existing lock systems.
The present invention seeks to provide an innovative locking system that combines enhanced security, unmatched flexibility, ergonomics and aesthetics for near-total security of bicycles and other property.
Locks in accordance with the current disclosure seek to provide a number of innovations and improvements that address the shortcomings of presently existing U-bar shackle locks and recoiling cable locks, while also enhancing security, flexibility, increased proximity options, ergonomics and aesthetics.
In one aspect thereof, a unique, innovative, non-recoiling cable-style locking system is provided for bicycles and other property. The locking system is designed to not only address the flaws of available locking systems, but also the need for additional security and mounting item purchase, and further to be lightweight, virtually indestructible, uniquely flexible, ergonometric and aesthetically pleasing. In some embodiments, multiple locks are sequentially interlockable (i.e., “daisy-chain”-able) for unlimited length potential.
In another aspect thereof, the lock apparatus comprises a cut-resistant carbon-Kevlar and/or metal core encased in cut-resistant flexible gooseneck tubing, which allows the lock apparatus to bend into and hold any shape without loss of security integrity. In some embodiments, the lock is longer and thicker than available products in order to prevent undermining by standard cutting tools while still allowing for the securing of a bicycle frame, both wheels/tires and seat without the need for additional security purchase. In some embodiments, the lock apparatus includes a unique “set your own combination” locking mechanism that allows for the interlocking of multiple copies of the lock to one another for unlimited length potential. Some embodiments of the lock may be weather-resistant and may feature a unique, scratch-resistant color finish treatment. Some embodiments of the lock will be packaged in a unique “tube” which includes a detachable shoulder-strap for ease of transport.
In yet another aspect thereof, a lock apparatus is disclosed for securing one or more objects to be secured to a stationery object. The lock apparatus comprises a locking mechanism and an elongated securing arm. The locking mechanism includes a body; a stem receptacle portion disposed in the body and having an internal profile changeable between a locked profile and an unlocked profile; an actuator portion disposed on the body and having a configuration selectively movable between a locked configuration and an unlocked configuration, the actuator portion being operatively connected to the stem receptacle portion to change the internal profile of the stem receptacle portion into the locked profile when the actuator portion is moved to the locked configuration and to change the internal profile of the stem receptacle portion into the unlocked profile when the actuator portion is moved to the unlocked configuration. The securing arm includes a first end having a stem portion configured for removable insertion into the stem receptacle portion of the locking mechanism, the stem portion, when inserted into the stem receptacle portion, being removable from the stem receptacle portion when the internal profile is the unlocked profile, and the stem portion, when inserted into the stem receptacle portion, being non-removably connected to the stem receptacle portion when the internal profile is the locked profile. The securing arm further comprises a second end spaced apart from the first end, the second end being connected to the body of the locking mechanism. The securing arm further comprises an armored sheath extending between the first end and the second end, the armored sheath being formed of flexible metallic tubing having an annular wall defining a continuous interior cavity, the annular wall of the flexible metallic tubing including at least two helically-wound metallic wires, rods, strips or ribbons interwound with one another such that successive coils of a first wire, rod, strip or ribbon are interleaved with successive coils of a second wire, rod, strip or ribbon to form a cross-sectional configuration. The cross-sectional configuration of the flexible metallic tubing is flexibly obedient such that the armored sheath is reconfigurable into multiple curved positions by the manual application of bending force and holds the curved positions after the bending force is removed until it is manually bent again. The cross-sectional configuration of the flexible metallic tubing further defines an outer diameter and an inner diameter of the armored sheath. The securing arm further comprises a reinforcing core disposed within the interior cavity of the armored sheath between the first end and the second end, the reinforcing core having an outer diameter and including at least one bundle of non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg, and the reinforcing core being sufficiently flexible to maintain the curved positions of the flexibly-obedient armored sheath after the bending force is removed.
In one embodiment thereof, the annular wall of the flexible metallic tubing includes a base-wire coil formed of a helically-wound metallic wire having a round cross-section and a packing-wire coil formed of a helically-wound metallic strip having a triangular cross-section, wherein the base-wire coil and the packing-wire coil are interleaved with an apex of the triangular cross-section of the packing-wire coil inwardly oriented toward a centerline of the flexible metallic tubing between directly successive turns of the base-wire coil.
In another embodiment thereof, the reinforcing core further comprises at least one bundle of metallic wire and the bundle of metallic wire is twisted with the bundle of non-metallic fiber material to form a rope of metallic wire and non-metallic fiber material.
In still another embodiment thereof, the reinforcing core further comprises an inner core including at least one bundle of metallic wire and an outer core including a plurality of bundles of non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg woven around the metallic wire of the inner core.
In yet another embodiment thereof, the reinforcing core further comprises an inner core formed from a plurality of bundles of metallic wire or non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg twisted into a rope and an outer core formed from a plurality of bundles of metallic wire or non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg woven around the rope of the inner core.
In a preferred embodiment thereof, the helically-wound metallic wires, rods, strips or ribbons of the annular wall of the flexible metallic tubing are formed of steel, at least some of the bundles of the inner core are formed of steel wire, and at least some of the bundles of the outer core are formed of an aramid or para-aramid fiber material.
In a further embodiment thereof, the annular wall of the flexible metallic tubing includes a pair of spirally-wound metallic strips having sliding joints between adjacent turns thereof formed by overlapping and crimping or interlocking adjacent edges.
In another embodiment thereof, the reinforcing core further comprises at least one bundle of metallic wire or another bundle of non-metallic fiber having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg and the bundles are twisted together to form a rope.
In still another embodiment thereof, the reinforcing core further comprises an inner core including at least one bundle of metallic wire and an outer core including a plurality of bundles of metallic wire or non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg woven around the metallic wire of the inner core.
In yet another embodiment thereof, the reinforcing core further comprises an inner core formed from a plurality of bundles of metallic wire or non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg twisted into a rope and an outer core formed from a plurality of bundles of metallic wire or non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg woven around the rope of the inner core.
In a further embodiment thereof, the actuator portion of the locking mechanism comprises a key-operated pin-tumbler lock.
In another embodiment thereof, the actuator portion of the locking mechanism comprises a multiple-dial combination lock.
In still another embodiment thereof, the body defines a longitudinal axis passing therethrough, and at least one of the first and second ends of the flexibly-obedient securing arm is connected to the body in a direction perpendicular to the longitudinal axis, thereby constituting a shackle-type lock.
In yet another embodiment thereof, the body defines a longitudinal axis passing therethrough, and both the first and second ends of the flexibly-obedient securing arm are connected to the body in a direction parallel to the longitudinal axis, thereby constituting a cable-type lock.
In still another aspect thereof, a lock apparatus is disclosed for securing one or more objects to be secured to a stationery object. The lock apparatus comprises a locking mechanism and an elongated flexibly-obedient securing arm. The locking mechanism includes an actuator portion operatively connected to a stem receptacle portion to change an internal profile of the stem receptacle portion into a locked profile when the actuator portion is moved into a locked configuration and to change the internal profile of the stem receptacle portion into an unlocked profile when the actuator portion is moved to an unlocked configuration. The elongated securing arm includes a first end having a stem portion configured for removable insertion into the stem receptacle portion of the locking mechanism, the stem portion being removable from the stem receptacle portion when the internal profile is the unlocked profile, but being non-removably connected to the stem receptacle portion when the internal profile is the locked profile. The securing arm further comprises a second end spaced apart from the first end, the second end being connected to the body of the locking mechanism. The securing arm further comprises an armored sheath extending between the first end and the second end, the armored sheath having an annular wall defining a continuous interior cavity and including at least two spirally-wound metallic strips interwound with one another to form a cross-sectional configuration, the cross-sectional configuration of the armored sheath being flexibly obedient such that the armored sheath is reconfigurable into multiple curved positions by the manual application of bending force and holds the curved positions after the bending force is removed until it is manually bent again. The cross-sectional configuration of the armored sheath further defines an outer diameter and an inner diameter. The securing arm further comprises a reinforcing core disposed within the interior cavity of the armored sheath between the first and second ends, the reinforcing core having an outer diameter within the range from 75% to 98% of the inner diameter of the armored sheath and including at least one bundle of elongated non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg extending between the first and second ends.
In one embodiment thereof, the armored sheath of the flexibly-obedient securing arm has an outer diameter of 20 mm or greater.
In another embodiment thereof, the armored sheath of the flexibly-obedient securing arm is formed from at least one of steel, stainless steel, magnesium steel, titanium, iron, brass, bronze and tin.
In still another embodiment thereof, the reinforcing core is formed from at least one of steel wire, braided steel wire, titanium wire, glass fiber, carbon fiber, aramid fiber, para-aramid fiber and poly paraphenylene terephthalamide fiber.
In yet another aspect thereof, a bicycle lock apparatus for securing a bicycle to a stationery object is disclosed, the bicycle lock apparatus comprising a locking mechanism selectively changeable between a locked configuration and an unlocked configuration and an elongated securing arm. The securing arm includes a first end adapted for removable insertion into the locking mechanism when the locking mechanism is in the unlocked configuration, but for non-removable connection to the locking mechanism when the locking mechanism is in the locked configuration. The securing arm further includes a second end spaced apart from the first end and connected to the locking mechanism. The securing arm further includes an armored sheath extending a length of at least seven feet between the first end and the second end, the armored sheath having an annular wall formed from at least two spirally-wound metallic strips interwound with one another to define a continuous interior cavity, the armored sheath being flexibly obedient such that the armored sheath is reconfigurable into multiple curved positions by the manual application of bending force and holds the curved positions after the bending force is removed until it is manually bent again, the armored sheath further defining an outer diameter and an inner diameter. The securing arm further includes a reinforcing core disposed within the interior cavity of the armored sheath between the first and second ends, the reinforcing core including at least one bundle of elongated non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg extending between the first and second ends.
For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout, the various views and embodiments of a lock with flexibly obedient securing arm are illustrated and described, and other possible embodiments are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations based on the following examples of possible embodiments.
Referring now to
The flexibly-obedient property (also known as the “stay-put” property) of the securing arm 104 results from the cross-sectional structure of the securing arm (see, e.g.,
It will be appreciated that bending a flexibly-obedient tubular structure formed from interwinding two or more helically-wound or spirally-wound coil elements does not result in permanent deformation of the coil elements; rather the coil elements just move relative to one another. This behavior is in contrast with other types of flexible tubes, e.g., corrugated conduit, wherein the bending of the tube results in permanent deformation of the wall elements. Accordingly, a flexibly-obedient structure formed from interwinding two or more helically-wound or spirally-wound coil elements has a greatly reduced tendency to fatigue and break from repeated bending and repositioning in comparison with other types of flexible tubes.
The degree of flexible-obedience provided by a particular flexibly-obedient tube structure is typically specified in terms of a weight that can be placed at the end of an unsupported horizontal tube of a specified length without causing relative movement between the coil elements. This weight-and-distance parameter is sometimes known as the “horizontal load capacity” of a particular flexibly-obedient tube. For example, a gooseneck tube having a horizontal load capacity of 2 pounds at a length 24 inches is considered very stiff for manual bending. In comparison, a gooseneck tube having a horizontal load capacity of 0.5 pounds at a length of 18 inches is considered very comfortable for manual bending.
Referring still to
In the illustrated embodiment of the lock 100, the flexibly-obedient securing arm 104 comprises an armored sheath 106 fabricated from a first metallic spring 107, which may be formed from, but is not limited to, iron, steel, or any variation thereof, interwound with a second metallic spring 109. A reinforcing cord 111 (also known as a “core”), which may be fabricated from, but is not limited to, steel, braided steel, titanium wire, glass fiber, aramid fiber, para-aramid fiber, Kevlar® brand poly paraphenylene terephthalamide fiber, carbon-Kevlar®, carbon nanotubes, or any combination thereof, is threaded through the interior cavity of the springs, adding a third layer of security protection. In some embodiments, the reinforcing core 111 includes at least one bundle of non-metallic fiber material. In preferred embodiments, the non-metallic fiber material of the reinforcing core 111 includes non-metallic fiber material having a tensile strength-to-weight ratio of at least 1000 kN·m/Kg, for example glass fibers. In more preferred embodiments, the non-metallic fiber material of the reinforcing core 111 includes non-metallic fiber material having a tensile strength-to-weight ratio of at least 2000 kN·m/Kg, for example, aramid fibers, carbon fibers (AS4) and Kevlar® brand poly paraphenylene terephthalamide fiber.
In this embodiment, one end 108 of the securing arm 104 is permanently connected to the body 110 of the locking mechanism 102. The other end 112 of the securing arm 104 includes a stem portion 114, which may be constructed from hardened steel, stainless steel, titanium, iron, or other rigid metal or metal alloy, and is configured to be removably insertable into a stem receptacle portion 116 disposed within the body 110 of the locking mechanism 102. The stem receptacle portion 116 of the locking mechanism 102 has an internal profile changeable between a locked profile and an unlocked profile. The locking mechanism 102 of this embodiment further includes an actuator portion 118 disposed on the body 110 and having a configuration selectively movable between a locked configuration and an unlocked configuration. In the illustrated embodiment, the actuator portion 118 includes a plurality of dials 120 forming a combination lock. The actuator portion 118 is operatively connected to the stem receptacle portion 116 to change the internal profile of the stem receptacle portion into the locked profile when the actuator portion is moved to the locked configuration and to change the internal profile of the stem receptacle portion into the unlocked profile when the actuator portion is moved to the unlocked configuration.
The body 110 of the lock mechanism 102 is preferably constructed from materials including, but not limited to, steel, stainless steel, or any weather- and rust-resistant combination thereof. The body 110 may be encased in a scratch-resistant cover constructed from materials including, but not limited to, rubber, foam, plastic or any combination thereof. Portions of the body 110 may be solid, or may be hollow as necessary. Hollow portions of the body 110 may house additional components (not shown) including, but not limited to, lights, alarms, GPS devices, etc. The flexibly-obedient securing arm 104 of this embodiment is permanently connected to one end of the body 110. The body 110 of the locking mechanism 102 of this embodiment houses the actuator portion 118 including a combination lock with multiple dials 120. In other embodiments, the actuator portion 118 may include a key lock, a dead bolt, or similar locking mechanism operated by inputting a resettable combination or by inserting a key from either the side and/or from the locking end of the body 110. A dust cover 122 may be provided on the locking mechanism 102 to protect the locking dials 120 from dirt and the like.
In particular,
In particular,
In particular,
Referring now to
The lock 200 includes a lock mechanism 102 and a flexibly-obedient securing arm 104. For purposes of illustration, the securing arm 104 in
Referring still to
Referring now to
Referring now to
Referring now to
Referring now to
In particular,
Referring now specifically to
Referring specifically to
Referring now specifically to
In particular,
Referring now specifically to
Referring specifically to
Referring now specifically to
It will be appreciated that in other embodiments, different configurations of gooseneck tubing may be used in place of the tubing shown in
It will further be appreciated by those skilled in the art having the benefit of this disclosure that this lock with flexibly obedient securing arm provides a lock of improved design for securing bicycles and other property. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope hereof, as defined by the following claims. Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
This application claims benefit of U.S. Provisional Application No. 62/029,616, filed on Jul. 28, 2014, entitled FLEXLOCK, A FLEXIBLY OBEDIENT LOCKING SYSTEM FOR THE SECURING OF BICYCLES AND OTHER PROPERTY, and also claims benefit of U.S. Provisional Application No. 62/109,539, filed on Jan. 29, 2015, entitled FLEXIBLY OBEDIENT SHACKLE-STYLE LOCKING SYSTEM FOR BICYCLES AND OTHER PROPERTY. U.S. Application Nos. 62/029,616 and 62/109,539 are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62029616 | Jul 2014 | US | |
62109539 | Jan 2015 | US |