The invention relates generally to lockable tools, such as knives, which can be opened with the activation of a release.
Lockable knives and other tools, e.g., with spring biased blades, have a variety of configurations and release button designs. For example, some knives have a reciprocating (sliding) button and are referred to as having Flylock mechanisms. Existing Flylock sliding buttons generally move along the long longitudinal length axis of the knife, within an opening in a distal portion of the handle. As used herein, for purposes of reference only, an open knife will be referred to as oriented with the free tip of the blade at the distal end and its blade edge facing upwards, to define a front left side of the handle and a rear right side of the handle. When closed, the tip will point in the proximal direction with the blade edge facing downwards and protected, with a front left handle side and a right rear handle side.
The side of the handle portion of a Flylock design knife is typically only a cover plate (“scale”), and not part of the frame or opening mechanism. Flylock mechanisms typically have a complex multiplicity of parts, including pins, springs, levers, cams and screws that are factory assembled into a permanent unit. Typically, they are not internally user serviceable, and are not readily reconfigurable for both left-hand and right-hand activation.
In addition to the complexity of conventional mechanisms, the appearance of these mechanisms can be undesirable. For example, buttons and levers can be unsightly. They can also be difficult to manipulate under certain circumstances.
These and other shortcomings in the prior art are addressed by the present invention.
An easy opening lockable tool, with a sliding scale north-south release along the longitudinal axis of the tool, is provided by the present disclosure. The tool, such as a knife, can be configured for both right-hand and left-hand use. It can have fewer parts and can be easily serviced or reconfigured by a user. Tools in accordance with the invention can have a sliding scale that can be moved in the distal-proximal/north-south direction along the longitudinal axis of the tool to activate the release to permit automatic or manual opening of the tool. The tool can include a frame with two opposing side walls and a gap therebetween to receive the tool. The tool can swing out the top of the cavity, between open and closed configurations. It can be spring biased or swung with a flip of the wrist. Alternatively, the tool can have an out-the-front opening mechanism, with closed top and bottom edges and a front (distal) opening through which the tool can extend and retract. Each side wall can be the mirror image of the other, for reconfiguration for use by the opposite hand. By slidably mounting the scales on the frame and coupling the scale to the release mechanism, the unlocking mechanism can be activated by reciprocating the scale along the longitudinal axis.
In one embodiment of the invention, one and preferably both of the walls can have an opening, such as a keyhole shaped opening having a round portion near the distal end of the wall and a slot proximal to the round portion. The opening can be shaped to receive a circular cam that can be joined to a resilient member, such as a coil kick spring that biases the cam to rotate. Without the spring, it can be opened with a flip of the wrist. The cam can be joined to the tool, to automatically swing the tool open when the cam is released. If present, the slot of the keyhole can have a shelf at its proximal end.
A sear can be provided to releasably lock the cam in place, with the tool in the open or closed position. The sear can be biased in camming engagement with the cam, preferably in the distal direction. The sear can have a head for engaging the cam and a shaft extending proximally from the head. The proximal end of the sear shaft can be placed on the shelf. The head portion at the distal end can be a projection (or receptacle) for engaging a corresponding projection (or receptacle) on the cam. For example, the sear head can be wedge shaped and nest into one of a pair of V-shaped grooves in the cam or grooves on the sear head can receive projections on the camming surface. The grooves or projections are preferably symmetric and on opposite sides of the cam, one to lock the cam and the tool open and one to lock the tool closed. In another embodiment of the invention, the wedge or grooves can be formed on a base of the tool, which rotates around a shaft or axle. The tool can be biased into the open position by a spring. In another embodiment of the invention, the scale can be biased into the direction of the groove (or wedge) and the sear can be coupled to the scale. In this embodiment, the sear is indirectly biased into the locking engagement. In still another embodiment of the invention, the tool opens out-the-front by a conventional mechanism that is activated by sliding the scale along the longitudinal axis. Reciprocating the scale, which is coupled to the activation mechanism, along the longitudinal axis, unlocks the tool so that it will automatically open or close.
In one embodiment of the invention, one side of the tool can include a sliding cover (scale) coupled to the sear. In one embodiment of the invention, the cam or tool can be biased into the open position. If the tool is locked in the closed position, sliding the scale proximally along the longitudinal axis can unlock the cam or other mechanism and permit the resilient member to rotate the cam (or tool), which in turn, kicks open the tool. Releasing the handle can permit the sear to advance into the cam and eventually the groove in the cam and lock the tool in an open position. To close the tool, the handle is again slid proximally to release the cam from the sear, and the tool can be closed by hand. The scale/cover is released and the sear is resiliently urged in the distal direction and engages a groove on the cam to lock the tool back in the closed position.
The sear can have a chisel or wedge shape tip head at its distal end or a matching groove. The circular cam can include V-shaped notches that match a V-shaped sear head or a wedge shaped projection to engage a notch in the tip of the sear. The head can act a cam follower and wedge into the V-notches in the open and the closed positions. This wedging action produces an open blade that locks more stiffly in place, with less movement or play than many other configurations.
In one embodiment of the invention, the tool can be fit together similarly to a mechanical puzzle and requires only two fasteners, such as screws or pins—one to connect the scale to the sear and one to connect the cam to the tool. All the other parts can be configured and arranged to fit together into place like a three dimensional jigsaw puzzle.
The major components of a tool in accordance with the invention can comprise the tool assembly (a blade or other tool), which is coupled to a cam, which can be coupled to a resilient member such as a coil kick spring; a handle assembly (a frame and one or two sliding covers); and the release assembly (the sear coupled to a cover and resiliently biased into and interacting with the cam). These elements can be puzzle fit and hold themselves in place. The screws or pins fasten together the moving sub-assemblies. The screws or pins are internal and need not be seen when the tool is assembled. This provides a clean outward appearance, without visible pins or screws.
The scale release front (left side) scale button is preferably flush and can match the rear (right side) scale cover plate, which only functions to cover the internal mechanism and need not perform a mechanical function other than sealing. Alternatively, both scales can function to activate separate releases for separate tools. Thus, when the tool is a knife, it can appear to be a trick knife with no visible release or activator.
Tools in accordance with the invention can be made to be user serviceable, and require no special tools to disassemble and reconfigure between left hand or right hand operation. Thus, this tool design, referred to as a scale release/hidden button design, can include parts, assemblies, features and qualities that constitute, e.g., a knife with a folding blade that may be spring operated that locks open and locks closed.
The handle body frame can be a one-piece item with a “C” or “U” shaped channel cross section, having two opposing walls and creating a blade well cavity for receiving the blade (or other feature) in a closed position. An out-the-front embodiment can have no open sides or top/bottom edges, and has an open front. The handle body can include dovetail groove tracks cut along the long axis of one or both sides of the exterior of the handle body and the scale can ride in those tracks. Thus, some, but not all the frame is covered. Alternatively, the dovetail groove can be on the inside of the scale and a rib on the frame can ride in the groove and the scale can cover all of the side of the frame. The case can have edges that wrap around the sides of the frame and cover the frame from top to bottom. The handle body can include a thru hole to act as a blade pivot bushing inside diameter, through one or both of the frame walls and cavities made to conceal internal components, such as the sear and allow access for internal assembly.
In another embodiment of the invention, the tool has an out-the-front opening mechanism. For example, the tool can have the mechanism described and depicted in U.S. Pat. No. 7,562,455, the entire contents of which are incorporated herein by reference. This mechanism can be activated by coupling the release to the scale and then activating the release mechanism by sliding the scale along the longitudinal axis.
The handle features and following internal parts combine to produce an external appearance of a preferred operating mechanism that is sleek and without visible fasteners. The blade locking device can include a chisel point (wedge shaped) sear that by nature of its physical shape as a wedge, can force the blade to come to battery or precisely stop in position with low wiggle or play. The chisel point sear can interact with a matching V-notched cam surface on a shaft (or vice versa), such as a step-shaft part in a fashion that normal metal fatigue or abrasive wear is not detrimental to the location fit of said parts. Alternatively, the V-notches can be formed into the base of the blade, without the need for a separate shaft. Alternatively, the spring forcing the sear forward can be attached to the scale and the scale can be attached to the sear. Subsequent use will not adversely affect blade alignment, but rather, could cause the contact surface to sharpen and improve the wedge fit.
The V-notch cam surface profile can be on a multifunctional step shaft, which when fastened to the tool blade, can index the blade to both open and closed positions, locate and retain the blade within the handle so that it will not fall out, act as a pivot shaft bushing and bearing for the blade rotation, and act as a fastening point for the resilient member, such as a coil kick spring. Alternatively, the cam shaft can be incorporated into the base of the tool.
A knife or other tool in accordance with the invention can include insert cover plates referred to as scales, that can slide and move inside or over a dovetail groove track, cut along the long axis of both outer sides of the handle body or inside of the scale. The scale multifunctions as both a cover plate and a release mechanism. The scale release can be flush and match the nonfunctional rear scale cover plate in such a way that it appears to be trick knife with a hidden release.
A chisel point sear can be attached to the underside (inner surface) of one of the scales to constitute the operating mechanism sub-assembly or release of the automatic blade. The sear can be attached to the scale with a fastener inserted through openings in the handle body in a manner that the fasteners and sear resilient member, such as a compression spring are hidden from view upon final assembly.
A multifunction step shaft and coil kick spring in accordance with the invention can be manufactured with a thin profile, so as to be easily concealed under the exterior scale cover plates. Using multifunction parts can reduce the total number of parts, which can include 1 blade, 1 sear, 1 sear shaft, 2 handle covers, 1 frame, 2 springs, and 2 screws. The parts can be easily disassembled and reassembled by the user, as opposed to a factory permanent pinned assembly.
The internal parts, handle and blade in accordance with the invention can all be made to be ambidextrous, such that either the front (left) or rear (right) scale activates the release, so that reassembly can be for either right handed or left handed users.
The internal parts can be configured such that the same parts can be used in any blade (or other tool) size and or external profile appearance and provide an easy interchangeability of parts.
The internal chisel point sear and the step shaft device can work with a coil kick spring and also with conventional leaf kick springs inside the blade as well.
The external sliding scale can be surface cut into a trademark design appearance shape or pattern profile without adversely affecting the internal components, in such a way that the trademark shape applied to the folding tool can also be applied to an Out-the-Front (OTF) knife or telescoping blade knife, so as to produce a matching set.
The external sliding scale is interchangeable on existing stockpiles of knives, and can be produced with a variety of grip patterns, semi-precious material inserts, or can be engraved or printed as a billboard with any company Logo.
Other objects, advantages and embodiments of the invention will be apparent from the specification and the drawings and the scope of the invention will be indicated in the claims.
The present disclosure will become more readily apparent from the specific description accompanied by the following drawings, in which:
The present disclosure may be understood more readily by reference to the following detailed description of the disclosure taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed disclosure.
Also, as used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It is also understood that all spatial references, such as, for example, horizontal, vertical, top, upper, lower, bottom, left and right, are for illustrative purposes only and can be varied within the scope of the disclosure.
Tools in accordance with preferred embodiments of the invention can include a tool mounted on a frame having a length, height and width. The tools are advantageously opened (unlocked) by sliding a scale (side cover) in the north/south direction along the longitudinal lengthwise axis. The scale can have substantially the same height as the frame or be slightly taller or shorter. The scale can ride in a groove on the frame side defined by ridges at the top and bottom of the frame. This can leave the ridges exposed or the scale can wrap around the ridges to substantially cover the side of the frame from the horizontal perspective. The side of the frame can have a rib, and the top and bottom of the scale can wrap around the top and bottom edges of the rib. In both situations, the scale is coupled to the unlocking mechanism.
In another embodiment of the invention, the scale can be secured to the frame with a device extending into the frame. With a security device coupled directly to the frame, a flat engagement of the scale to the frame, that does not involve a mating between the scale and frame, is acceptable. Thus, longitudinal sliding of the scale can unlock and open the tool or unlock an open tool which can close automatically or manually.
An exploded perspective view of a tool, in accordance with a preferred embodiment of the invention, is shown generally in
Handle frame 2 can be formed from a metal block, milled so that all features are symmetrical, front and back. Frame 2 can be constructed in other manners, including stamping and welding and other ways as will be apparent to those of skill in the field. Handle frame 2 is formed with two opposing walls, a front wall 2a, which faces a rear wall 2b, with a blade well cavity 11 therebetween. A front left side scale receiving groove 12 is located on the outside of front wall 2a and a rear right side scale receiving groove 13 is located on the outside of rear wall 2b. Grooves 12 and 13 are optionally formed in a dovetail fashion to help retain the covers (scales) to frame 2. Additional configurations for slidingly retaining scales 1 and 3 to frame 2 are depicted in
Blade well cavity 11 is formed as a narrow gap between walls 2a and 2b, and is slightly wider than a blade 8. Dove tail grooves 12 and 13 extend along the north/south longitudinal axis of frame 2. Front scale 1 (left side looking down on knife 200 with the distal end facing forward and the open blade facing down) rides in groove 12. Rear scale 3 rides in groove 13. Front scale 1 and rear scale 3 are cut with dovetail edges, to slide into grooves 12 and 13 to retain scales 1 and 3 to frame 2.
Frame 2 is also formed with a pivot hole 14, which has the form of a circular thru hole, completely through frame 2. In other embodiments of the invention, the hole can be through only one of the walls or can be in the form of a recess, not a thru hole. Pivot hole 14 is sized to fit the major diameter of a step shaft 7, preferably with a precise fit. Frame 2 also has a keyseat slot 15, extending proximally from pivot hole 14. Keyseat slot 15 has two sections. The distal section of slot 15, closest to pivot hole 14, is a thru hole extension from pivot hole 14. The proximal section of slot 15 is a true keyseat and has a floor that does not extend all the way through the wall of groove 12. Thus, the proximal end of keyseat slot 15 acts as an internal shelf, and the distal end of slot 15, near pivot hole 14, is a thru hole allowing access to the far side internals for parts assembly. The wall of frame 2 having groove 13 is preferably symmetrical to that of groove 12 and should have a mirror image keyseat slot with a shelf at its proximal end for reconfiguration for left hand use.
Grooves 12 and 13 in frame 2 are identical in size. Front scale 1 has a size allowing a running and sliding fit into dovetail groove 12, so that scale 1 may move along the longitudinal axis with finger or thumb pressure in a strictly reciprocating fashion, as a release activator, as discussed below (see arrow 201 indicator markings on scale 1). The dovetail edges of rear scale 3 are cut slightly wider as a location fit or press fit, so that scale 3 can be removably tapped or pressed into place into frame groove 13, as a cover plate. Scale 3 should fit tightly enough, so as not to move with finger pressure during activation of scale 1. Thus, the dovetail edges of scales 1 and 3 should be cut differently, so that when a user's hand causes scale 1 to move proximally, the user's hand will urge scale 3 in a distal direction, which will wedge scale 3 more firmly in place in groove 13. If reconfigured for left hand use, scale 1 and scale 3 are switched to fit into grooves 13 and 12, respectively, and scale 1 will act as the release and slide in groove 13, with scale 3 motionless in groove 12.
Sear 4 and sear spring 5 are inserted into keyseat slot 15 of groove 12. Shaft 16, with spring 5 thereon rests on the shelf of keyseat slot 15. Chisel point head 19 extends in the distal direction, into pivot hole 14. As shown in
Referring again to
An external end 90 of a coiled kick spring 9 is inserted into a saw cut 25 at the bottom of minor diameter 24. External end 90 of kick spring 9 presses against frame 2. In this manner, kick spring 9 is constructed and arranged to impart a rotational bias against step shaft 7, which in turn imparts rotational bias to blade 8.
With blade 8 in the open position, chisel point 19 of sear 4 will nest in a V-notch 21 (
The parts shown are made such that knife 200 can be disassembled and reassembled into a left-hand or right-hand knife by switching scale 1 and scale 3, moving sear 4 and shaft 7 to slot 15 in groove 13 and reversing sear 4 and screw 6.
Note that compression spring 5, on shaft 16 of sear 4, is coupled to front scale 1 by sear retaining screw 6. That combination constitutes a moving sub-assembly of parts within the whole of knife 200. Also, step shaft 7, with kick spring 9 inserted in cut 25 is coupled to blade 8 by screw 10. It therefore constitutes a separate moving sub-assembly of parts within the whole of knife 200.
Step shaft 7 has multiple purposes and functions. Major diameter 20 of step shaft 7 functions as a main pivot bearing for folding knife blade 8. It also acts as a structural/puzzle retaining piece which will be explained below with reference to
Minor diameter 24 of step shaft 7 fits into hole 80 in the proximal end of knife blade 8. Minor diameter 24 requires a length sufficient to protrude thru the thickness of knife blade 8. Minor diameter 24 has bottom saw cut 25, on which coil kick spring 9 will act, to impart rotational bias to shaft 7 and thereby, blade 8.
Continuing with groove 12 facing up, sear 4 and spring 5 are combined and placed into handle keyseat slot 15. Scale 1 is then inserted into front handle dovetail groove 12, in a sliding, free moving fashion. Scale 1 prevents sear 4 from falling out of key seat slot 15. No additional fasteners are needed.
It should be understood that although the present disclosure is described as relating to knife blades, that blade element can be replaced by other tools. For example, the knife blade can be replaced by a saw, a ruler, a file, a screwdriver, a fish scaler, a comb, a cork screw, a bottle opener, a can opener, an ice pick, etc. Other replacement blades are contemplated.
Furthermore, the ease of disassembly and reassembly can make for kits that include a basic handle component with multiple blades and other tool components. Referring to
Scale 1 shows as a reference, the chisel point sear fastened to the underside, which converts a normal cover plate scale, into a sliding release. The basic handle frame 2, can have a rectangular profile. Frame 2 has a large thru bore on one side, which also has a machined key seat stepped slot. Female dovetail tracks run between distal and proximal ends along the length axis. All of this machining enhances the mechanical puzzle effect of the assembly. All of this machining can be confined to the center or one end of the tool body, allowing subsequent modification to the periphery of the handle at a later time. It can be made oversize, to be trimmed later. Other shapes are contemplated.
The second row of parts depicted in
Another benefit of a design in accordance with the invention is the user serviceability of the assembly. Rather than a factory fixed assembly, a variety of blades (27, 28 and 29) can be swapped out by a user with relatively low mechanical skill. Even more Swiss army style saws, files and other devices can be produced, including a disposable razor blade holder, requiring only the two-hole pattern in the base of the folding blade. The existing stockpiles of internal parts simply “plug-and-play” with these options.
Another benefit of this design is ease of modification of the handle shape. A handle body 30 that has its profile milled for a tapered hand grip, or another variant profile 32 can be attached. Within specific limits, the handle body can be altered after the fact by a kit buyer to craft his own custom designs.
In another embodiment of the invention, a scale 31 is a potential billboard for engraving or printing is available. Buyers can purchase replacements with various semi-precious inlaid materials, or pre-printed sports logos and so forth.
A scale 33, modified to fit a custom profile, the ends can be changed, but the long sides should remain the dovetail shape to fit the sliding track in the handle body. An assembled fancy profile knife 34, with no visible fasteners can be assembled. A sliding button scale coverplate 35, which has a surface texture grip pattern milled into its top surface can also be provided.
Another benefit of this design is a concern for factory manufacturing. The same setup for a short knife can be used for a longer knife. All of the machining for the release components are on one end of the handle body. Unlike other knives that require custom back spine springs tailored to a specific length, this design permits use of the same basic group 26 for any length knife.
A standard rectangular profile handle body 36, similar to body 2, except longer, a longer blade 37, a custom contour profile 38, an assembly of a long stiletto design 39 with a traction grip pattern sliding scale release button, can all be provided.
Not shown is yet another version possible for collectors, a folding boar knife/trench knife, a folding knife with a long blade that is fitted to a short handle body. When closed, the blade end protrudes like a short sheath knife, only to spring open (by a hidden release sliding scale button) into a full length fighting knife.
The wedge shape of chisel point 19 of sear 4, by nature of its wedging action to lock (open or closed) blade 8, can produce a product that is more solid and robust in both the open and closed positions than previously marketed folding boar knives. All of this is possible by the mix and match/plug and play components, that can be marketed separately or in multi-part kit form.
The scale can be removable and interchangeable to swap out advertising company logos engraved or printed as a billboard, or to swap different grip materials. Matched sets of both a folding design of the disclosure and an out-the-front (OTF) knife with similar outward appearance and the north/south slidable scale release of the invention can be achieved.
The components of the automatic opening tool with north/south sliding scale release described herein can also be provided as a kit to an end user. The tool can be provided to a user disassembled and the user can assemble the components as desired.
An axle 620 replaces stepped shaft 20 of tool 200 and is provided to permit blade 608 to pivot, such as from force provided by a kick spring 609. Axle 620 rides in a frame (not shown) of tool 600. The frame of tool 600 can be otherwise similar to frame 2 of tool 200. An end of kick spring 609 can fit into a cut 625 in base 650 of blade 608. Spring 609 is otherwise held in the frame of tool 600. Notches 621 and 622 are sized to receive a wedge shaped head 619 of a sear 604, urged forward by a spring 605 of the frame of tool 600, which is modified accordingly.
In accordance with yet another embodiment of the invention,
As discussed above,
Activation mechanisms in accordance with the invention can also be used with out-the-front opening tools.
U.S. Pat. No. 7,562,455, the contents of which are incorporated herein by reference, in their entirety, depicts and out-the-front opening knife. The knife is activated by reciprocating a button exposed on the outside of the front cover to automatically extend the blade. Activating an extended knife will automatically retract the blade. The activation mechanism of knife 1000 is activated by sliding scale 1001 along the longitudinal axis to cause peg 1100 (or a different type of structure apparent to those skilled in the art) to either cause blade 1008 to extend into the open configuration of
Grooves 1202a and 1202b act as female receptacles for scales 1201 and 1203. Thus, they cover most of the left and right sides of frame 1202, but do not cover the entire left and right sides. Scales 1201 and 1203 have a trapezoidal cross section, with a wider inside base portion facing frame 1202 and a cavity therein and a more narrow outside surface facing outward from the central cavity. The outer edges of groove 1202a and 1202b are angled inward, to retain scales 1201 and 1203 to frame 1202.
The edges of scales 1301 and 1303 are angled, to match the angled flare of retaining ribs 1350. This provides a close tolerance, but can be difficult to machine. Edges 1461 of scales 1401 and 1403 can be squared off. This can be easier to machine, but provides a looser fit. However, it can provide more sliding friction.
An automatically opening tool 1500, in accordance with another embodiment of the invention, is shown in
Automatically opening tool 1500 includes knife 708, spring 709 and notched shaft 720, as in tool 700. However, the nature and arrangement of sear 704 and spring 705 are modified, as are the slots in which they are positioned. Scale 1501 includes a rear attachment member 1551, which can be a post, hook, wire, or otherwise. Rear attachment member 1551 extends through a slot 1515 in frame 1502 and can attach to a spring, which urges scale 1501 in the distal, forward direction or to a corresponding member to secure scale 1501 in sliding engagement against frame 1502. A forward attachment member 1552 extends through a forward slot 1516 in frame 1502 and can attach to a sear 704′, which can be similar to sear 704. Alternatively, sear 704′ can be coupled to a spring, similar to sear 4 of
In a retracted configuration, blade 1708 is received within slot 1704 and pivotably coupled to frame 1702 with a shaft 1720. Base 1750 includes a shaft receiving through hole 1751. A complementary shaft receiving hole 1752 is formed through one or both sidewalls 1703. In one embodiment of the invention, shaft 1720 is formed as a two-piece shaft 1720a and 1720b. Portion 1720a is preferably a keyed pivot barrel, with portion 1720b as a complementary pivot screw. Together, they act to pivotably secure blade 1708 to frame 1702.
Base 1750 includes a groove 1760 formed therethrough. A stop pin 1770 is positioned through groove 1760 and is located between walls 1703 of frame 1702. Groove 1760 is partially circular, and concentric with hole 1751 through base 1750. Thus, as blade 1708 extends and retracts between the open and closed positions, stop pin 1770 rides in groove 1760. The ends of groove 1760 act to stop blade 1708 from further rotation and help properly position blade 1708 in the retracted or extended configurations.
Tool 1700 includes an optional and removable coil spring 1709, which can be located around shaft 1720. Coil spring 1709 includes a first end 1709a, which is received in a corresponding hole in frame 1702, to secure spring 1709 to frame 1702. A second end 1709b is received in a hole 1725 through base 1750. Spring 1709 can be enclosed in a pair of cap/bushings 1709c. The second half of the pair may be placed on the other side of blade 1708 (not enclosing spring 1709), in order to ensure centered alignment of blade 1708 in channel 1704. In another embodiment of the invention, spring 1709 is removed and tool 1700 is opened manually, such as with a flick of the wrist. In another embodiment of the invention, spring 1709 is removed or replaced, as desired, to switch tool 1700 between an automatically opening tool, and a manually opening tool. One or more washers (not shown) can be used to take the position of spring 1709 if said spring is not included.
At least one of the walls 1703 of frame 1702 includes a spring receiving slot 1706. A compression spring 1705 resides in slot 1706. A pin 1707, which can be in the form of a torx screw secured to an inside surface of scale 1701, rides in slot 1706. An inward end of pin 1707 extends into slot 1706 and is biased in the forward position by spring 1705. In this manner, because pin 1707 is secured to scale 1701, spring 1705 biases scale 1701 to the forward position. However, scale 1701 can be manually slid rearwards along the longitudinal axis against the force of spring 1705 to unlock tool 1700.
With blade 1708 in the locked, extended configuration, a release pin 1780 interfaces with the flat tang catch surface as part of a notch 1721, thus preventing blade 1708 from rotating into the closed configuration. Release pin 1780 is secured to the inner surface of scale 1701. For example, pin 1780 can be in the form of a shaft extending from a base 1790. Base 1790 can fit into a recess formed in the inner surface of scale 1701 and can be secured with a torx screw 1791. To close tool 1700, scale 1701 is retracted rearwards along the longitudinal axis, which moves release pin 1780 rearwards, out of a position in notch 1721, where it had locked blade 1708 in the open configuration, and blade 1708 can be rotated closed by hand. Release pin 1780 can slide forward into camming engagement against base 1750. As blade 1708 rotates further, pin 1780 will slide into a second groove/notch 1722 in base 1750, to lock blade 1708 in a closed configuration.
To unlock blade 1708, scale 1701 is slidingly retracted against the forward force of spring 1705, which retracts release pin 1780 out of notch 1722. In the manual embodiment, blade 1708 can be swung out of slot 1704, into the open configuration, wherein pin 1780 can be locked into notch 1721. In the automatic embodiment, spring 1709 biases blade 1708 into the open configuration and pin 1780 can ride against or behind base 1750 until scale 1701 is released and locks pin 1780 into notch 1721.
While the above description contains many specifics, these specifics should not be construed as limitations of the invention, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other embodiments within the scope and spirit of the invention as defined by the claims appended hereto.
Where this application has listed the steps of a method or procedure in a specific order, it may be possible, or even expedient in certain circumstances, to change the order in which some steps are performed, and it is intended that the particular steps of the method or procedure claim set forth herein below not be construed as being order-specific unless such order specificity is expressly stated in the claim.
While the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Modification or combinations of the above-described assemblies, other embodiments, configurations, and methods for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application claims priority to Ser. No. 16/689,620, filed Nov. 20, 2019, which itself claims priority to Ser. No. 15/792,204, filed Oct. 24, 2017, and to provisional application Ser. No. 62/436,570, filed Dec. 20, 2016. The entire contents of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3079686 | Christy | Mar 1963 | A |
4389776 | Okada | Jun 1983 | A |
5111581 | Collins | May 1992 | A |
5325588 | Rogers | Jul 1994 | A |
5425175 | Rogers | Jun 1995 | A |
5475925 | Newman | Dec 1995 | A |
5735051 | Berns | Apr 1998 | A |
5878500 | Emerson | Mar 1999 | A |
5915792 | Sakurai | Jun 1999 | A |
5964035 | Poehlmann | Oct 1999 | A |
6122829 | McHenry et al. | Sep 2000 | A |
6427335 | Ralph | Aug 2002 | B1 |
6438848 | McHenry et al. | Aug 2002 | B1 |
6826836 | Lin | Dec 2004 | B1 |
7036174 | Painsith | May 2006 | B2 |
7107686 | Linn | Sep 2006 | B2 |
7249417 | Chu | Jul 2007 | B2 |
7562454 | Steigerwalt et al. | Jul 2009 | B2 |
7562455 | McHenry et al. | Jul 2009 | B2 |
7748122 | Duey | Jul 2010 | B2 |
7854067 | Lake | Dec 2010 | B2 |
8281437 | Lake | Oct 2012 | B2 |
8375590 | Duey | Feb 2013 | B2 |
8499460 | Pearman | Aug 2013 | B1 |
8549754 | Bung | Oct 2013 | B2 |
9227330 | Felows | Jan 2016 | B2 |
9346176 | Collins | May 2016 | B2 |
9505141 | Duey | Nov 2016 | B2 |
9527218 | Valdez | Dec 2016 | B2 |
9579807 | Chu | Feb 2017 | B2 |
9764485 | Hawk | Sep 2017 | B1 |
20110099817 | Duey | May 2011 | A1 |
20140115898 | Collins | May 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20220126465 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62436570 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16689620 | Nov 2019 | US |
Child | 17572711 | US | |
Parent | 15792204 | Oct 2017 | US |
Child | 16689620 | US |