The present invention relates generally to locker accessories. More particularly, it relates to a dart game including darts designed for use with a metal locker and a target decal that can be attached to a locker door.
A dart game system consists of darts and a target. The target is partitioned into regions and is marked with symbols, allowing users to play various games involving throwing the darts at the target. The regions of the target have meaning of significance within those games adapted to a particular target layout. A player attempts to excel by throwing her darts so that they stick to regions of the target associated with high scores within the context of the game at hand.
A variety of different target layouts and games have been created. All the games emphasize accuracy in throwing the darts at specific regions of the target. The target is typically mounted or printed on the surface of a dart board. Classical dart boards used in taverns are made of cork, straw, or paper.
According to the official rules of the World Darts Federation, “darts . . . shall not exceed an overall length of 30.5 cm, nor weigh more than 50 grams. Each dart shall consist of a needle shaped point which shall be fixed to a barrel. At the rear of the barrel there shall be attached a flighted stem, which may consist of separate parts.” (WDF Playing and Tournament Rules, 6th Rev. Ed., Dec. 1, 2003) Historically, the flighted stem contained feathers, which have been replaced in many modern darts with fins. Each fin or feather is approximately planar, with the plane of each fin including the common centerline of the barrel and the point. The metal point at the tip of the dart sticks to the target by penetrating through the surface into the fabric of the underlying board.
Needle-nose darts can cause injuries to the players, bystanders, the wall on which the board is mounted, or other nearby objects. This safety consideration has led recently to a variety of new materials and designs for dart/target combinations in which the sharp points are replaced by flat surfaces. Many of the new game systems use darts with tips that consist wholly or partially of magnets. The magnet tips cause the darts to stick to surfaces that contain ferromagnetic material. According to the American Heritage Dictionary, “ferromagnetic” is defined as: “Of or characteristic of substances such as iron, nickel, or cobalt and various alloys that exhibit extremely high magnetic permeability, a characteristic saturation point, and magnetic hysteresis.” Ferromagnetic material has the capability of being turned into a magnet, but which might not itself be magnetic. Magnetic darts sometimes employ dart tips that are rare-earth magnets, which are significantly stronger than more common iron magnets (e.g., Jonsson, U.S. Pat. No. 5,775,694; Gittens, U.S. Pat. No. 5,613,694).
Some magnetic darts, such as those described by Kettlestrings (U.S. Pat. No. 4,119,316) and Seymour (U.S. Pat. No. 6,062,997), differ significantly in both shape and structure from traditional needle-nose darts, because they are designed for use primarily by children. But many magnetic darts retain the traditional elongated barrel and flighted stem design (e.g., Jonsson, U.S. Pat. No. 5,775,694).
Prior art magnetic dart game systems contain a target board including either a rigid layer of magnetic material or a relatively rigid rubber layer impregnated with magnetic material. Jonsson (U.S. Pat. No. 5,775,694) suggests covering a board that includes magnetic material with a printed plastic decal target, attached to the board with an adhesive, which is easy to remove from the board
The present invention dart game consists of magnetic darts and a matching target designed for use in a metal locker, such as those commonly found in a school or an athletic facility. A locker has very limited space for the occupant to store possessions. A prior art magnetic dart has a barrel of length approximately equal to that of typical traditional pointed darts. Such a long dart, sticking to a target mounted on the inside of a locker door, will protrude unnecessarily far into the interior volume of the locker when the door is shut. As the locker door is being closed or opened, the dart can come into contact with other locker contents—coats and other clothing, books, athletic gear, footwear, and shelves. In consequence, the dart may become dislodged and fall, or might even disturb other items stored in the locker. From this standpoint, darts smaller than those of the prior art are generally preferable as locker darts.
On the other hand, the skill in every dart game consists of accurately targeting the darts, so a dart should have a barrel length large enough to fit conveniently within a human hand. These two opposing length scale considerations suggested to the inventors the ideal size of the magnetic locker darts described herein, having a central barrel portion (i.e., between the retainer enclosing the magnetic tip and the fins) that just comfortably fits between an adult's thumb (having a width of approximately 24 mm) and forefinger. The dart of the preferred embodiment of the present invention has a length of about 50 to 70 mm.
Because of its short length and strong magnetic tip, a locker dart can be helpful for purposes other than dart games. In a manner analogous to tacks on a message board, a dart can be used to post a sheet of paper, fabric, or other thin material on the inside of the locker door or elsewhere within the locker. The posted material is held between the magnet tip of the dart and the metal surface of the locker. Alternately, a lightweight article, such as a pair of swim goggles, can be hung from a dart, where the dart so employed serves as a peg.
One aspect in which the locker darts game system of the present invention differs from the prior art is that it includes a target but no board. Its target contains essentially no metal or metal-impregnated surfaces or layers. Instead, the system takes advantage of the magnetic material present in a locker door, external to the product itself, to attract the magnetic dart tips. The target is printed on a thin sheet of plastic material. Once a backing is peeled off, the plastic sheet will adhere to a locker surface, by static electricity in the preferred embodiment. Of course, the target will also stick to various other objects having relatively smooth metal surfaces, such as some refrigerator doors and clothes washers, providing alternative environments where the darts game can be played.
The locker dart game of the present invention is used within a locker 100 made of ferromagnetic material such as steel or iron.
As illustrated by
The shorter length of the locker dart 300 compared to the typical prior art dart 200 minimizes interference between the dart 300 and the contents of the locker 100 when the locker door 110 is being opened or closed. The rare-earth magnet tip 310 makes a single locker dart 300 sufficiently strong that it can be used to “tack” a sheet of paper 120 to an inside wall of the locker as illustrated by
The shorter length (59 mm) 600 also improves the usefulness of a locker dart 300 compared to the prior art as a peg from which to hang things within the locker 100. Torque is the product of moment arm length (distance from a pivot axis) and force. An object of a given weight will apply more torque to a longer peg (i.e., dart) when suspended from its tail end than will the same object suspended near the tail of a shorter peg. Thus, a longer prior art magnetic dart 200 will only support a lighter suspended load, not to mention its increased likelihood of being dislodged by contact with other locker 100 contents. A locker dart 300 of the present invention can usefully suspend a lightweight object such as a pair of swim goggles.
These benefits are obtained by the present invention locker dart 300 having a grip portion of approximately 23 mm and a length of approximately 59 mm. With the term approximately being defined as ±20% for these dimensions, the grip can range from 18 mm to 28 mm, and the overall length can range from 47 mm to 71 mm. These extremes are optimally restricted so that the ratio of overall length to grip length remains between 2:1 and 3:1.
These length measurements are clearly dependent upon the definition of the “grip” for the locker dart 300. The above description defines the grip 500 as the area running from the nose taper 430 to the fin expansion segment 470 where a person naturally grips the locker dart 300. In
The target 700 of the present invention is divided into regions having meaning within the context of a dart game. The target 700 can be made of a sheet of thin plastic material, as in the current invention, or any other essentially non-magnetic thin material, such as paper or fabric. In the preferred embodiment, the target 700 is a plastic that adheres to the locker 100 surface by static electricity. It is also within scope of the invention for the rear side of target 700 to be coated with non-permanent, removable adhesive. The target is packaged with a removable and disposable backing layer, which when removed allows the target 700 to be applied like a decal to a surface of a metal locker 100. The present invention includes the target 700 in a package with the darts 300, but does not include any surface on which the target 700 can be placed. Functionality of the target 700 of the present invention requires a ferromagnetic metal surface external to the product, such as the inside of a locker door or, for example, the side of a refrigerator, washing machine, or filing cabinet to which the decal can be affixed.
The present invention is not to be limited to all of the above details, as modifications and variations may be made without departing from the intent or scope of the invention. Consequently, the invention should not be limited by the specifics of the above description, but rather be limited only by the following claims and equivalent constructions.