The present disclosure relates to a tubular rod having a selectively adjustable length for accommodating household articles.
Elongate mounting members may be mounted or positioned in different locations as desired by a user. Such devices are suitable to accommodate various household articles. However, the corresponding environments can require mounting members to conform to a wide range of both dimensions and orientations. A convenient way to adjust a length of a mounting member may ease the burden imposed upon a user when mounting in different environments.
In at least one embodiment, an adjustable rod assembly includes an elongate first tubular member defining a primary axis, the first tubular member having a first end and a second end. A cam body is secured to the first end of the first tubular member and has an oblong shaft portion. The rod assembly also includes a collar disposed about the cam body with an inner surface shaped to coincide with the oblong shaft portion. An elastomeric sleeve is disposed about the collar. The rod assembly further includes an elongate second tubular member having a first end sized to receive the first end of the first tubular member within an internal cavity and engage the elastomeric sleeve. A rotation of the collar to a locked position relative to the cam body causes an outward radial force from the elastomeric sleeve against an internal surface of the second tubular member to resist axial translation of the second tubular member relative to the first tubular member. The second tubular member also includes a second end, wherein at least one of the first tubular member second end and the second tubular member second end is adapted to engage a household surface.
In at least one embodiment, an adjustable rod assembly includes a first tubular member defining a primary axis, and a cam body secured to a first end of the first tubular member. The cam body defines an outer surface having opposing lobes that vary in distance from the primary axis as a function of angular position about the axis. The rod assembly also includes a second tubular member having a first end sized to slide over the first tubular member and the cam body. A collar is disposed about the lobes of the outer surface of the cam body, and a rotation of the cam body about the primary axis relative to the collar causes the opposing lobes to generate an outward force against an inner surface of the second tubular member. A second opposing end of at least one of the first tubular member and the second tubular member engages a household surface.
In at least one embodiment, an adjustable rod assembly includes an elongate first tubular member, and an elongate second tubular member adapted to longitudinally translate over the first tubular member to adjust an overall length of the telescoping rod. A cam body is affixed to an end of the first tubular member, and the cam body includes a shaft portion defining an oblong surface. The rod assembly also includes a collar defining an inner surface shaped to coincide with the oblong surface in an unlocked position. The collar also defines an outer surface defining a cylindrical shape. An elastomeric sleeve having a closed section is disposed about the collar. The collar is adapted to deform in response to rotation about the oblong surface. The collar further generates an outward radial force upon an inner surface of the second tubular member. The outward force operates to restrict longitudinal translation of the second tubular member relative to the first tubular member thereby fixing the overall length of the rod assembly.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Several household applications, such as kitchen and bathroom hardware, may benefit from the telescoping rod of the present disclosure. A number of particular uses require a horizontal positioning of an adjustable tubular member. For example,
Referring to
In further additional embodiments, locking telescoping rods may be suitable for applications requiring vertical floor to ceiling contact. For example, a shelving unit may include a vertical main telescoping tube affixed between upper and lower horizontal surfaces. The shelving unit may also include shelves extending laterally from the main telescoping tube at intermediate positions along the length.
The rod 100 is further provided with a cam locking mechanism 110 to selectively restrict axial movement of the second tubular member 104 relative to the first tubular member 102. The cam locking mechanism 110 includes a cam body 112 having shaft portion including a slot. The cam slot includes an oblong outer surface with a distance from the primary axis 106 that varies as a function of angular position around the cam body 112. In at least one embodiment, the cam body is provided with an oval shaped cross section through the shaft portion. The cam body 112 is inserted into an inner cavity 114 of the first tubular member 102. The cam body 112 may be affixed within the inner cavity 114 by a number of retaining methods. For example, the cam body 112 may be press fit, adhesively bonded, or staked with protrusions or formations of the first tubular member 102.
An elastomeric sleeve 128 is disposed about the circular outer surface 122 of the collar 118. The elastomeric sleeve 128 is provided with a closed section that encloses the gap 124 of the collar 118. The sleeve 128 is also flexible and adapted to stretch and expand along with the collar 118 in response to outward forces from the cam body 112. For example, the elastomeric sleeve may be formed from a thermoplastic polyurethane material. The elastomeric sleeve 128 further helps to retain the collar 118 within the cam slot 116 by wrapping the collar and limiting expansion of the gap 124.
The elastomeric sleeve 128 is provided with a plurality of frictional outer formations 130 on an outer portion to maintain contact with the inner surface of the second tubular member 104 in both of the locked and unlocked positions. The outer formations 130 create a stable baseline amount of persistent contact between the second tubular member 104 and the elastomeric sleeve 128. The contact in turn creates a frictional resistance to limit relative slip between the second tubular member 104 and the elastomeric sleeve 128. In this way, rotation of the tubular member 104 forces concurrent rotation of the elastomeric sleeve 128 about the primary axis 106. Additionally, the coefficient of friction between the elastomeric sleeve 128 and the collar 118 causes the collar to rotate along with the second tubular member 104. Both of the collar 118 and the cam body 112 may be formed from a semi-rigid, low friction material such as nylon for example. Therefore, the coefficient of friction between the collar 118 and the cam body 112 is less than the coefficient of friction between the elastomeric sleeve 128 and the outer surface 122 of the collar 118. Also the plurality of formations 130 correspond to an increased friction level from the elastomeric sleeve 128 and the second tubular member 104. This helps to ensure that the elastomeric sleeve 128, as well as the collar 118, rotates along with the second tubular member 104 relative to the cam body 112. In further embodiments, different surface treatments are applied to the inner and outer surfaces of the collar to influence the relative sliding conditions at each interface. In additional further embodiments, the elastomeric sleeve may be adhered or otherwise affixed to the collar during manufacturing to further resist relative slip between the components.
Although the cam body is depicted by way of example having an oval shape with two opposing lobes, it is contemplated that additional shapes may be suitable according to aspects of the present disclosure. For example, a tri-lobe cross section having three outward lobes extending from the shaft portion may also achieve similar force characteristics to the locking mechanism described above. Additional lobes may be included to cause more outward force locations against the inner surface of the second elongate tube.
Referring back to
Rotation from the unlocked position to the locked position causes generation of the outward forces discussed above. Conversely, a counter-rotation from the locked position to the unlocked position reduces the outward forces to substantially zero allowing easy relative adjustment between the tubular members. A user is thereby provided with a quick and ergonomically conducive way to engage and disengage the locking mechanism 110.
While various embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
527273 | Fowler et al. | Oct 1894 | A |
3073632 | Grunbaum | Jan 1963 | A |
3596946 | Burton | Aug 1971 | A |
4076437 | Mazzolla | Feb 1978 | A |
4419026 | Leto | Dec 1983 | A |
4632437 | Robson | Dec 1986 | A |
4632597 | Clausen | Dec 1986 | A |
4659125 | Chuan | Apr 1987 | A |
4782845 | Chou | Nov 1988 | A |
5011408 | Nakanishi | Apr 1991 | A |
5460458 | Caceres | Oct 1995 | A |
5487529 | Newville | Jan 1996 | A |
5692856 | Newman, Jr. | Dec 1997 | A |
5694695 | Lund | Dec 1997 | A |
6550728 | Fuhrman | Apr 2003 | B1 |
6571426 | Chen | Jun 2003 | B2 |
7694387 | Huang | Apr 2010 | B1 |
8043020 | Peng | Oct 2011 | B2 |
8162270 | Lee | Apr 2012 | B2 |
8505129 | Parker et al. | Aug 2013 | B2 |
8505749 | Trettin et al. | Aug 2013 | B2 |
8533912 | Tran | Sep 2013 | B2 |
8544661 | Melino, Sr. et al. | Oct 2013 | B1 |
8696229 | Tran | Apr 2014 | B2 |
8851784 | Donohue | Oct 2014 | B2 |
20070145202 | Hsieh | Jun 2007 | A1 |
20090274511 | Chen | Nov 2009 | A1 |
20120005823 | Baines | Jan 2012 | A1 |
20120284914 | Bauer | Nov 2012 | A1 |
20120285914 | Carney | Nov 2012 | A1 |
20130022300 | Fukumoto | Jan 2013 | A1 |
20130092203 | Zaltron | Apr 2013 | A1 |
20130112639 | Baines | May 2013 | A1 |
20130198948 | Zeng | Aug 2013 | A1 |
20130198949 | Hai | Aug 2013 | A1 |
20130322956 | Montalto et al. | Dec 2013 | A1 |
20130322957 | Conrad | Dec 2013 | A1 |
20130334156 | Baines | Dec 2013 | A1 |
20160077412 | Nakatani | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
29620818 | Jan 1997 | DE |
Number | Date | Country | |
---|---|---|---|
20160177991 A1 | Jun 2016 | US |