This application claims priority under 35 U.S.C. §119 to Swiss Application No. 01373/05 filed in the Swiss Patent Office on 23 Aug. 2005, and as a continuation application under 35 U.S.C. §120 to PCT/EP2006/065547 filed as an International Application on 22 Aug. 2006 designating the U.S., the entire contents of which are hereby incorporated by reference in their entireties.
A locking and fixing device for a heat shield element is disclosed which can be connected to a rotor unit of an axial-flow turbomachine and which can be arranged along a heat shield row axially directly next to at least one blade provided in a blade row and has, axially facing the blade, at least two projections of rib-like design which are spaced apart in the circular circumferential direction, are raised above a side wall section facing the blade and define a clear intermediate space which extends in the circular circumferential direction and into which a locking lug provided on the blade can be fitted. A method for producing the device is also disclosed.
Hot gases pass through axial-flow turbomachines, in particular gas turbine plants for generating electrical energy, for driving the rotor-side turbine blading, which hot gases issue from the combustion chamber and subject all the walls enclosing the hot-gas duct and also components projecting into the hot-gas duct, such as vanes and blades for example, to extreme thermal loading. Due to the system and the design, the blades fastened to the rotor unit are provided in a plurality of blade rows which are arranged axially one behind the other and are at a respective axial distance from one another, which forms an intermediate space between two axially adjacent blade rows, and vane airfoils fastened on the stator side project into said intermediate space.
In regions of the rotor unit in which the rotor unit is radially surrounded by blades, the shroud bands lying radially on the inside on the blades prevent the hot gases which flow through the hot-gas duct from coming into contact with the rotor unit. Located in the regions between the blade rows for the thermal protection of the rotor unit are “heat shield elements”, which are arranged, as it were, like the blades in “heat shield rows”. Radially on the inside, the heat shield elements have a root contour, with which the heat shield elements are connected to the rotor unit, and have as heat shield a type of radially outer shroud band, which, via corresponding sealing contours, engages as far as possible in a gastight manner with the respective shroud bands of the axially directly adjacent blades.
Such an arrangement known per se can be seen from
In order to prevent the heat shield elements 4 arranged in the circular circumferential direction from starting to wander in an uncontrolled manner in the circumferential direction relative to the blades due to rotation, at least the blade 2 shown in
For the case where the joined state shown in
However, if the respective blade and the heat shield element axially opposite the respective blade are incorrectly positioned relative to one another as viewed in the circumferential direction u in the course of incorrect fitting, the case occurs where the fastening lug 11 provided by the blade 2 is not positioned in the region of the clear intermediate space 13 between both projections 9, 10 of rib-like design, but rather is positioned in the adjoining regions in the circumferential direction u, in which, however, there is no protection at all against rotational misalignment between the heat shield elements and the respective blades.
The spatial direction marked by the arrow in
A locking and fixing device for a heat shield element is disclosed which can be connected to a rotor unit of an axial-flow turbomachine, with which method incorrect fitting in the sense explained above can definitely be ruled out. The measures to be taken for this purpose are to be technically simple and are to be capable of being retrofitted where possible in already existing heat shield elements.
A method is disclosed with which the abovementioned device can be produced.
A locking and fixing device for a heat shield element is disclosed which can be connected to a rotor unit of an axial-flow turbomachine and which can be arranged along a heat shield row axially directly next to at least one blade provided in a blade row and has, axially facing the blade, at least two projections of rib-like design which are spaced apart in the circular circumferential direction, are raised above a side wall section facing the blade and define a clear intermediate space which extends in the circular circumferential direction and into which a locking lug provided on the blade can be fitted, wherein at least one rib-like projection, on its side facing away from the clear intermediate space, provides an extension which extends in the circular circumferential direction, is connected to the projection and the side wall section and rises above the side wall section at most up to the rib height of the projection.
A method for producing a locking and fixing device for a heat shield element is disclosed which can be connected to a rotor unit of an axial-flow turbomachine and which can be arranged along a heat shield row axially directly next to at least one blade provided in a blade row and has, axially facing the blade, at least two projections of rib-like design which are spaced apart in the circular circumferential direction, are raised above a side wall section facing the blade and define a clear intermediate space which extends in the circular circumferential direction and into which a locking lug provided on the blade can be fitted, characterized in that a build-up of material which extends in the circular circumferential direction and is connected to the projection and the side wall section is carried out on at least one rib-like projection on its side facing away from the clear intermediate space.
The disclosure is described by way of example below with reference to exemplary embodiments and the drawing without restricting the general idea of the disclosure. In the drawing:
a and b show a perspective illustration of a heat shield element having projections of rib-like design,
According to the disclosure, a device is configured in such a way that at least one rib-like projection, on its side facing away from the clear intermediate space, provides an extension which extends in the circular circumferential direction, is connected to the projection and the side wall is section and rises above the side wall section at most up to the rib height of the projection.
The extension according to the disclosure, which is to be provided at least on one of the two projections, preferably on both projections, in such a way as to correspondingly face away from the intermediate space in the circular circumferential direction on the individual projections, has two advantageous functions, namely: firstly, mechanical stabilization, acting in the circular circumferential direction, of the projection, so that the latter cannot be deformed possibly during fitting work but also during operation; secondly, the extension acts as a widening of the respective projection, this widening being directed in the circular circumferential direction, so that, during fitting work, the fastening lug provided on the blade side cannot miss the clear intermediate space defined by both projections. If the blade should be maladjusted relative to the heat shield element in the circular circumferential direction when being axially inserted into position on the rotor unit, the fastening lug of the blade abuts at the end face against the respective extension, which directly adjoins the projection provided on the heat shield element. In this case, it is not possible for the blade and the heat shield element to be brought fully together axially, as a result of which incorrect fitting can be ruled out.
Since the projections, preferably of rib-shaped design, provided on the heat shield element constitute designs which are already formed by the casting process for producing the heat shield element and are therefore connected in one piece to the heat shield element, subsequent modification of the heat shield element produced as a cast part is required in order to provide at least one extension, proposed according to the solution, on a projection of rib-like design. Suitable for this purpose in an especially advantageous manner is welding technology, with which it is possible in principle to form a material accumulation oriented in the circular circumferential direction directly adjacent to at least one projection of rib-like design. In an exemplary embodiment, the extension is designed in the form of a triangular surface element which is joined to the projection in a suitable manner by the welding process. In this case, one side edge of the triangular surface element is connected to the projection and another side of the surface element is connected to the side wall section of the heat shield element. Further details can be gathered from an exemplary embodiment shown in
However, it is likewise also possible to design the extension in the form of a bar-shaped element which is connected to the side wall section of the heat shield element in the bar longitudinal extent and the end face of which is connected to that side of the respective projection which faces away from the clear intermediate space. In all cases of the design of the extension, it is necessary for the increased height of the extension relative to the side wall section of the heat shield element not to be selected to be greater than that of the respective projection itself. The projections advantageously project above the respectively provided extension, so that it is always ensured that the projections connected in one piece to the heat shield element are the decisive factor in determining the axial distance from the adjacent blade and are not affected by the subsequent extensions provided by the welding process.
In principle, it would be conceivable, by a corresponding mold design, for the at least one extension adjoining the respective projection in the circular circumferential direction to already be produced during the process for casting the heat shield element itself, which is a variant to which the scope of protection of claim 1 is intended to apply in the same way, but rework of already produced heat shield elements or of heat shield elements already in use permits, in the sense according to the solution, the modification of heat shield elements by a subsequent welding process without at the same time changing the design of casting patterns.
Thus, the method described in claim 9 for producing the locking and fixing device for a heat shield element which can be connected to a rotor unit of an axial-flow turbomachine according to the preamble of claim 9 makes possible the rework of an existing heat shield element in such a way that a build-up of material which extends in the circular circumferential direction and is connected to the projection and the side wall section is provided on at least one rib-like projection on its side facing away from the clear intermediate space, said build-up of material preferably being effected by a welding process. Further details in this respect can be gathered from the exemplary embodiments described with reference to the figures.
Shown in
To avoid incorrect fitting between heat shield element 4 and blade 2, 3 the embodiment shown in
In the exemplary embodiment according to
It is of course possible, in deviation from the exemplary embodiments shown in
With regard to the description of
In the simplest case, however, it is also conceivable, instead of a surface element, to fill the region directly adjoining a projection in the circumferential direction by means of welding material deposits in order to achieve specific material accumulation for the purposes of the mechanical reinforcement and the lateral widening of the projections.
It will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather than the foregoing description and all changes that come within the meaning and range and equivalence thereof are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
01373/05 | Aug 2005 | CH | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2006/065547 | Aug 2006 | US |
Child | 12071381 | US |