The present disclosure relates to termination assemblies for splicing together coaxial cables, and more particularly, to novel and improved BNC connectors which can be utilized for standard as well as high-frequency applications, such as, security cameras to minimize return losses. In some embodiments, the novel and improved BNC connectors are conformable for use under adverse weather conditions while at the same time achieving reduction in return losses.
One embodiment relates to a coaxial cable connector comprising a forward outer housing comprising at least one slot and a rearward threaded portion, the at least one slot configured to receive a corresponding pin of a mating connector; a rear outer housing comprising a forward threaded portion configured to threadingly engage the rearward threaded portion of the forward outer housing such that the rear outer housing is moveable between a first position and a second position relative to the forward outer housing; and an inner body extending through at least a portion of the forward outer housing and the rear outer housing; wherein the inner body is longitudinally displaceable relative to the forward outer housing when the rear outer housing is in the first position and wherein the inner body is longitudinally fixed relative to the forward outer housing when the rear outer housing is in the second position.
Another embodiment relates to a coaxial cable connector comprising a forward outer housing comprising a rearward portion; a rear outer housing comprising a forward portion configured to engage the rearward portion of the forward outer housing such that the rear outer housing is moveable between a first position and a second position relative to the forward outer housing; an inner body extending through at least a portion of the forward outer housing and the rear outer housing; and a biasing member disposed between the inner body portion and at least one of the forward and rear outer housing members, wherein the biasing member provides a biasing force tending to force the forward outer housing member rearward relative to the inner body portion; wherein the inner body is longitudinally displaceable relative to the forward outer housing when the rear outer housing is in the first position and wherein the inner body is longitudinally fixed relative to the forward outer housing when the rear outer housing is in the second position.
Another embodiment relates to a BNC style coaxial cable connector comprising a forward outer housing comprising at least one slot and a rearward portion, the at least one slot configured to receive a corresponding pin on a mating connector; a rear outer housing comprising a forward portion configured to engage the rearward portion of the forward outer housing such that the rear outer housing is moveable between a first position and a second position relative to the forward outer housing; an inner body extending through at least a portion of the forward outer housing and the rear outer housing; a first resilient sealing member disposed between the rear outer housing and the inner body; and a second resilient sealing member disposed between the front outer housing and the inner body and configured to engage a forward portion of the mating connector.
Each of the coaxial cables C and C′ is correspondingly comprised of a center conductor 20 which is surrounded by a dielectric insulator 22 of an electrically non-conductive material, a braided conductor layer 24, and an outer jacket 26 of an electrically non-conductive material. The end of each cable C or C′ is further prepared for assembly by removing a limited length of the outer jacket 26 and braided conductor 24, and another limited length of the insulator layer 22 is removed to expose an end of center conductor 20 along with a foil layer, not shown, surrounding center conductor 20. The braided conductor layer 24 is peeled back and away from the insulator 22 and doubled over to cover the leading end of the jacket 26 preliminary to insertion of center conductor 20 into the socket end 34.
The cable C′ and its socket end 34 are inserted into a connector body at the end of the female socket M, and a crimping ring 12 is advanced over the inner and outer connector sleeves to crimp the end of the cable C′ into position with the leading socket end 34 extending through the inner insulation portion 28 to terminate just short of the guide 40 when the male and female connectors are mated. An outer mounting flange or clamp L is mounted on connector body 10 with a suitable compression tool, not shown. In a corresponding manner, the cable C at the opposite end is inserted into the opposite end of the male connector M′, and a crimping ring R is advanced over the outer sleeves 30 and 32 to crimp the end of cable C into position with the extension tip 36 extending into the socket end 34 when the male and female connectors are mated.
The termination assembly of
In some embodiments, a connector is configured to squeeze together elements consisting of an end stop 62, split ring 64, compression spring 68 and a second end stop 66 against lateral or axial movement (see, e.g.,
Referring to
According to an exemplary embodiment, a biasing element 68 (e.g., a coil spring, etc.) is disposed in an annular chamber 60 formed between inner body 43 and forward outer housing 52. According to an exemplary embodiment, annular chamber 60 is further formed by forward and rear outer housings 52, 58 and/or inner body 43. Within annual chamber 60, a first end stop 62 bears against an internal shoulder on forward outer housing 52 and is locked into position by a split ring or snap ring 64. A second end stop 66 is positioned in axially spaced relation to end stop 62 and bears against an external shoulder 45 on inner body 43. Biasing member 68 (e.g., compression spring) may be mounted under compression between snap ring 64 and end stop 66 so as to yieldingly resist threaded advancement of rear outer housing 58 toward external shoulder 54 of forward outer housing 52 until end 59 of rear outer housing 58 abuts shoulder 45. In some embodiments, biasing element 68 provides a biasing force tending to force rear outer housing 58 rearward relative to inner body 43.
Referring to
When the connectors are mated, socket end portion 34 receives extension tip 36 which projects axially from the leading end of center conductor 20 of cable C. The leading exposed end of center conductor 20 of cable C is housed within a guide or sleeve 38 which extends through washer 42 and adjacent disk 40 when cable C is fully seated. Disk 40 may be of electrically non-conductive material, and central bore 41 of disk 40 serves to guide extension tip 36 in centered relation through connector 50 when cable C is installed. In some embodiments, sleeve 38 terminates at a recessed opening at one end of the bore 41 to guide the sleeve 38 into centered relation to the connector 50 when the cable C is installed. The washer 42 and disk 40 are mounted in an inner body or cylindrical casing 43 having a thin-walled extension 43′ Inner body 43 has circumferentially spaced elongated slots 44 at one end which enable close-fitting engagement between inner body 43 of connector 50 and the extension 10′ of the mating connector. An end of inner body 43 has a shoulder 16 which is affixed to the inner and outer connector sleeves 30 and 32 for cable C (see, e.g.,
In some embodiments, BNC connector 50 includes ferrule or forward outer housing 52 in outer surrounding relation to thin-walled extension 43′ of inner body 43, and axially spaced, external shoulders 53 and 54 at opposite ends of a pair of bayonet slots S1 and S2 on forward outer housing or ferrule 52. In some embodiments, forward outer housing 52 includes an externally threaded thin-walled tubular member 56 that extends beyond or from shoulder 54 in outer spaced concentric relation to inner body or casing 43. Tubular member 56 and rear outer housing 58 axially advance toward each other (e.g., via threading engagement) from the open position (e.g., a first position) shown in
The function of threadedly adjustable rear outer housing 58 can be best appreciated by reference to
A second embodiment is illustrated in
According to an exemplary embodiment, the termination assembly is comprised of a BNC connector 70. The exposed end of center conductor 20 of cable C extends into extension tip 36. Extension tip 36 extends through carrier sleeve 38 having external fins or blades 73, and a leading end 74 of the carrier sleeve 38 is reduced to extend through washer 42. Extension tip 36 continues through washer 42 and guide 40.
In the second embodiment, BNC connector 70 includes a ferrule or forward outer housing 72 in outer surrounding relation to the extension 43′ of the inner body 43. In some embodiments, a metal sleeve 76 (e.g., a tube, cylinder, etc.) extends in press-fit or other secure relation over forward outer housing 72, and a thin-walled outer sleeve or overmold 78 (e.g., a resilient or compressible member or layer, etc.) is provided (e.g., molded, etc.) over sleeve 76 with external shoulders 80 and 82 at opposite ends of the overmold 78. In some embodiments, an annular end seal or washer 84 is affixed to shoulder 80 of overmold 78 to serve as a closure between the shoulder 80 and an external shoulder of a connector body of a mating connector (see
As best seen from
A third embodiment of a termination assembly for use under adverse weather conditions is illustrated in
In some embodiments, an additional sealing member, shown as O-ring or seal 79 (e.g., a weather seal, a resilient member, etc.), may be provided. Seal 79 may be disposed on an outer surface of forward outer housing 52 rearward of shoulder 54 such that when rear outer housing 58 is moved to a closed position, seal 79 provides a seal at the junction between forward outer housing 52 and rear outer housing 58. While seal 79 is shown as being an O-ring, any suitable seal may be utilized. In some embodiments, seal 79 may reside in an annular groove, or recess, formed in forward outer housing 52.
Referring to
According to an exemplary embodiment, terminator 96 may be a generally cylindrical member having a body portion 100, one or more pins 102, and a textured, or knurled portion 104. Body portion 100 is sized to closely fit within connector 94 is a manner similar to a typical mating connector, with pins 102 engaging the corresponding slots on connector 94. Textured portion 104 provides a griping surface to facilitate assembly and disassembly of terminator 96 and connector 94.
Lanyard 98 may have a first end coupled to connector 94 (e.g., a rearward portion of the connector) and a second end coupled to terminator 96. Lanyard 98 may take any suitable form, including a polymer or metal material, a band, chain, etc. When connector 94 is mated with a mating connector, terminator 96 may be left unterminated but attached to connector 94, as shown in
In some embodiments, a coaxial cable connector assembly includes a male connector half including a casing provided with at least one bayonet slot adjacent to one end of said casing, a spring in outer surrounding relation to said casing, and a telescoping enclosure for said spring being axially adjustable to advance said spring from an open position to a closed position; and a female connector half including an annular body in inner concentric relation to said casing, at least one bayonet pin on said body inserted into said slot for slidable movement through said slots whereupon axial adjustment of said spring causes advancement of said pins between an unlocked and locked position at opposite ends of said slots. The spring may be a compression spring.
In some embodiments said male connector half and said female connector half are locked against lateral displacement in response to advancement of said spring into a closed position. A seal may be mounted externally of one end of said male connector half. In some embodiments, the external seal is in the form of an annular sleeve in sealed relation to a said male connector half. The external seal may include O-rings mounted at opposite ends of said enclosure.
In further embodiments, a coaxial cable connector (e.g., connector 50) includes a forward outer housing (e.g., forward outer housing 52) comprising at least one slot and a rearward threaded portion, the at least one slot configured to receive a corresponding pin of a mating connector; a rear outer housing (e.g., rear outer housing 58) comprising a forward threaded portion configured to threadingly engage the rearward threaded portion of the forward outer housing such that the rear outer housing is moveable between a first position and a second position relative to the forward outer housing; and an inner body (e.g., inner body 43) extending through at least a portion of the forward outer housing and the rear outer housing; wherein the inner body is longitudinally displaceable relative to the forward outer housing when the rear outer housing is in the first position and wherein the inner body is longitudinally fixed relative to the forward outer housing when the rear outer housing is in the second position.
A basing member (e.g., biasing member 68) may be disposed between the inner body and at least one of the forward and rear outer housings, and may provide a biasing force tending to force the forward outer housing rearward relative to the inner body. The inner body may include an annular shoulder (e.g., shoulder 45) such that an end portion (e.g., end portion 59) of the rear outer housing member is axially spaced apart from the annular shoulder when the rear outer housing is in a first position (e.g., an open, or loosened position), and such that the end portion of the rear outer housing is adjacent or engages the annular shoulder when the rear outer housing is in a second position (e.g., a closed, or tightened position). The end portion may directly engage the annular shoulder, or alternatively, a resilient member (e.g., resilient member 86) such as an O-ring may be disposed between the annular shoulder and the end portion such that the resilient member is compressed when the rear outer housing is in the second position.
The forward outer housing and inner body may form an annular space in which a second resilient member (e.g., an o-ring such as o-ring 90) may be disposed. The inner body may include an annular groove or recess (e.g., groove 92) in which the second resilient member is seated. The resilient member may be configured to engage a forward portion of a mating connector and/or be wedged between the forward outer housing and the inner body.
For purposes of this disclosure, the term “coupled” shall mean the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate member being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature. Such joining may also relate to mechanical, fluid, or electrical relationship between the two components.
It is important to note that the construction and arrangement of the elements of the connector and related components as shown in the exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the embodiments. Accordingly, all such modifications are intended to be included within the scope of the present disclosure as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and/or omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the spirit of the present disclosure.
It is therefore to be understood that while different embodiments are herein set forth and described, various modifications and changes may be made in the specific construction and arrangement of the elements without departing from the spirit and scope of the embodiments herein illustrated and described and the following claims.
The present application claims the benefit of U.S. Provisional Application No. 61/472,082, filed Apr. 5, 2011, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61472082 | Apr 2011 | US |