This disclosure relates to locking and unlocking of tool boxes and tool cabinets.
Skilled tradesmen in many trades need a wide selection of tools. These are commonly housed in liftable boxes or wheeled cabinets, which, in either case, will typically comprise a chest with an open or openable front, mounting a plurality of shallow drawers that slide in and out, individual tools being placed in these drawers. For convenience, we refer to “tool boxes” in the following description, but it should be understood that this term is intended to encompass, tool boxes, tool cabinets and tool chests of all kinds. Although conventional tool boxes will often be provided with a locking mechanism, a tradesman will usually leave his box unlocked while working, as it is often impractical to keep locking and unlocking the box.
In a typical large workplace there will be several tradesmen with their own tool boxes. One tradesman in need of a particular tool for a particular task may borrow it from another tradesman's cabinet. The borrowed tools are not always returned.
The present disclosure has arisen from our work seeking to provide greater security for a particular tradesman's tools, without them needing repeatedly to lock and unlock their tool box or cabinet with a key. As explained in detail below, we provide practical embodiments of system for locking and unlocking a conventional tool box that can be fitted to an existing tool box.
In accordance with a first aspect of the present disclosure, there is provided a tool box provided with: (i) a locking mechanism having a locked condition in which it prevents access to tools within the tool box, and an unlocked condition in which it allows access to tools within the tool box; (ii) an electric motor, the motor having a rotor; and (iii) a microprocessor and control circuit, coupled to the motor for controlling it, and adapted to receive Bluetooth signals when paired to a user's portable Bluetooth-enabled mobile device, the microprocessor and control circuit being effective, when the user's portable Bluetooth-enabled mobile device is sufficiently close to the control circuit to be detected, to energise the motor to rotate the rotor in a first sense, effective to disable the locking mechanism to allow access to said tools.
Examples of portable Bluetooth-enabled mobile devices include tablet computers, portable music players and mobile phones.
The microprocessor may be effective, when a previously detected user's portable Bluetooth-enabled mobile device is no longer detected, to energise the motor to rotate the rotor in the opposite sense, to cause the locking mechanism to return to a locked condition. Alternatively, the microprocessor may be effective, when a previously detected user's portable Bluetooth-enabled mobile device is no longer detected, to disengage the rotor from the disabled locking mechanism, allowing the locking mechanism to return to a locked condition.
Preferred embodiments have one or more of the following features: The tool box is of the kind in which individual drawers for holding tools are slidable generally horizontally in and out of the tool box, each said drawer being formed with or provided with a hook at its rear end, and the locking mechanism comprises at least one lock bar mounted on a rear wall of the tool box, the lock bar being slidable vertically between a lower position in which it is adapted to prevent passage of a said hook through a corresponding opening in the lock bar, thereby preventing sliding of the drawer, and a raised position in which passage of said hook through said opening is allowed, so that the drawer is slidable out of the tool box. A pawl of a pawl-and-ratchet mechanism is mounted on the rotor, and the ratchet is mounted on a horizontally slidable member, whereby rotation of the rotor in said first sense causes horizontal linear motion of the slidable member to cause a camming action of the member against a vertically movable member coupled to the lock bar, thereby causing the vertically movable member to move the lock bar to its raised position. Rotation of the rotor in the opposite sense from an unlocked condition causes horizontal liner motion of the slidable member to disengage the camming action and allow the lock bar to return to its lower position under gravity. Alternatively, a pawl of a pawl-and-ratchet mechanism is mounted on the rotor, and the ratchet is mounted on a vertically slidable member, whereby rotation of the rotor in said first sense causes vertical linear motion of the slidable member to directly push the lock bar or a mechanism linked to the lock bar in a direction to raise the lock bar. Rotation of the rotor in the opposite sense from an unlocked condition causes vertically downwards liner motion of the slidable member to allow the lock bar to return to its lower position under gravity. There are a plurality of lock bars mounted on the rear wall of the tool box, linked by a mechanism so that all of the lock bars are raised together to their raised position. In an alternative arrangement, in which there are a plurality of lock bars mounted on the rear wall of the tool box, with a link mechanism coupling the upper ends of the respective lock bars so that they rise and fall together, the vertically slidable member may be positioned to engage the link mechanism from below, whereby rotation of the rotor in said first sense causes vertical linear motion of the slidable member to engage the link mechanism and raise the lock bars together to their raised position. Rotation of the rotor in the opposite sense from an unlocked condition causes vertically downwards linear motion of the slidable member to allow the lock bars to return to their lower positions under gravity.
The electric motor and microprocessor may be provided as a conversion kit for existing tool boxes, and are adapted to be coupled to the existing locking mechanism of an existing tool box without permanent fixings.
In one arrangement, a tool box has an inside bottom surface, with a pair of angle irons, each comprising a first flange coupled to a second flange at a right-angle to the first, mounted to the rear wall of the tool box by their first flanges. The lock bar is vertically slidable between the respective second flanges of the angle irons which act together as a pair of guide rails for the lock bar. The conversion kit is located in position on the inside bottom surface of the tool box by two fingers of the kit that form a push fit outwardly of the respective guide rails.
In an alternative arrangement, a tool box has vertical banks of drawers with space between the vertical banks, and a plurality of lockbars. A conversion kit is adapted to fit against the rear wall of the tool box between the vertical banks and comprises a vertically moveable lifting arm positioned to engage either one of the lock bars or a linking mechanism linking the lock bars.
Reference will now be made by way of example only to the accompanying drawings, in which parts of the tool box are omitted from the drawings in order better to understand the locking and unlocking systems incorporated into the tool box. In the drawings:
In order to understand how the teachings of the present disclosure are applied to embodiments of tool box, it is first necessary to understand how conventional tool boxes and cabinets are locked and unlocked.
Reference is first made to
Larger tool boxes or wheeled cabinets will suitably be provided with a plurality of lock bars 2. Typically, a variation of the locking mechanism described above is provided for such cabinets, and is illustrated in
Turning now to
It will be appreciated that the locking/unlocking unit may be supplied as a conversion kit for an existing toolbox. No permanent fixings are required since the unit is located by means of its fingers 21 on the outward sides of the guide rails for the lock bar as a push fit.
However, in some tool boxes, there may be insufficient space beneath the lowermost drawer to accommodate the locking/unlocking unit illustrated in
When the tool box has a plurality of lock bars, rather than simply engaging a link mechanism 42 for the lock bars, such as cranked rod 15, from below to raise the lock bars together and allowing the lock bars to subsequently slide downwardly individually under gravity back to a locked condition, the lock bars may be positively coupled to the link mechanism 42 as shown in
Reference may now be made to the circuit diagram of
Motor 22 is coupled to a 12 volt DC power supply 46 (which may be provided by a battery or by a transformer and rectifier linked to mains electricity) via an H-bridge motor controller 47, which is in turn controlled by microprocessor 48 so that motor 22 may be driven in either sense. Microprocessor 48 is also powered from power supply 46 via a voltage regulator 49, and is coupled to an aerial 50 and Bluetooth detector 51, an EEPROM memory 52, a plurality of status LEDs 53 allowing the status of the system to be immediately visible on inspection, a reset switch 54, and a position sensor 55 for a purpose to be explained.
Microprocessor 48 is programmed to periodically follow the logic flow diagram of
If no paired device is detected in step 56, the microprocessor 48 checks whether the tool box is locked in step 59. If it is, the program returns to its start. If it is not locked, the microprocessor 46 locks the tool box in step 60 by rotating the motor 22 in the opposite direction to slide slidable member 26 to the left in the embodiment of
It will be readily appreciated that the teachings of the present disclosure, in particular, in relation to controlled locking and unlocking, can equally well be applied to other forms of tool box in which the locking mechanism itself is quite different. In all such cases, provided that the user of the tool box keeps their paired Bluetooth-enabled mobile device with them at all times, the tool box will always be unlocked and the tools within readily available when the authorised user of the tool box is present in the vicinity of the tool box as judged by that user's Bluetooth-enabled mobile device being detected by the microprocessor, and always locked when the authorised user of the tool box is absent.
Number | Date | Country | Kind |
---|---|---|---|
2011011 | Jul 2020 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
6374649 | Holcomb | Apr 2002 | B1 |
20080061564 | Hapke | Mar 2008 | A1 |
20180216364 | Wind | Aug 2018 | A1 |
20180340350 | Johnson | Nov 2018 | A1 |
20190145130 | Affan | May 2019 | A1 |
20190323265 | Robillard | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2788643 | Aug 2011 | CA |
2987088 | Jun 2018 | CA |
206140447 | May 2017 | CN |
206140448 | May 2017 | CN |
102017127440 | May 2019 | DE |
Number | Date | Country | |
---|---|---|---|
20220018163 A1 | Jan 2022 | US |