The object of the solution is a panel system. The object of the solution further comprises a panel system locking arrangement.
Different types of panel systems may be incorporated in buildings, for example, in conjunction with the balcony or terrace of a building. These are often panels made of glass or a similar material, several panels being positioned most preferably in succession in a panel system. Panel systems may also be provided inside buildings, for example as walls.
A panel system typically comprises an upper guide and a lower guide, which may be rails guiding the travelling of the panel and inside or on top of which are one or more hinge elements and/or a control elements fixed to the panel. The hinge element and/or control element controls the travelling of the panel, or the panel is suspended on the upper guide by means of them, or the panel rests through them on the lower guide which supports the panel. The hinge element or the control element is either stationary or movable along the upper or lower guide with the panel. The panel may be movable along the upper and lower guides by means of the said hinge element or control element. Moving typically takes place manually.
The upper and lower guides are usually horizontal and fixed, for example, to the structures of the building. The lower guide may be positioned on floor level or higher, for example, on a railing. The panel may be opened and closed by using one or more hinge element, by means of which the panel turns around a vertical rotation axis. The said openable panel may in addition comprise one or more control elements, by means of which the panel remains closed, and which is allowed to come out of the upper or lower guide to enable the opening of the panel. The upper or lower guide may comprise an opening through which the control element passes, or the control element may be lifted out, for example from the lower profile.
The hinge element may be configured to lock with the hinge element of the adjacent panel, the upper guide or the lower guide when the panels are open and adjacent to one another. Two or more panels may be open and adjacent to one another in a stack, whereupon a free opening is formed, for example, for airing or access.
A known panel system is disclosed in publication WO-2014068178-A1.
Locking of the panel in place is important to prevent the panel from falling when it is opened. When the panel is opened, the control element leaves from the upper guide and/or lower guide and thus the panel must be supported and kept upright by the hinge element. This is ensured by the hinge element attaching, for example, to the upper guide. The said attachment should be ensured already with as small turning angles of the panel as possible to guarantee that the panel is always supported and safe to use.
The panel system according to the solution comprises a lower guide and an upper guide which are essentially parallel, and at least one panel which is movable, vertical in its position of use and located between the lower guide and the upper guide, and connected to the lower guide and the upper guide for moving the panel on the lower guide. The panel system comprises a hinge element which is fixed to the panel, located inside the upper guide and allows opening of the panel by turning around an essentially vertical rotation axis.
The panel system further comprises at least two locking housings located in the upper guide and positioned successively in the longitudinal direction of the upper guide. The locking housings comprise two opposite locking recesses, the shapes of which together define a circle with a radius R3 and between which remains a passage having a width P2. The passage is parallel with the longitudinal direction of the upper guide and the hinge element can travel through the passage from one locking housing to another.
The distance between the locking housings in the direction of the upper guide is distance P1, which is arranged to be less than two times radius R3.
The advantage of the solution presented is that by increasing the size of the locking housings, the spread angle of the panel, at which the hinge element begins to move into the locking recess and allows early locking of the hinge element, can be reduced. At the same time as the distance between the locking housings is allowed to be smaller than the circle defined by them, the opened panels can be brought as close to each other as possible and can thus be stored in as compact a space as possible.
According to one example, the hinge element also comprises two locking cams, which define a radius R1, and a guiding edge remaining between them which rotates around the rotation axis with the hinge element. The shape of the guiding edge defines the circle with radius R2 in such a way that radius R2 is smaller than radius R1, and in addition radius R2 and radius R1 together, and with clearance, equal distance P1. At the same time, radius R2 is smaller than radius R3.
The advantage of this is that it prevents the locking cams of adjacent hinge elements from colliding. A panel locking cam may be configured to collide with the guiding edge of an adjacent panel in order to bring the panel to a stop.
A further advantage is that due to the guiding edge, an open panel may, in the opened position, be turned within a predetermined sector, or alternatively, the open panel may be turned to a certain turning angle towards an adjacent panel.
The panel system locking arrangement according to the solution presented comprises a hinge element intended to be fixed to a panel of the panel system. The hinge element allows the panel to be opened by turning it around the rotation axis. The locking arrangement further comprises at least two locking housings positioned in succession, the locking housings comprising two opposite locking recesses. The shapes of the locking recesses together define a circle with radius R3 and between the recesses remains a passage with width P2, through which the hinge element can pass from one locking housing to another. The distance of the locking housings from one another is distance P1.
According to one example, the hinge element further comprises the locking cams and guiding edge described above. The locking cams and locking recesses are set at essentially the same point, for example on the same level, with respect to the rotation axis. The height of the locking cams corresponds to distance P5 and the height of each locking recess corresponds to distance P4. Distance P4 is configured to be greater than distance P5.
The advantage is that the position of the locking housings in height or with respect to the rotation axis is allowed to change or may be adjusted. Thus, also the position of the locking housings with respect to the panel and the hinge element is allowed to change or may be adjusted.
According to one example, distance P1 is configured to be less than two times radius R3.
The solution presented is described in greater detail in the following, with reference to the accompanying drawings.
In the Figures, the same or corresponding parts are marked with the same reference number.
The panel system may comprise at least one moving panel 10, a lower guide 16, an upper guide 14, a hinge element 40 fixed to the upper edge of each panel 10 and a hinge element 42 fixed to the lower edge of each panel 10.
According to one example, the panel system may further comprise at least one stationary panel 12 which does not move along the lower and upper guides 14, 16, a hinge element 32 fixed to the upper edge of each panel 12 and a hinge element 34 fixed to the lower edge of each panel 12.
The panel 12 may be opened in such a way that it turns around a vertical rotation axis X1. The rotation axis X1 is perpendicular to the longitudinal directions of the lower and upper guides 14, 16. The said rotation axis X1 is furthermore located in the vicinity of one vertical edge of the panel 12.
When closed, the panels 10, 12 are preferably parallel and positioned in succession in such a way that they form a wall or window or an access opening. The lower guide 16 and the upper guide 14, which are parallel, are located at a distance from one another and positioned vertically on top of one another. The panels 10, 12 are located between the lower guide 16 and the upper guide 14 in such a way that the panels 10, 12 are vertical. The two opposite upright edges of the panel 10, 12 are vertical and the upper and lower edges of the panel 10, 12 are horizontal. The lower guide 16 may attach to a railing or a suitable surface, for example the floor. The lower guide 16 may be at least partly embedded in a railing or floor. The upper guide 14 may attach, for example, to a ceiling or other suitable structure.
The hinge element 32 is located inside the upper guide 14 and allows the panel 12 to be opened. Rotation axis X1 passes through the hinge element 32. The hinge element 32 may be locked to the upper guide 14.
The hinge element 34 is located inside the lower guide 16, on top of it, and allows the panel 12 to be opened. Rotation axis X1 also passes through the hinge element 34. The hinge element 34 may be locked to the lower guide 16.
Hinge element 32 and/or hinge element 34 may comprise a shaft journal 60 on which the panel 12 turns. Hinge element 32 and/or hinge element 34 may be configured to lock with the hinge element 40, 42, upper guide 14 or lower guide 16 of the adjacent panel 10 when panel 10 is opened and panel 12 is open.
According to one example and
According to one example and
According to one example and
The moving panel 10 may be moved along the lower and upper guides 14, 16. The panel 10 may, in addition, be opened in such a way that it turns around a vertical rotation axis X2. For opening, the panel 10 may be moved to a predetermined point where, for example, rotation axes X1 and X2, or two rotation axes X2, are close to one another. Rotation axis X2 is perpendicular to the longitudinal directions of the lower and upper guides 14, 16. The said rotation axis X2 is furthermore located in the vicinity of one vertical edge of the panel 10.
The hinge element 40 is located inside the upper guide 14 and allows the panel 10 to be opened. Rotation axis X2 passes through the hinge element 40. The hinge element 40 is able to move along the upper guide 14.
The hinge element 42 is located inside the lower guide 16, on top of it, and allows the panel 10 to be opened. Rotation axis X2 also passes through the hinge element 42. The hinge element 42 is able to move along the lower guide 16, for example by means of a roller or wheel.
Hinge element 40 and/or hinge element 42 may comprise a shaft journal 60 on which the panel 10 turns. Hinge element 40 and/or hinge element 42 may be configured to lock with the upper guide 14, the lower guide 16 or the hinge element 40, 42 of the adjacent panel 10 when the adjacent panel 10 is opened and panel 10 is open.
The panel 10 may in addition comprise a control element 44 attached on the upper edge of the panel, for example, to a lath 18. The control element 44 is located inside the upper guide 14, able to move along the upper guide 14, and at a distance from the hinge element 40. While inside the upper guide 14, the control element 44 keeps the panel 10 closed. The upper guide 14 may comprise an opening 30 allowing the control element 44 to exit from the upper guide 14 and to detach from the upper guide 14 in order to make the opening the panel 10 possible. The opening 30 may be situated under the lock part 24. By the opening 30 may be located an upper control unit 50 which supports the control element 44 exiting from and returning to the upper guide 14.
The panel 10 may comprise a control element 46 fixed to the lower edge of the panel, for example to a lath 20. The control element 46 is located inside the lower guide 16, or on top of it, so as to allow the control element 46 to move along the lower guide 16. The control element 46 is at a distance from the hinge element 42. The control element 46 moves along the lower guide 16, for example, by means of a roller or wheel. The control element 46 is allowed to detach or distance itself from the lower guide 16, thus enabling the opening of the panel 10.
The lower guide 16 may comprise a support part 48. A support part 48 fixed in place adjacent to the lower guide 16 supports an opening panel 10 which has been moved to a predetermined point for opening the panel 10. The support part 48 is then at a distance from the hinge element 42 of the opening panel 10.
The hinge element 40 of the panel 10 moving according to the solution presented and
The hinge element 40 is attached to the panel 10 rigidly so that, for example, the shaft journal 60 and the structures formed in it turn around rotation axis X2 together with the panel 10 when the panel 10 is opened.
At the upper end of the hinge element 40, for example, at the end of the shaft journal 60, are two locking cams 62 extending in opposite directions which rotate with the hinge element 40.
The locking cams 62 are configured to extend parallel with the upper guide 14 and its longitudinal direction when the panel 10 is in a closed position and parallel with the upper guide 14. The locking cams 62 are directed in opposite directions, diagonally or transversely with respect to the upper guide 14, when the panel 10 is in the open position, for example, turned by 90° with respect to the upper guide 14 in accordance with
The shape of the end surface 66 of each locking cam 62 follows the shape of the circumference of a circle having a radius R1 and a midpoint located on rotation axis X2 and a circular disc perpendicular to rotation axis X2. Each locking cam 62 is configured so that the end surface 66 covers a predetermined part of the circumference of a circle with radius R1, preferably an equal part. The perpendicular distance of the end surface 66 from rotation axis X2 thus corresponds at most to radius R1.
The hinge element 40 comprises a tapered section 64 located between two locking cams 62. The tapered section 64 covers a predetermined part of the circumference of the circle with radius R1. The tapered section 64 may cover, on one side of the hinge element 40, the section of the circumference of the circle with radius R1 remaining between the locking cams 62 almost completely. The shape of the tapered section 64 is preferably essentially straight and extends parallel with the upper guide 14 and its longitudinal direction when the panel 10 is in a closed position and parallel with the upper guide 14, as shown in
According to one example and
According to one example and
According to the first example and
Radius R2 is configured to be smaller than radius R1. The distance between the tapered section 64 and the guiding edge 68, perpendicular with respect to the tapered section 64, equals at most distance P3.
The upper guide 14 comprises two or more successive identical locking housings 70. The locking housings 70 are located successively parallel to the upper guide 14. The hinge element 40 of the panel 10 is located at the locking housing 70 when the panel 10 is at a predetermined point for opening. Each locking housing 70 comprises locking recesses 74 located on opposite sides of the hinge element 40.
Several successive locking recesses 74 may be configured in the same locking recess part 76 fixed to the upper guide 14. Opposite locking recesses 74 may be configured in the same locking recess part 76 which is fixed to the upper guide 14 and through which the hinge element 40 can pass from one locking housing 70 to another.
The shapes of the two opposite locking recesses 74 of each locking housing 70 follow the shape of the circumference of a circle having a radius R3, a midpoint located in the centre of the locking housing 70 and a circular disc at the same time perpendicular to rotation axis X2. Each locking recess 74 covers a predetermined part of the circumference of the circle with radius R3.
From one locking housing 70 to another runs a passage 80 which is located between opposite locking recesses 74, is parallel with the upper guide 14, and through which the hinge element 40 can pass into one locking housing 70, for example, the outermost locking housing 70 of the locking recess part 76, and from there further to other locking housings 70. The width of the said passage 80 in the perpendicular direction with respect to the longitudinal direction of the upper guide 14 is width P2. The hinge element 40 is stopped in a predetermined locking housing 70 to which the panel 10 locks for the purpose of opening.
The midpoints of circles having radii R3 in successive locking housings 70 are most preferably located on the same essentially straight line Z1 which is parallel with the upper guide 14 and its longitudinal direction. Rotation axis X2 follows line Z1 or runs parallel with line Z1 when the hinge element 40 of the panel 10 moves along the upper guide 14 from one locking housing 70 to another.
Radius R3 is configured to be smaller than radius R1 by a clearance. Width P2 is configured to be smaller than two times radius R1. Width P2 is configured to be greater than two times radius R2 increased by a clearance. Width P3 is at most equal or is less than width P2. According to one example, width P3 increased by a clearance may correspond to width P2.
When the panel 10 moves and is parallel with the upper guide 14 as shown in
When the stopped panel 10 is opened, the locking cams 62 turn inside the locking housing 70 and extend in opposite directions diagonally or perpendicularly to line Z1. The turning, opening panel 10 is supported through one locking cam 62 first in at least one locking recess 74 which locking cam 62 prevents the panel 10 from falling over or swaying. In the example of
The guiding edge 68 of the turned opened panel 10 faces one locking cam 62 of the adjacent moving closed panel 10, as shown in
According to one example and
When the guiding edge 68 follows the circumference of a circle with radius R2, the opened panel 10 may, in the opened position, be turned within a predetermined sector S1, as shown in
The said sector S1 extends transversely with respect to the longitudinal direction of the upper guide 14 or line Z1. The minimum angle and maximum angle of sector S1 with respect to line Z1, or correspondingly the minimum turning angle of an opened panel 10 with respect to line Z1, correspond to the opening angles of the panel 10 with respect to the longitudinal direction of the upper guide 14. The said minimum angle, maximum angle and turning angle depend on the extent of the shape of the guiding edge 68 and of the end surface 66 of the locking cam 62.
The distance P1 between the midpoints of two successive locking housings 70 corresponds to the distance between adjacent locking housings 70 in the direction of the upper guide 14 and line Z1. Distance P1 is configured to be smaller than two times radius R3. Distance P1 is configured to be smaller than two times radius R1. In addition to this, radius R1 and radius R2 combined and increased with a clearance correspond to distance P1, in other words radius R1 and radius R2 combined is less than distance P1.
According to one example, distance P1 is configured to be 15-20% less than two times radius R3 or two times radius R1. According to one example, radius R2 is at most ⅔ of radius R1 or less.
According to one example and
The upper guide 14 and/or the lower guide 16, or lath 18 and/or lath 20 are, according to one example, made of aluminium or an aluminium alloy, and have a continuous or elongated in shape. It is also possible to use other materials and metals.
The hinge element 32, 34, 40, 42 or the control element 36, 38, 44, 46 or the locking recess part 76 is most preferably a piece made of plastic material but other materials, such as metal, may also be used.
According to one example, the panel 10, 12 is made of tempered glass. It is also possible to use other glass materials and sheet-like materials. The panel 10, 12 is preferably transparent, but opaque panels can also be used.
The solution presented is not limited only to the alternatives and examples shown in the accompanying Figures or specifically disclosed in the foregoing description, or to which reference has been made in the description. The features disclosed in the foregoing may be combined and implemented in various combinations.
The different embodiments of the solution are disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
20155828 | Nov 2015 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
2574312 | Altube | Nov 1951 | A |
3027606 | Nicklas | Apr 1962 | A |
5749172 | Isopahkala | May 1998 | A |
6301833 | Airikkala | Oct 2001 | B1 |
6397522 | Nussbaum | Jun 2002 | B1 |
6553715 | Lonnberg | Apr 2003 | B1 |
7260916 | Sarnell | Aug 2007 | B2 |
9470038 | Ona-Gonzalez | Oct 2016 | B2 |
9487985 | Conley | Nov 2016 | B2 |
20150284949 | Hilliaho | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1085156 | Mar 2001 | EP |
2 400 560 | Apr 2013 | ES |
120946 | May 2010 | FI |
2014068178 | May 2014 | WO |
Entry |
---|
Mar. 30, 2017 Search Report issued in European Patent Application No. 16397531.1. |
Number | Date | Country | |
---|---|---|---|
20170130453 A1 | May 2017 | US |