Orientated strand board (“OSB”), parallel strand board lumber, and other engineered wood products are formed by layering strands (flakes) of wood in specific orientations. Such manufactured wood products are typically manufactured in wide mats from cross-orientated layers of thin, rectangular wooden strips compressed and bonded together with wax and resin adhesives (95% wood, 5% wax and resin). These strips are created by refining wood onto mats, which are sifted and then orientated on a belt.
The mat is made by forming a bed of internal and external layers. The external layers are suitably aligned in a panel direction and the internal layers are typically randomly positioned. The number of layers placed is set by the required thickness of the finished panel. The mat is then placed in a thermal press system.
Recently developed press systems utilize a plurality of press units, each having opposed platens. The plurality of press units are disposed within spaced frame members and often operate under high loading conditions, such as about 1000 psi. Under certain operating conditions, such as power failure, the opposed platens “lock-up,” where the platens are sometimes stuck in a compressed position. This prevents normal operation of the press.
To return the press back to its normal operating condition, the mat within the press must be removed from between the opposed platens. However, because of the high loading conditions under which the press units operate, it is often a labor intensive procedure to separate the platens to remove the mat. Thus, there exists a need for a lock assembly for a frame of a manufactured wood product press.
A lock assembly for a manufactured wood products press is provided. Such a manufactured wood products press includes a plurality of frames, wherein at least one of the plurality of frames has first and second frame members. The lock assembly includes a housing and a pin assembly disposed within the housing. The pin assembly is selectively actuatable between a locked position, where a pin is displaced into engagement with the first and second frame members, and an unlocked position.
Another embodiment of a locking assembly for a manufactured wood products press is also provided. The locked assembly includes a housing, a pin assembly disposed within the housing, and a reciprocating assembly coupled to the pin assembly. The reciprocating assembly selectively drives a pin of the pin assembly between a locked position, where the pin member is deployed into locking engagement with portions of the first and second frame members, and an unlocked position.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The foregoing aspects and many of the attendant advantages of this disclosure will become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The manufactured wood products press 60 includes a press unit 20, a frame 102, and drive motors 64. In one embodiment, the manufactured wood products press 60 suitably includes two press units 20 disposed within the frame 102 in an opposed manner. In the illustrated embodiment, there are a plurality of press units 20 disposed within the manufactured wood products press 60, such that a plurality of opposed press units 20 are positioned along a length of the manufactured wood products press 60. The plurality of press units 20 are coupled to and driven at least in part by the plurality of combination timing assembly and linking assemblies 66.
As positioned within the frame 62, each press unit 20 counteracts the other during operation of the manufactured wood products press 60 to produce a wide variety of manufactured wood products under large operational loads. The production of such manufactured wood products is well-known in the art and is not detailed for conciseness.
Individual press units 20 are actuated by rotating crank shafts 68 that are driven by the drive motors 64. The press units 20 are operated in a coordinated manner, e.g., such that the drive shafts are rotationally in phase and are partially controlled by the gear box 66.
Although two press units 20 are illustrated, it should be apparent that the appended claims are not intended to be so limited. As a non-limiting example, the manufactured wood products press 60 may include only one press unit 20 positioned to be actuated against a fixed, opposing surface. Thus, manufactured wood products presses 60 having more or less press units 20 are also within the scope of the present disclosure.
The manufactured wood products press 60 includes a plurality of frames 102. As may be best seen by referring to
The upper and lower frame members 104 and 106 are substantially identically configured as U-shaped members formed from a high strength material, such as steel. Each of the upper and lower frame members 104 and 106 include a pair of leg portions 108a and 108b. The leg portions 108a and 108b extend substantially normally from the ends of a spine portion. The ends of the leg portions 108a and 108b form a yoke.
Corresponding leg portions 108 of the upper frame member 104 and lower frame member 106 are sized and configured to be coupled together in overlapping relationship. In one embodiment, the first and second leg portions of the lower frame member 106 are sized to be received within and between the corresponding leg portions 108a and 108b of the upper frame portion 104.
First and second lock assemblies 100a and 100b are received within corresponding bores (not shown) in the first and second leg portions 108a and 108b of the upper and lower frame members 104 and 106. The first and second lock assemblies 100a and 100b are substantially identically configured and, therefore, only one lock assembly will be described in greater detail. However, it should be apparent that the description of one lock assembly is applicable to all lock assemblies of the present disclosure.
As may be best seen by referring to
The housing 120 is suitably a cylindrical housing made of a high strength material, such as steel. The first and second pin assemblies 126a and 126b are mounted within the housing 120 for reciprocating movement between locked and unlocked positions, as is described in greater detail below. As may be best seen by referring to
The pin 140 is suitably configured as a cylindrical member made of high strength material, such as steel, and includes a cavity 148 and first and second anchor portions 150a and 150b. The cavity 148 of the pin 140 is sized to receive the piston 142 and end cap 144 therein. The first and second anchor portions 150a and 150b are sized and configured to fit within the housing 120. The first and second anchor portions 150a and 150b act to distribute shear load associated with the pin assembly when the pin 140 is deployed in the locked position, wherein the pin 140 is extending within the first and second leg portions 108a and 108b of the upper and lower frame members 104 and 106.
Specifically, when the upper and lower frame members 104 and 106 are coupled, the respective leg portions 108a and 108b are nested together in an overlapping relationship. When the lock assemblies 100 are in the locked position, the pin 140 extends between the leg portions 108a and 108b in locking engagement to place the pin housing in shear. The corresponding anchor portions 150a and 150b of the pin 140 are sized and configured to extend into the housing 120. As such, the first and second anchor portions 150a and 150b distribute shear load associated with the pin 140 being in locking engagement with the upper and lower frame members 104 and 106.
Still referring to
The end cap 144 is also configured as an annular member and includes a sealing groove 170 formed in its perimeter. The end cap 144 also includes a mounting bore 172 sized and configured to fit on an outside diameter of the pin connection shaft 146, as described below. The mounting bore 172 also includes an interior sealing groove 174 sized to receive a well-known ring seal 176.
The pin connection shaft 146 may be best understood by referring to
Extending through a longitudinal axis of the pin connection shaft 146 are first and second fluid flow channels 196 and 198. The first and second fluid flow channels 196 and 198 are in fluid communication with the bore 194 to permit selective actuation of the lock assembly 100 between locked and unlocked positions, as described in greater detail below.
Coupling of the pin assembly 126a to the pin connection shaft 146 may be best understood by reference to
The piston 142 is lockingly received on the minor diameter 192 of the pin connection shaft 146 and is sealing coupled thereto by a plurality of well-known seals 210a-210f. The piston 142 is coupled to the pin connection shaft 146 by seating one end surface of the piston 142 against a step defined between the major and minor diameters 190 and 192 of the pin connection shaft 146. A lock nut 214 is reversibly received on one end of the minor diameter 192 of the pin connection shaft 146 to selectively couple the piston 142 on the pin connection shaft 146.
The lock nut 214 includes a plug 216 sized to be received within the second fluid flow channel 198 of the pin connection shaft 146 to seal one end of the second fluid flow channel 198. A well-known lock washer 218 assists in lockingly retaining the lock nut 214.
As configured, the piston 142 remains selectively fixedly attached to the pin connection shaft 146 and the end cap 144 is permitted to slidingly reciprocate along the major diameter 190 of the pin connection shaft 146 during operation of the lock assembly 100.
The extension assembly 122 and retraction assembly 124 may be best understood by continuing reference to
The extension channel 252 is T-shaped in configuration, such that the extension channel 252 is in fluid communication with the first fluid flow channel 196 of the pin connection shaft 146. Similarly, the retraction channel 154 is also T-shaped and is in fluid communication with the second fluid flow channel 198 of the pin connection shaft 146. The feeding shaft 250 is dimensioned to suitably fit into to the bore 194 of the pin connection shaft 146 and is sealed within the pin connection shaft 146 by a plurality of well-known ring seals 256a-256c. The feeding shaft 250 is retained within the lock assembly 100 by a plurality of fasteners 258a and 258b extending through a cover plate 260. located on one end of the housing 120
The extension assembly 122 includes an elbow fitting 270 coupled to one end of the feeding shaft 250 by a coupler 272. The retraction assembly 124 is identically configured and includes an elbow fitting 280 coupled to the opposite end of the feeding shaft 250 by a coupler 282. As attached to the feeding shaft 250, the extension assembly 122 is in fluid communication with the extension channel 252 and the retraction assembly 124 is in fluid communication with the retraction channel 254.
Operation of the lock assembly 100 may be best understood by referring to
When the lock assembly 100 is in the locked position (
As seen by referring to
As the end cap 144 is driven along the pin connection shaft 146 towards the feeding shaft 250, the pins 140 of the first and second pin assemblies 126a and 126b are retracted inwards within the housing 120. As noted above, the end cap 144 is selectively locked to the pins 140 by the retaining ring 210. As the end cap 144 is driven along the pin connection shaft 146, the correspondingly attached pins 140 are also driven along the pin connection shaft 146.
During the retraction actuation process, fluid within the cavity 148 is forced out of the cavity 148 through the retraction channel 254 of the feeding shaft 250. Because the retraction channel 254 and first fluid flow channel 196 are in fluid communication, fluid is forced through the first fluid flow channel 196 and out of the lock assembly 100 through the extension assembly 122 and into a hydraulic reservoir (not shown) connected to the free end of the elbow fitting 270. This fluid directional flow pattern is indicated by the arrows 298. Hydraulic fluid is pumped into the cavity 196 until the opposed end surfaces of the pins 140 are seated against the perimeter of the feeding shaft 250. After the pins 140 are fully retracted within the lock assembly housing 120, fluid is no longer pumped into the lock assembly 100.
When the lock assembly 100 is in the unlocked position, and as may be best seen by referring to
Actuation of the lock assembly 100 into the locked position may be best understood by referring to
As the extension channel 252 and the first fluid flow channel 196 are in fluid communication with each other, fluid is driven out of the first fluid flow channel 196 of the pin connection shaft 146 and against the closed interior end of the pin 140. This fluid pumping action drives the pin 140 away from the ends of the pin connection shaft 146 to create the cavity 148. Fluid continues to fill the cavity 148, thereby driving the pin 140 outwardly until the end cap 144 abuts and is seated against a corresponding surface of the piston 142. Pumping of fluid into the extension assembly 122 is ceased and the arresting pins 290a and 290b are reinserted into their corresponding bores 292a and 292b.
As described, a locking assembly 100 constructed in accordance with various embodiments of the present disclosure provides a pin assembly disposed within the housing and selectively actuatable between a locked position (
Although the presently described embodiments include first and second pin assemblies 126a and 126b, it should be apparent that other lock assemblies configured to include more or less pin assemblies are also within the scope of the present disclosure. As nonlimiting examples, such lock assemblies may include only a single pin assembly or any configuration of even or odd number of pin assemblies disposed within a housing. Accordingly, such lock assemblies, including more or less pin assemblies, are also within the scope of the present disclosure.
Although the subject matter has been described in language specific to structural features and/or methodical acts, the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claimed embodiments. As such, various changes can be made to the described subject matter without departing from the spirit and scope of the disclosure. As a non-limiting example, although the actuation of the locking assembly has been described as pneumatically operated, other methods of actuation, such as hydraulic, mechanical, electro-mechanical, etc., are also within the scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3586093 | Young | Jun 1971 | A |
5849141 | Carlberg et al. | Dec 1998 | A |
6692614 | Wright | Feb 2004 | B2 |
20030168162 | Eile et al. | Sep 2003 | A1 |
20060082018 | Regev | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070137795 A1 | Jun 2007 | US |