The present invention relates to a locking boot for a vehicle wheel. One or more exemplary embodiments of the present invention provide a locking boot for a vehicle wheel including an oversized lug nut cover and pad.
Parking enforcement often involves the use of identifying one or more vehicles illegally occupying a particular parking space or area and towing said vehicle. Further, vehicle tags registered to an owner who owed substantial fees in unpaid parking tickets. Fines may be increased substantially for repeat violators who are termed scofflaws. Scofflaws may be individuals who repeatedly violate a summons. Thus, vehicles registered to such owners may be towed to a storage location until back fines are paid the towed vehicle is replaced. An alternative approach is to utilize a vehicle locking boot which attaches to a vehicle's wheel and will prevent said vehicle from being moved until any related back fines are paid.
A vehicle locking boot may be applied to at least one wheel of a vehicle registered to a scofflaw or to a vehicle parked in an illegal area. The vehicle locking boot may eliminate the need to tow the vehicle, which saves time and money for both the vehicle owner and the municipality in which the vehicle is located. Such vehicle locking boots may be released after a fine is paid and the released vehicle locking boot may be returned to a management company without the vehicle ever being towed.
According to an exemplary embodiment of the present invention, a vehicle locking boot includes a horizontal support arm and a first vertical support arm extending from the horizontal support arm along a direction orthogonal to an upper surface the horizontal support arm. The first vertical support arm includes a front engagement protrusion extending therefrom. A receiving sleeve extends from the horizontal support arm at a base of the first vertical support arm along a direction parallel to an extending direction of the horizontal support arm. A horizontal extension portion is coupled to the horizontal support arm. A second vertical support arm extends from the horizontal extension portion along the direction orthogonal to the upper surface of the horizontal support arm. The second vertical support arm includes a rear engagement protrusion extending therefrom. The front engagement protrusion faces the rear engagement protrusion. A keypad is disposed on the first vertical support arm. The keypad is configured to lock and unlock the horizontal extension portion. A lug nut blocking plate is coupled to the first vertical support arm above the front engagement protrusion.
According to an exemplary embodiment of the present invention, the lug nut blocking plate may include a lug nut blocking pad disposed on lug nut blocking plate.
According to an exemplary embodiment of the present invention, the lug nut locking plate may have an octagonal shape.
According to an exemplary embodiment of the present invention, the horizontal extension portion may be coupled to an internal track formed in the horizontal support arm. The horizontal extension portion may be configured to slide along the internal track to move the rear engagement protrusion to varying distances from the front engagement protrusion.
According to an exemplary embodiment of the present invention, a distal end of the horizontal extension portion with respect to the second vertical supporting arm may be concealed within the receiving sleeve when the front engagement protrusion is in contact with the rear engagement protrusion.
According to an exemplary embodiment of the present invention, the horizontal support arm may have a first thickness along the direction orthogonal to the upper surface of the horizontal support arm. The receiving sleeve may have a second thickness along the direction orthogonal to the upper surface of the horizontal support arm. The second thickness may be less than the first thickness.
According to an exemplary embodiment of the present invention, the upper surface of the horizontal support arm may extend along a first horizontal plane. An upper surface of the receiving sleeve may extend along a second horizontal plane. The first horizontal plane may be spaced apart from the second horizontal plane along the direction orthogonal to the upper surface of the horizontal support arm.
According to an exemplary embodiment of the present invention, the first vertical support arm may form a 90° angle with the horizontal support arm.
According to an exemplary embodiment of the present invention, a diameter of the lug nut blocking plate may be at least 10 inches.
According to an exemplary embodiment of the present invention, a diameter of each of the front engagement protrusion at a first end of the front engagement protrusion opposite the rear engagement protrusion may be at least 2 inches. A diameter of the rear engagement protrusion may taper to 1 inch at a second end of the front engagement protrusion facing the rear engagement protrusion.
The above and other features of the present invention will become more apparent by describing in detail exemplary embodiments thereof, with reference to the accompanying drawings, in which:
It will be understood that the terms “first,” “second,” “third,” etc. are used herein to distinguish one element from another, and the elements are not limited by these terms. Thus, a “first” element in an exemplary embodiment may be described as a “second” element in another exemplary embodiment.
Exemplary embodiments of the present invention will be described more fully hereinafter with reference to the accompanying drawings. Like reference numerals may refer to like elements throughout the specification and drawings.
Referring to
According to an exemplary embodiment of the present invention, a vehicle locking boot 100 may include relatively wide front and rear engagement protrusions (e.g., a front engagement protrusion 103 and a rear engagement protrusion 107) configured to be inserted into inner and outer indentations of a wheel. The engagement protrusions may be approximately two inches in diameter, and may taper to approximately one inch in diameter at innermost points of the engagement protrusions which face each other at an inner portion of a wheel (e.g., approximately behind the lug nuts of the vehicle). Upward projecting supporting arms (e.g., a first vertical support arm 102 and a second vertical support arm 106) of each of the engagement protrusions (the engagement protrusions may project horizontally) and the engagement protrusions may be formed as a single continuous member without weld joints. Thus, the engagement protrusions may be substantially rigid such that they cannot be easily tampered with or broken away from the vehicle locking boot through an application of force to the engagement protrusions or corresponding supporting arms.
The supporting arms and the engagement protrusions may be dimensioned, shaped and positioned such that tips of the engagement protrusions come into contact with each other when the vehicle locking boot 100 is fully closed, and the engagement protrusions may become separated from each other when the vehicle locking boot 100 is opened (e.g., to lock the vehicle locking boot to a wheel). However, dimensions of a wheel to which the vehicle locking boot 100 is attached may vary, and thus the engagement protrusions may be separated from each other even when the vehicle locking boot 100 is locked to a wheel of a vehicle.
A first engagement protrusion (e.g., a front engagement protrusion 103) coupled to a first vertical support arm (e.g., a first vertical support arm 102) opposite the lug nut blocking plate 109 may be moved away from a second engagement protrusion (e.g., a rear engagement protrusion 107) coupled to a second vertical supporting arm (e.g., a second vertical support arm 106) immediately below the lug nut locking plate 109 by way of a horizontal extension portion coupled to the first vertical support arm. The horizontal extension portion may slide through a track immediately below the second vertical supporting arm. The horizontal extension portion 105 may move in and out of a receiving sleeve 104 which is fully enclosed and is positioned approximately below the lug nut blocking plate 109. Thus, a distal end of the horizontal extension portion 105 is not exposed to an outside of the vehicle locking boot, which may prevent damage to the horizontal extension portion, and may reduce an amount of maintenance (e.g., greasing and cleaning) of the horizontal extension portion and the track. An upper surface of the receiving sleeve 104 may be in a different horizontal plane (e.g., a first horizontal plane 401) than an upper surface of a horizontal support arm (e.g., a horizontal support arm 101) coupled to the second vertical supporting arm (e.g., a second vertical support arm 106) on an opposite side of the second vertical supporting arm from the horizontal support arm 101. For example, an upper surface of the receiving sleeve 104 may be below the upper surface of the horizontal support arm 101, which may reduce a size and weight of the overall vehicle locking boot, while still protecting the horizontal extension portion.
According to an exemplary embodiment of the present invention, the first vertical support arm may form substantially a ninety degree angle with the horizontal support arm.
The vehicle locking boot may be unlocked and removed by entering a code into key pad, unlocking the boot, and sliding the engagement protrusions away from each other to remove the vehicle locking boot from the wheel.
According to an exemplary embodiment of the present invention, the vehicle locking boot 100 may be formed of steel or another rigid metal, and may include a relatively small number of weld joints, which may prevent one or more portions of the vehicle locking boot from being tampered with or broken off through an application of force. For example, each of the support arms described herein may have a hollow, tubular steel structure to maximize strength, while minimizing weight, thus allowing the vehicle locking boot 100 described herein to be easily locked to a vehicle's wheel without being damaged or broken off through an application of mechanical force or through tampering with by an owner of a vehicle.
According to an exemplary embodiment of the present invention, the vehicle locking boot 100 may include countersunk screws 112, a charging port 113 for charging to key pad 108 or any other connected electronic devices, a lock 114 and a release button 115 for releasing the lock 114 when the release button 115 is depressed after a correct unlock code is entered into the keypad 109.
According to an exemplary embodiment of the present invention, a vehicle locking boot 100 includes a horizontal support arm 101 and a first vertical support arm 102 extending from the horizontal support arm 101 along a direction orthogonal to an upper surface the horizontal support arm 101. The first vertical support arm 102 includes a front engagement protrusion 103 extending therefrom. A receiving sleeve 104 extends from the horizontal support arm at a base of the first vertical support arm 102 along a direction parallel to an extending direction of the horizontal support arm 101. A horizontal extension portion 105 is coupled to the horizontal support arm 101. A second vertical support arm 106 extends from the horizontal extension portion 105 along the direction orthogonal to the upper surface of the horizontal support arm 101. The second vertical support arm 106 includes a rear engagement protrusion 107 extending therefrom. The front engagement protrusion 103 faces the rear engagement protrusion 107. A keypad 108 is disposed on the first vertical support arm 102. The keypad 108 is configured to lock and unlock the horizontal extension portion 105. A lug nut blocking plate 109 is coupled to the first vertical support arm 102 above the front engagement protrusion 103.
According to an exemplary embodiment of the present invention, the lug nut blocking plate 109 may include a lug nut blocking pad 110 disposed on lug nut blocking plate. The lug nut blocking pad 110 may be a foam or rubber pad having substantially a same size and shape as the lug nut blocking plate 109 to protect a vehicle (e.g., vehicle 500) wheel from damage.
According to an exemplary embodiment of the present invention, the lug nut locking plate 109 may have an octagonal shape, which may prevent the lug nuts from being accessed or tampered with.
According to an exemplary embodiment of the present invention, the horizontal extension portion 105 may be coupled to an internal track 111 formed in the horizontal support arm. The horizontal extension portion 105 may be configured to slide along the internal track 111 to move the rear engagement protrusion 107 to varying distances from the front engagement protrusion 103.
According to an exemplary embodiment of the present invention, a distal end of the horizontal extension portion 105 with respect to the second vertical supporting arm 106 may be concealed within the receiving sleeve 104 when the front engagement protrusion 103 is in contact with the rear engagement protrusion 107.
According to an exemplary embodiment of the present invention, the horizontal support arm 101 may have a first thickness (e.g., first thickness H1 illustrated in
According to an exemplary embodiment of the present invention, the upper surface of the horizontal support arm 101 may extend along a first horizontal plane (e.g., first horizontal plane 401 illustrated in
According to an exemplary embodiment of the present invention, the first vertical support arm 102 may form a 90° angle with the horizontal support arm 101.
According to an exemplary embodiment of the present invention, a diameter of the lug nut blocking plate 109 may be at least 10 inches. Thus, the lug nut blocking pad 110 may be relatively large to prevent access to and tampering with the underlying lug nuts.
According to an exemplary embodiment of the present invention, a diameter of each of the front engagement protrusion 103 at a first end of the front engagement protrusion 103 opposite the rear engagement protrusion 107 may be at least 2 inches. A diameter of the rear engagement protrusion 107 may taper to 1 inch at a second end of the front engagement protrusion 103 facing the rear engagement protrusion 107.
The disclosures of each of the references, patents and published patent applications disclosed herein are each incorporated by reference herein in their entireties.
In the event of a conflict between a definition herein and a definition incorporated by reference, the definition provided herein is intended.
Having described exemplary embodiments of the present invention, it is further noted that it is readily apparent to those of ordinary skill in the art that various modifications may be made without departing from the spirit and scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 15/710,083, filed on Sep. 20, 2017, which claims priority to U.S. Provisional Patent Application No. 62/534,444, filed on Jul. 19, 2017, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1376114 | Raney | Apr 1921 | A |
1488893 | Plouffe | Apr 1924 | A |
2960857 | Winter | Nov 1960 | A |
3868837 | Quimby | Mar 1975 | A |
3907072 | Shafer | Sep 1975 | A |
4723426 | Beaudoin | Feb 1988 | A |
4819462 | Apsell | Apr 1989 | A |
5315848 | Beyer | May 1994 | A |
5375442 | Hammer | Dec 1994 | A |
5385038 | Walker | Jan 1995 | A |
5678433 | Riccitelli | Oct 1997 | A |
5829285 | Wilson | Nov 1998 | A |
5829286 | Wilson | Nov 1998 | A |
5862688 | Odegard | Jan 1999 | A |
5865048 | Beavers | Feb 1999 | A |
5873275 | Lukich | Feb 1999 | A |
6032497 | Fulcher | Mar 2000 | A |
D542122 | Mechalchuk et al. | May 2007 | S |
D567062 | Meyer | Apr 2008 | S |
7594415 | Wu | Sep 2009 | B1 |
7731068 | Moynihan et al. | Jun 2010 | B2 |
7731088 | Moynihan et al. | Jun 2010 | B2 |
7843321 | Marchasin et al. | Nov 2010 | B2 |
7950570 | Marchasin | May 2011 | B2 |
7988045 | Moynihan et al. | Aug 2011 | B2 |
7988046 | Moynihan et al. | Aug 2011 | B2 |
8099984 | Wu | Jan 2012 | B2 |
8219442 | Johnson et al. | Jul 2012 | B2 |
9262749 | Johnson et al. | Feb 2016 | B2 |
9963105 | Gordon | May 2018 | B1 |
10507792 | Gordon | Dec 2019 | B1 |
10696270 | Gordon | Jun 2020 | B2 |
D906080 | Gordon | Dec 2020 | S |
D926548 | Gordon | Aug 2021 | S |
20070245783 | Fulcher | Oct 2007 | A1 |
20090188284 | Mechalchuk | Jul 2009 | A1 |
20100108448 | Wyers | May 2010 | A1 |
20110083481 | Cheatham | Apr 2011 | A1 |
20110226022 | Caldwell | Sep 2011 | A1 |
20120215595 | Johnson et al. | Aug 2012 | A1 |
20120215596 | Johnson et al. | Aug 2012 | A1 |
20120260702 | Jones | Oct 2012 | A1 |
20130226795 | Hopper | Aug 2013 | A1 |
Entry |
---|
Paylock Modern Parking Solutions and Smart Boot, “Smartbooting” [online at the internet<URL: https://paylock.com/]. [Last Visited Sep. 20, 2017]. |
Product information webpage for Coochleer Car Wheel Lock Anti Theft Tire Lock Clamp Boot Tire Claw Parking Car Truck RV Boat Trailer: Automotive, accessed Aug. 1, 2018 at :https://www.amazon.com/dp/B0725RFVTK/ref=sspa_dk_detail_2?psc=1&pd_rd_i=B0725RFVTK&pd_rd_wg=R4Mzl&pd_rd_r=H56CCZ90T4WP1BE97H3D&pd_rd_w=5KEc5, referencing a “Date First Available” of Apr. 13, 2017. |
Product information webpage for Heavy Duty Wheel Lock, accessed via Internet archive: Wayback Machine (https://archive.org/web/) for http://www.equipment lock.com as publicaly viewable on May 4, 2012. |
Article titled “SmartBoots coming to Salt Lake City Streets”, posted on www.KSL.com on Mar. 10, 2011. |
Product User Manual for Fullstop Security Centurian Wheel Clamp, Model FCWC10-7, Rev. B 07-07, copyright 2007. |
File History for Ex-Parte Rexamination No. 90/014,183. |
Co-Pending U.S. Appl. No. 15/710,083, filed Sep. 20, 2017. |
Number | Date | Country | |
---|---|---|---|
20200324735 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62534444 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15972679 | May 2018 | US |
Child | 16916708 | US | |
Parent | 15710083 | Sep 2017 | US |
Child | 15972679 | US |