A four-wheel drive (4WD)/differential lock mechanism is provided for use in axle assemblies of motor vehicles.
Various motor vehicle differentials are known in the art. Some conventional vehicles can include a front differential that is arranged to facilitate operation of the vehicle in one of a two-wheel drive (2WD) mode, a 4WD mode, and a 4WD mode with one or more locked differentials (e.g., a 4WD/lock mode).
In accordance with one embodiment, a vehicular drive train comprises a first axle, a second axle, and a differential. The differential comprises a stationary case, a rotatable carrier, at least two spider gears, a first side gear, a second side gear, a shaft, an axle tube, and a locking collar. The rotatable carrier is journalled within stationary case. The rotatable carrier has a neck portion that includes a first set of external splines. The at least two spider gears are rotatably coupled to the rotatable carrier. The first side gear is meshed with each of the at least two spider gears. The first axle is coupled with the first side gear and is rotatable together with the first side gear. The second side gear is meshed with each of the at least two spider gears. The second axle is coupled with the axle tube and is rotatable together with the axle tube. The shaft is coupled with the second side gear and is rotatable together with the second side gear. The shaft includes a second set of external splines. The axle tube is associated with the shaft and includes a third set of external splines. The locking collar is co-axially disposed about the second axle and has a first set of internal splines and a second set of internal splines. The locking collar is longitudinally movable relative to the second axle between a first position, a second position, and a third position. The locking collar is rotatable with the second axle. The locking collar has a first internal diameter corresponding with the first set of internal splines. The locking collar has a second internal diameter corresponding with the second set of internal splines. The second internal diameter is greater than the first internal diameter. When the locking collar is in the first position, the first set of internal splines is meshed with the third set of external splines to facilitate operation of a vehicle in a two-wheel drive mode. When the locking collar is in the second position, the first set of internal splines is meshed with the second and third sets of external splines such that the shaft and the second axle are coupled together to facilitate operation of a vehicle in a four-wheel drive mode. When the locking collar is in the third position, the first set of internal splines is meshed with the second and third sets of external splines and the second set of internal splines is meshed with the first set of external splines, such that the rotatable carrier, the shaft, and the second axle are coupled together to facilitate locking of the differential and operation of a vehicle in a locked four-wheel drive mode.
In accordance with another embodiment, a locking collar is provided for association with a differential and configured to facilitate operation of vehicle in one of a two-wheel drive mode, a four-wheel drive mode, and a four-wheel drive mode with a locked differential. The locking collar comprises a first set of internal splines and a second set of internal splines. The locking collar has a first internal diameter at the first set of internal splines, the locking collar has a second internal diameter at the second set of splines, and the second internal diameter is greater than the first internal diameter.
In accordance with yet another embodiment, a vehicle comprises a pair of wheels and a drive train. The drive train comprises a first axle, a second axle, and a differential. Each of the wheels is rotatably supported by one of the first axle and the second axle. The differential comprises a stationary case, a rotatable carrier, at least two spider gears, a first side gear, a second side gear, a shaft, an axle tube, and a locking collar. The rotatable carrier is journalled within stationary case. The rotatable carrier has a neck portion that includes a first set of external splines. The at least two spider gears is rotatably coupled to the rotatable carrier. The first side gear is meshed with each of the at least two spider gears. The first axle is coupled with the first side gear and is rotatable together with the first side gear. The second side gear is meshed with each of the at least two spider gears. The second axle is coupled with the axle tube and is rotatable together with the axle tube. The shaft is coupled with the second side gear and is rotatable together with the second side gear. The shaft has a distal end that includes a second set of external splines. The axle tube is disposed at the distal end of the shaft and includes a third set of external splines. The locking collar is co-axially disposed about the second axle and has a first set of internal splines and a second set of internal splines. The locking collar is longitudinally movable relative to the second axle between a first position, a second position, and a third position. The locking collar is rotatable with the second axle. The locking collar has a first internal diameter corresponding with the first set of internal splines. The locking collar has a second internal diameter corresponding with the second set of internal splines. The second internal diameter is greater than the first internal diameter. When the locking collar is in the first position, the first set of internal splines is meshed with the third set of external splines to facilitate operation of a vehicle in a two-wheel drive mode. When the locking collar is in the second position, the first set of internal splines is meshed with the second and third sets of external splines such that the shaft and the second axle are coupled together to facilitate operation of a vehicle in a four-wheel drive mode. When the locking collar is in the third position, the first set of internal splines is meshed with the second and third sets of external splines and the second set of internal splines is meshed with the first set of external splines, such that the rotatable carrier, the shaft, and the second axle are coupled together to facilitate locking of the differential and operation of a vehicle in a locked four-wheel drive mode.
In accordance with still another embodiment, a locking collar is associated with a differential and configured to facilitate operation of vehicle in one of a two-wheel drive mode, a four-wheel drive mode, and a four-wheel drive mode with a locked differential. The locking collar comprises a first set of internal splines, a shoulder surface, and at least one protrusion. The first set of splines terminate adjacent to the shoulder surface. Said at least one protrusion extends from the shoulder surface. Said at least one protrusion is configured to extend into at least one respective recess defined by a rotatable carrier to facilitate locking of the rotatable carrier and the locking collar together.
Various embodiments will become better understood with regard to the following description, appended claims and accompanying drawings wherein:
Referring to the drawings, wherein like reference numbers indicate the same or corresponding elements throughout the views,
The vehicle 10 includes an engine (not shown) associated with the drive train 12 for transferring torque to the front wheels (e.g., 14) and/or rear wheels 16. The engine can be an internal combustion engine, which can use one or more of a variety of fuels, or any other suitable source of motive power such as an electric motor. Referring to
The front differential 20 can include a stationary case 36 and a rotatable carrier 38 that can be journalled within the stationary case 36 by left and right bearings 40, 41. The rotatable carrier 38 can include a neck portion 39 that extends beyond the right bearing 41. The input member 22 is shown to be journalled within the stationary case 36 by a bearing 42. The stationary case 36 can define an opening 44 suitable to permit the input member 22 to extend through the stationary case 36. The bearing 42 can be disposed within the opening 44 and positioned between the input member 22 and portions of the stationary case 36 adjacent to the opening 44. An oil seal 45 can be provided to facilitate fluid sealing of the opening 44. The stationary case 36 can also define left and right openings 46, 48 through which the left and right front axles 24, 26 can extend. Respective oil seals 50, 52 can be provided to facilitate fluid sealing of the left and right openings 46, 48.
The input member 22 can be coupled to a prop shaft 54 and can include a pinion gear 56 that meshes with a ring gear 58 that can be secured to the rotatable carrier 38 by conventional fasteners such as a plurality of bolts (e.g., 59). Accordingly, during operation of vehicle 10, the engine can rotate the prop shaft 54 which can cause the rotatable carrier 38 to rotate. The front differential 20 is further shown to include a pair of spider gears 60, a left side gear 61, and a right side gear 62. The spider gears 60 can be rotatably coupled to the rotatable carrier 38 by a shaft 63. Accordingly, the spider gears 60 can be rotatable with respect to the rotatable carrier 38 and rotatable together with the rotatable carrier 38. Each spider gear 60 can mesh with each of the left and right side gears 61, 62. It will be appreciated that in other embodiments a front differential can include more than two spider gears.
As shown in
An axle tube 66 can be disposed at a distal end 65 of the pinion shaft 64 and can be configured to rotate with respect to the pinion shaft 64. The axle tube 66 can be rotatably supported by a bearing 68 that is interposed between the distal end 65 and the axle tube 66. It will be appreciated that an axle tube can be associated with a pinion shaft in any of a variety of suitable alternative arrangements. For example, an axle tube can include a nipple that extends into the pinion shaft and is supported by an internal bearing. In such an example, the internal bearing can be located about midway between opposite ends of the pinion shaft. In one embodiment, an inboard end of the right front axle 26 can be splined to the axle tube 66, as generally shown in
The front differential 20 can further include a 4WD/differential lock mechanism that includes a locking collar 72. As illustrated in
The locking collar 72 can have a first set of internal splines 74 longitudinally spaced from a second set of internal splines 76. Each of the axle tube 66, the pinion shaft 64, and the neck portion 39 can have first, second, and third sets of external splines 78, 80, 82, respectively. It is to be appreciated that splines described herein as being internal splines, such as the first and second sets of internal splines 74, 76, should be understood to mean that the splines of each respective set of splines are spaced from each other and extend radially inwardly. Additionally, it is to be appreciated that splines which are described herein as being external splines, such as the first, second, and third sets of external splines 78, 80, 82, should be understood to mean that the splines of each respective set of splines are spaced from each other and extend radially outwardly from a generally cylindrical surface.
When the locking collar 72 is in the first position, as illustrated in
When the locking collar 72 is moved to the second position, as illustrated in
When the locking collar 72 is moved to the third position, as illustrated in
As illustrated in
As illustrated in
The 4WD/diff lock mechanism 70 can include a shift assembly 88, as illustrated in
As illustrated in
When the selector arm 98 is moved, the pin 90 can pivot the shift arm 92. The arms 104, 106 of the resilient member 94 can cooperate with the protrusions 100, 102 to move the locking collar 72 in response to the pivoting of the shift arm 92. If movement of the locking collar 72 is obstructed when the shift arm 92 is pivoted (such as when any of the neck portion 39, pinion shaft 64, and/or axle tube 66 are rotating in opposite directions or at significantly different speeds), the resilient member 94 can cooperate with the protrusions 100, 102 to permit relative movement between the locking collar 72 and the shift arm 92. When the locking collar 72 moves relative to the shift arm 92, the arms 104, 106 can be spread apart from each other and can bias the locking collar 72 towards the shift arm 92. For example, if the selector arm 98 is actuated to move the locking collar 72 from the first position to the second position, and the relative rotation between the pinion shaft 64 and the axle tube 66 prevents the locking collar 72 from moving to the second position, the shift arm 92 can rotate relative to the locking collar 72. Since the locking collar 72 is held in the first position by the relative rotation between the pinion shaft 64 and the axle tube 66, the protrusions 100, 102 can become spread apart, thereby spreading the arms 104, 106 of the resilient member 94 apart and placing them under tension. Once the relative rotation between the pinion shaft 64 and the axle tube 66 is more appropriate to permit movement of the locking collar 72 into the second position, the locking collar 72 can be urged into the second position by the arms 104, 106. It will be appreciated that although the shift assembly 88 is shown to be a fork-type assembly, any of a variety of suitable alternative arrangements can be provided, such as an arrangement having a ball-screw being disposed in a shift fork.
As illustrated in
It will be appreciated that the locking collar 72 can remain splined to the axle tube 66 in any of the first, second, and third positions such that it remains rotatable together with the right front axle 26 during operation of the vehicle 10 in any of the 2WD mode, the 4WD mode, and the 4WD/lock mode. In addition, the locking collar 72 can also be rotatable together with the pinion shaft 64 and/or the neck portion 39 depending upon whether the locking collar 72 is in the second or third position. The locking collar 72 can therefore be configured to rotate with respect to the fork 89. As illustrated in
Referring now to
It will be appreciated that although a front differential is described above, a 4WD/diff lock mechanism and/or shift assembly can be provided on any of a variety of suitable alternative differential arrangements (e.g., a rear differential).
The foregoing description of embodiments and examples has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed and others will be understood by those skilled in the art. The embodiments were chosen and described for illustration of various embodiments. The scope is, of course, not limited to the examples or embodiments set forth herein, but can be employed in any number of applications and equivalent devices by those of ordinary skill in the art. Rather it is hereby intended the scope be defined by the claims appended hereto.