The present invention relates to methods and devices for correcting a spine, and in particular to bone anchor assemblies and methods of using the same.
Bone anchors may be used in orthopedic surgery to fix bone during healing or during a fusion process. In spinal surgery, bone anchors may be used with spinal fixation elements, such as spinal rods, to stabilize multiple vertebrae either rigidly, in which no relative motion between the vertebrae is desired, or dynamically, in which limited, controlled motion between the vertebrae is desired. Fixation elements can help to support the spine in a desired alignment, for example by defining a shape towards which a deformed spine is to be corrected. Attaching the vertebrae to the fixation element causes vertebrae which are out of position to be drawn towards the fixation element, so that they can then be retained in a correct alignment against forces imposed by soft tissue tending to revert the configuration of the spine towards the deformed shape. Correction of the spinal deformation can involve application to the vertebrae of translational forces, torsional forces, or combinations thereof to cause vertebrae to translate and/or rotate.
Surgical procedures using bone anchors often require that the bone anchor be secured to the bone at a predetermined angle to a surface of the bone. Traditional bone anchors can include a shaft having a spherical head that is polyaxially seated in a receiver member and that can be secured at a fixed angle to the receiver member by a compression member. To reduce a risk that the compression member is misplaced or dropped into a surgical incision in a patient before the compression member is secured proximally of the head, traditional methods can require deformation of the receiver member against the compression cap. The deformation process, called “swaging,” compresses the receiver member against the compression cap to substantially prevent relative movement therebetween. However, the swaging process can weaken the structure of the bone anchor and can increase the expense and the time required for manufacturing of the bone anchor.
Accordingly, there remains a need for improved methods and devices for bone anchor fixation.
The present invention generally provides methods and devices for fixing a bone anchor to a bone. In one aspect, a bone screw assembly is provided that can include a screw having a proximal portion and a distal shank portion, a receiver member having a polyaxial seat formed therein and configured to proximally seat the head portion of the screw, and a compression cap. The compression cap can be disposed within the receiver member and can have a distal end configured to engage the head portion of the screw. Opposed projections of the compression cap can extend radially therefrom and can be configured to mate with complementary recesses formed in the receiver member such that the compression cap is retained within the receiver member.
The opposed projections can be configured in any number of ways. A distance between outer surfaces of the opposed projections can be greater than the inside diameter of the receiver member, although the compression cap can have an outside diameter that is less than an inside diameter of the receiver member. A width of each projection measured horizontally about the circumference of the compression cap can be greater than a thickness of the opposed projection measured along a radial axis of the compression cap. The opposed projections can be configured such that movement of the compression cap distally within the receiver member is effective to deform the opposed projections until the opposed projections snap into engagement with the complementary recesses. Rotating the compression cap relative to the receiver member can also be effective to deform the opposed projections until the opposed projections snap into engagement with the complementary recesses, and/or can be effective to move the opposed projections into engagement with the complementary recesses. The opposed projections and the complementary recesses can be effective, when mated, to maintain the compression cap in a substantially fixed longitudinal and/or rotational position relative to the receiver member.
A proximal-facing surface of each projection and an inner superior surface of each complementary recess can be planar such that, when mated, the compression cap is prevented from being decoupled from the receiver member. A distal-facing surface of each projection can be ramped, tapered, chamfered, and/or beveled to provide a lead-in surface geometry. Similarly, the receiver member can include a shoulder disposed proximal to the complementary recesses, the shoulder being ramped, tapered, chamfered, and/or beveled to provide a lead-in surface for the opposed projections as the compression cap is advanced distally relative to the receiver member. Where the complementary recesses comprise cut-outs formed in a shelf that extends radially inward from an interior sidewall of the receiver member, the shelf can include one or more lateral edges that are ramped, tapered, chamfered, and/or beveled to provide a lead-in surface for the opposed projections.
In another aspect, a method is provided for assembling a bone screw that can include passing a shank portion of the bone screw through an aperture formed in a distal end of a receiver member, inserting a compression cap into the receiver member, and engaging opposed projections extending radially outward from the compression cap with complementary recesses formed in the receiver member to retain the compression cap within the receiver member. The method can further include deforming the projections over a shoulder portion of the receiver member disposed proximal to the complementary recesses. The engaging can be effective to maintain the compression cap in a substantially fixed longitudinal and/or rotational position relative to the receiver member. Inserting the compression cap can comprise sliding the compression cap distally within the receiver member to deform the opposed projections until the opposed rejections snap into engagement with the complementary recesses. Inserting the compression cap can also comprise rotating the compression cap relative to the receiver member to move the opposed projections into engagement with the complementary recesses. Where the complementary recesses can be formed in a shelf that extends radially inward from an interior sidewall of the receiver member, the engaging can comprise camming the opposed projections over ramped, tapered, chamfered, and/or beveled edges of the shelf and snapping the opposed projections into the complementary recesses.
The present invention further provides devices, systems, and methods as claimed.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Various exemplary methods and devices are provided for fixing bone anchors to bone. In general, the methods and devices can allow for a bone anchor to be fixed to a bone at a desired angle relative to a receiver member. In an exemplary embodiment, a bone anchor assembly is provided that includes a bone anchor configured to engage bone, a receiver member for seating a head of the bone anchor, and a compression member for securing the receiver member at fixed angle with respect to the bone anchor. The compression member can be seated within the receiver member, proximally of the head of the bone anchor, and can include one or more engagement features to facilitate attachment to the receiver member. Similarly, the receiver member can include one or more complementary engagement features that correspond to the engagement features of the compression member. Mating between the corresponding engagement features of the compression member and the receiver member in a secured configuration can be sufficient to inhibit or prevent removal of the compression member from the receiver member, thus reducing a risk of accidental loss or misplacement of the compression member. Engagement of the corresponding engagement features can optionally be sufficient to substantially prevent longitudinal and/or rotational movement of the compression member with respect to the receiver member, such that once the compression member is in the secured configuration, the compression member can exert a distal force on the head of the bone anchor and can substantially fix the bone anchor at the desired angle with respect to the receiver member.
The proximal head 18 of the bone anchor 12 is generally in the shape of a truncated sphere having a planar proximal surface 36 and an approximately spherically-shaped distal surface 38. The illustrated bone anchor assembly is a polyaxial bone screw designed for posterior implantation in the pedicle or lateral mass of a vertebra. The proximal head 18 of the bone anchor 12 engages the distal end 32 of the receiver member 14 in a ball and socket like arrangement in which the proximal head 18 and the distal shaft 20 can pivot relative to the receiver member 14. The distal surface 38 of the proximal head 18 of the bone anchor 12 and a mating surface within the distal end 32 of the receiver member 14 can have any shape that facilitates this arrangement, including, for example, spherical (as illustrated), toroidal, conical, frustoconical, and any combinations of these shapes.
The distal shaft 20 of the bone anchor 12 can be configured to engage bone and, in the illustrated embodiment, includes an external bone engaging thread 40. The thread form for the distal shaft 20, including the number of threads, the pitch, the major and minor diameters, and the thread shape, can be selected to facilitate connection with bone. Exemplary thread forms are disclosed in U.S. Patent Application Publication No. 2011/0288599, filed on May 18, 2011, and in U.S. Publication No. 2013/0053901, filed Aug. 25, 2011, both of which are incorporated herein by reference. The distal shaft 20 can also include other structures for engaging bone, including a hook. The distal shaft 20 of the bone anchor 12 can be cannulated, having a central passage or cannula extending the length of the bone anchor to facilitate delivery of the bone anchor over a guide wire in, for example, minimally-invasive procedures. Other components of the bone anchor assembly 10, including, for example, the closure mechanism 16, the receiver member 14, and the compression member 60 (discussed below) can be cannulated or otherwise have an opening to permit delivery over a guide wire. The distal shaft 20 can also include one or more sidewall openings or fenestrations that communicate with the cannula to permit bone in-growth or to permit the dispensing of bone cement or other materials through the bone anchor 12. The sidewall openings can extend radially from the cannula through the sidewall of the distal shaft 20. Exemplary systems for delivering bone cement to the bone anchor assembly 10 and alternative bone anchor configurations for facilitating cement delivery are described in U.S. Patent Application Publication No. 2010/0114174, filed on Oct. 29, 2009, which is hereby incorporated herein by reference. The distal shaft 20 of the bone anchor 12 can also be coated with materials to permit bone growth, such as, for example, hydroxyl apatite, and the bone anchor assembly 10 can be coated partially or entirely with anti-infective materials, such as, for example, tryclosan.
The proximal end 26 of the receiver member 14 includes a pair of spaced apart arms 28A, 28B defining a U-shaped recess 30 therebetween for receiving a spinal fixation element, e.g., a spinal rod 22. Each of the arms 28A, 28B can extend from the distal end 32 of the receiver member 14 to a free end. The arms 28A, 28B can include a feature, such as a bore, recess, dimple, notch, projection, or the like, to facilitate connection of the receiver member 14 to instruments. In the exemplary embodiment, opposing bores 80A, 80B are formed on the arms 28A, 28B for insertion of two pins as part of a swaging process, described in more detail below. The outer surface of each arm 28A, 28B can further include an arcuate groove at the respective free end of the arms. Such grooves are described in more detail in U.S. Pat. No. 7,179,261, issued on Feb. 20, 2007, which is hereby incorporated herein by reference. At least a portion of the proximal end surface 48 of the receiver member 14 defines a plane Y. The receiver member 14 has a central longitudinal axis L.
The distal end 32 of the receiver member 14 includes a distal end surface 34 which is generally annular in shape defining a circular opening through which at least a portion of the bone anchor 12 extends. For example, the distal shaft 20 of the bone anchor 12 can extend through the opening. At least a portion of the distal end surface 34 defines a plane X.
The bone anchor 12 can be selectively fixed relative to the receiver member 14. Prior to fixation, the bone anchor 12 is movable relative to the receiver member 14 within a cone of angulation generally defined by the geometry of the distal end 32 of the receiver member and the proximal head 18 of the bone anchor 12. The illustrated bone anchor is a favored-angle polyaxial screw in which the cone of angulation is biased in one direction. In this manner, the bone anchor 12 is movable relative to the receiver member 14 in at least a first direction, indicated by arrow A in
The spinal fixation element, e.g., the spinal rod 22, can either directly contact the proximal head 18 of the bone anchor 12 or can contact an intermediate element, e.g., a compression member 60. The compression member 60 can be positioned within the receiver member 14 and interposed between the spinal rod 22 and the proximal head 18 of the bone anchor 12 to compress the distal outer surface 38 of the proximal head 18 into direct, fixed engagement with the distal inner surface of the receiver member 14. The compression member 60 can include a pair of spaced apart arms 62A and 62B defining a U-shaped seat 64 for receiving the spinal rod 22 and a distal surface 66 for engaging the proximal head 18 of the bone anchor 12. A largest diameter of the compression member 60 can be smaller than a smallest inner diameter of the receiver member 14 to allow the compression member 60 to fit within the recess 30 of the receiver member 14.
As best seen in
The proximal end 26 of the receiver member 14 can be configured to receive a closure mechanism 16 positionable between and engaging the arms 28A, 28B of the receiver member 14. The closure mechanism 16 can be configured to capture a spinal fixation element, e.g., a spinal rod 22, within the receiver member 14, to fix the spinal rod 22 relative to the receiver member 14, and to fix the bone anchor 12 relative to the receiver member 14. The closure mechanism 16 can be a single set screw having an outer thread for engaging an inner thread 42 provided on the arms 28A, 28B of the receiver member 14. In the illustrated embodiment, however, the closure mechanism 16 comprises an outer set screw 70 positionable between and engaging the arms 28A, 28B of the receiver member 14 and an inner set screw 72 positionable within the outer set screw 70. The outer set screw 70 is operable to act on the compression member 60 to fix the bone anchor 12 relative to the receiver member 14. The inner set screw 72 is operable to act on the spinal rod 22 to fix the spinal rod 22 relative to the receiver member 14. In this manner, the closure mechanism 16 permits the bone anchor 12 to be fixed relative to the receiver member 14 independently of the spinal rod 22 being fixed to the receiver member 14. In particular, the outer set screw 70 can engage the proximal end surfaces of the arms 62A, 62B of the compression member 60 to force the distal surface 66 of the compression member 60 into contact with the proximal head 18 of bone anchor 12, which in turn forces the distal surface 38 of the proximal head 18 into fixed engagement with the distal inner surface of the receiver member 14. The inner set screw 72 can engage the spinal rod 22 to force the spinal rod 22 into fixed engagement with the rod seat 64 of the compression member 60.
The outer set screw 70 includes a first outer thread 74 for engaging a complementary inner thread 42 on the arms 28A, 28B of the receiver member 14. The outer set screw 74 includes a central passage 96 from a top surface 98 of the outer set screw 74 to a bottom surface 100 of the outer set screw 74 for receiving the inner set screw 72. The central passage 96 can includes an inner thread 102 for engaging a complementary outer thread 104 on the inner set screw 72. The thread form for the inner thread 102 and the outer thread 104, including the number of threads, the pitch, major and minor diameter, and thread shape, can be selected to facilitate connection between the components and transfer of the desired axial tightening force. The top surface 98 of the outer set screw 74 can have one or more drive features to facilitate rotation and advancement of the outer set screw 74 relative to the receiver member 14. The illustrated outer set screw 74 includes drive features in the form of a plurality of cut-outs 106 spaced-apart about the perimeter of the top surface 98. The inner set screw 72 can include drive features for receiving an instrument to rotate and advance the inner set screw 72 relative to the outer set screw 74. The illustrated inner set screw 72 includes drive features in the form of a central passage 108 having a plurality of spaced apart, longitudinally oriented cut-outs for engaging complementary features on an instrument.
The bone anchor assembly 10 can be used with a spinal fixation element such as rigid spinal rod 22. The various components of the bone anchor assemblies disclosed herein, as well as the spinal rod 22, can be constructed from various materials, including titanium, titanium alloys, stainless steel, cobalt chrome, PEEK, or other materials suitable for rigid fixation. In other embodiments, the spinal fixation element can be a dynamic stabilization member that allows controlled mobility between the instrumented vertebrae.
In use, bone can be prepared to receive the bone anchor assembly 10, generally by drilling a hole in the bone which is sized appropriately to receive the bone anchor 12. If not already completed, the bone anchor assembly 10 can be assembled, which can include assembling the bone anchor 12 and the receiver member 14, so that the distal shaft 20 extends through the opening in the distal end 32 of the receiver member 14 and the proximal head 18 of the bone anchor 12 is received in the distal end 32 of the receiver member 14. A driver tool can be fitted with the bone anchor 12 to drive the bone anchor 12 into the prepared hole in the bone. The compression member 60 can be positioned within the receiver member 14 such that the arms 62A, 62B of the compression member are aligned with the arms 28A, 28B of the receiver member 14 and the distal surface 66 of the compression member 60 is in contact with the proximal head 18 of the bone anchor 12. A spinal fixation element, e.g., the spinal rod 22, can be located in the recess 30 of the receiver member 14. The closure mechanism 16 can be engaged with the inner thread 42 provided on the arms 28A, 28B of the receiver member 14.
One or more embodiments of inventive bone anchor assemblies are described below. Except as indicated below, the structure, operation, and use of these embodiments is similar or identical to that of the bone anchor assembly 10 described above. Accordingly, a detailed description of said structure, operation, and use is omitted here for the sake of brevity.
Engagement features of the compression cap 160 for engaging the receiver member 114 can be formed anywhere on a surface of the compression cap 160 that is configured to contact the receiver member 114. In the illustrated embodiment, the engagement features are in the form of wings 161A, 161B that project radially outward from outward-facing surfaces of the opposed arms 162A, 162B, distally of flanges 165A, 165B on the arms 162A, 162B. The wings 161A, 161B can extend around an entire width of each of the arms 162A, 162B measured along a circumference of the compression cap 160, although it will be appreciated that the width WC of the wings 161A, 161B can be smaller than the width of the arms 162A, 162B, and can be either the same or different from one another. Moreover, it will be appreciated that although the illustrated wings 161A, 161B extend in a plane that is substantially perpendicular to the longitudinal axis L1 of the compression cap 160, the wings 161A, 161B can extend in any plane, either the same or different from one another.
The longitudinal position of the wings 161A, 161B along the longitudinal length of the compression cap 160 can vary, but preferably the wings 161A, 161B are formed at a location that corresponds to a location of complementary engagement features in the receiver member 114, discussed below, and at a location that will retain the compression cap 160 within the receiver member 114 at a predetermined position just proximal to the head of the bone anchor 112, and more preferably at a predetermined position effective to apply some amount of frictional force to the head of the bone anchor 112. As shown in
The wings 161A, 161B can have any shape and dimension, either the same or different from one another. In the illustrated embodiment, the wings 161A, 161B are in the form of elongate protrusions or ridges formed on the outer surface of each arm 162A, 162B. The wings 161A, 161B have a width WC measured horizontally about a circumference of the compression cap 160, a height HC measured along a longitudinal axis L1 of the compression cap 160, and a depth or thickness TC measured along a radial axis of the compression cap 160. The width WC of the wings 161A, 161B can vary depending on the total width of the arms 162A, 162B, and the width WC can be equal to or less than a total width of the arms 162A, 162B. The height HC and thickness TC of the wings 161A, 161B can also vary, but preferably the height HC and thickness TC are small enough to allow for insertion of the compression cap 160 into the recess 130 of the receiver member 114. In some embodiments, the wings 161A, 161B have a height HC and thickness TC that are small enough to allow the wings 161A, 161B to deflect as the compression cap 160 is inserted into the receiver member 114, as described in more detail below. Although the engagement features of the illustrated embodiment are in the form of wings 161A, 161B, it will be appreciated by a person skilled in the art that the compression cap 160 can have a variety of engagement features thereon for engaging the receiver member 114. Moreover, although there are only two wings 161A, 161B in the illustrated embodiment, it will be appreciated by a person skilled in the art that the compression cap 160 can have any number of engagement features formed thereon.
One or more complementary engagement features can be formed on the receiver member 114. In the illustrated embodiment, best shown in
The pockets 124A, 124B can have any shape and dimension, either the same or different from one another, but they preferably have a shape and size that allows the wings 161A, 161B to be seated and retained therein. At least one dimension of the pockets 124A, 124B can be substantially the same as or slightly smaller than a corresponding dimension of the wings 161A, 161B to provide for an interference fit between the wings 161A, 161B and the pockets 124A, 124B, and/or at least one dimension of the pockets 124A, 124B can be slightly larger than a corresponding dimension of the wings 161A, 161B to allow for some adjustment of the compression cap 160 within the recess 130 when the compression cap 160 is in the secured configuration. In an exemplary embodiment, the pockets 124A, 124B have a width WR measured horizontally about a circumference of the receiver member 114 that is substantially the same as the width WC of the wings 161A, 161B, a depth DR measured along a radial axis of the receiver member 114 that is substantially the same as the thickness TC of the wings 161A, 161B, and a height LR measured along the longitudinal axis L1 of the compression cap 160 that is substantially the same as a height HC of the wings 161A, 161B. A total diameter between an outer-most surface of each of the wings 161A, 161B can also be greater than an inner diameter of the receiver member 114 so as to prevent removal of the compression cap 160 once mated with the receiver member 114. A tight fit between at least two of the corresponding dimensions, e.g., between the width WC of the compression cap 160 and the width WR of the receiver member 114, and/or between the height HC of the compression cap 160 and the height HR of the receiver member 114, and/or between the thickness TC of the compression cap 160 and the depth DR of the receiver member 114, can help to substantially prevent both longitudinal and rotational movement of the compression cap 160 once the compression cap 160 is in the secured configuration. A small difference between the height HC of the wings 161A, 161B and the height HR of the pockets 124A, 124B can allow for proximal-distal movement of the compression cap 160, thus allowing for further tightening of the compression cap 160 against the bone anchor 112. This can be achieved by applying a closure member (not shown) to the receiver member 114 so as to cause a spinal fixation rod seated within the receiver member 114 to apply a distal force to the compression cap 160 to thereby cause the compression cap 160 to frictionally engage and lock the bone anchor 112 in a fixed position relative to the receiver member 114. In addition, as will be explained in more detail below, the additional space within the pockets 124A, 124B along the longitudinal axis L1 of the compression cap 160 can allow for the bone anchor 112 to assume various angles with respect to the longitudinal axis L1 of the compression cap 160 prior to locking the bone anchor assembly. In an exemplary embodiment, the relative heights HC, HR are configured so as to cause the compression cap 160 to apply friction to the bone anchor 112 to maintain the bone anchor 112 at a desired angle when no closure mechanism is applied to the receiver member 114. The friction can be overcome by applying a force to the receiver member 114 to adjust the angle as desired.
As indicated above, the corresponding engagement features of the compression cap 160 and the receiver member 114 can be configured to facilitate insertion of the compression cap 160 into the receiver member 114, but to inhibit or prevent removal of the compression cap 160 from the receiver member 114. As the compression cap 160 is distally advanced from an unsecured configuration, shown in
To further facilitate insertion of the compression cap 160 into the receiver member 114, one or all of the wings 161A, 161B, the cap's arms 162A, 162B, and the receiver's arms 128A, 128B can be formed from one or more flexible materials. In one embodiment, the wings 161A, 161B can be formed from one or more flexible materials that can allow the wings 161A, 161B to deflect or bend proximally as the wings 161A, 161B pass through the receiver member 114 and into the pockets 124A, 124B. In another embodiment, the wings 161A, 161B can be formed from a shape memory material that can allow the wings 161A, 161B to compress or deform inwardly as the wings 161A, 161B pass through the receiver member 114 and then expand once the wings 161A, 161B are seated within the pockets 124A, 124B. In another embodiment (not shown), the wings 161A, 161B can be biased inwardly, e.g., by springs, and can deflect outwardly as the compression cap 160 is advanced through the receiver member 114 and then return to the biased inward position once the wrings 161A, 161B are aligned with the pockets 124A, 124B. As the wings 161A, 161B pass into the pockets 124A, 124B, the wings 161A, 161B can snap into engagement with the pockets 124A, 124B, thus providing tactile feedback to a user and helping to inhibit or prevent subsequent removal of the compression cap 160 from the receiver member 114. Similarly, the arms 162A, 162B of the compression cap 160 can deflect inwardly as the compression cap 160 is inserted into the recess 130, and/or the arms 128A, 128B of the receiver member 114 can deflect outwardly as the compression cap 160 is inserted into the recess 130.
To inhibit or prevent removal of the compression cap 160 from the receiver member 114, the wings 161A, 161B can have proximal-facing surfaces that extend in a plane substantially perpendicular to the longitudinal axis L1 of the compression cap 160. Once the wings 161A, 161B are seated within the pockets 124A, 124B in the secured configuration, the proximal-facing surfaces of the wings 161A, 161B can abut distal-facing surfaces of the pockets 124A, 124B, which can also extend in a plane substantially perpendicular to the longitudinal axis L1 of the compression cap 160. In addition, the wings 161A, 161B can be configured such that distal or outward flexion of the wings 161A, 161B away from the compression cap 160 is more difficult to achieve than any proximal or inward flexion of the wings 161A, 161B toward the compression cap 160 that is required for insertion of the wings 161A, 161B into the pockets 124A, 124B, e.g., the wings 161A, 161B can be biased proximally.
In one embodiment, once the compression cap 160 is seated within the receiver member 114 in the secured configuration, with the wings 161A, 161B extending into the pockets 124A, 124B, a distal-facing surface 166 of the compression cap 160 can exert a frictional force on a proximal head 118 of the bone anchor 112 to substantially maintain the head 118 in a fixed position relative to the receiver member 114. The force should be sufficient to prevent free movement of the bone anchor 112 relative to the receiver member 114 while still allowing a user to move the receiver member 114 relative to the bone anchor 112. The force can vary slightly when the compression cap 160 is in the secured configuration, as the compression cap 160 can be capable of some longitudinal movement. As explained above, the pockets 124A, 124B can have a slightly greater height HR than a corresponding height HC of the wings 161A, 161B, thereby allowing for slight movement of the wings 161A, 161B and thus the compression cap 160 along a longitudinal axis L1 of the compression cap 160. This can be necessary to allow for minor adjustments to the angle of the bone anchor 112 and for further tightening of the compression cap 160 against the proximal head 118. As shown in
The corresponding engagement features of a compression member and a receiver member can be of any shape and size, and can be configured to engage each other in a variety of ways. For example, an additional embodiment of a bone anchor assembly 210 having corresponding engagement features formed on a compression member and a receiver member is illustrated in
Engagement features of the compression cap 260 can be a variety of shapes and sizes, although in the illustrated embodiment the engagement features are in the form of wings 261A, 261B extending radially from the opposed arms 262A, 262B of the compression cap 260 and configured to engage complementary engagement features of the receiver member 214. As best seen in
In this embodiment, shelves 242A, 242B extend radially inward from inner walls of the arms 228A, 228B of the receiver member 214 and are configured to engage the wings 261A, 261B of the compression cap 260. The shelves 242A, 242B can be disposed anywhere along the inner walls of the arms 228A, 228B, although in the illustrated embodiment the shelves 242A, 242B are disposed distally of threads 242 that can be configured to engage a closure mechanism, e.g., a set screw. As shown in
Where provided, the cut-outs 224A, 224B of the receiver member 214 can be configured to facilitate transition of the compression cap 260 into the secured configuration, but to inhibit or prevent transition of the compression cap 260 out of the secured configuration. In the illustrated embodiment, shown in
As with the previous embodiment, the wings 261A, 261B can be formed from a flexible material that is capable of being distally deflected as a user rotates the compression cap 260 from the unsecured to the secured configuration, such that the wings 261A, 261B are slightly bent by the ramped edges 241 as the compression cap 260 is rotated into the secured configuration and/or such that the wings 261A, 261B snap into alignment with the cut-outs 224A, 224B. In another embodiment, not shown, the wings 261A, 261B remain distally deflected while in the secured configuration, thus further securing the compression cap 260 to the receiver member 214 and providing additional distal force against the bone anchor 212.
Although the illustrated embodiments of bone anchor assemblies include male engagement features on a compression cap and female engagement features on a corresponding receiver member, the engagement features can be reversed with the compression cap having female engagement features and the receiver member having corresponding male engagement features. By way of non-limiting example, the receiver member can have wings extending from inner walls thereof that can be configured to engage recesses formed on outer surfaces of the compression cap. The wings and corresponding recesses can be configured and used similarly to those described above for bone anchor assemblies 110, 210.
In use, a bone anchor assembly can be assembled, either during manufacturing or intraoperatively, by passing an elongate shank of a bone anchor in a proximal-to-distal direction through an aperture formed in a distal end of a receiver member. A proximal head portion of the bone anchor can be polyaxially seated in a spherical recess formed in a distal portion of the receiver member. A compression member can be inserted between the opposed arms of the receiver member, proximal to the proximal head of the bone anchor. Corresponding engagement features of the compression member and the receiver member can be engaged by urging the compression member distally within the receiver member, or, in another aspect, by rotating and distally advancing the compression member into the receiver member. Engagement of the corresponding engagement features in a secured configuration can prevent proximal movement of the compression member with respect to the receiver member, thus securing the compression member within the receiver member. Such engagement can also cause the compression member to apply a frictional force to the head of the bone anchor to maintain the bone anchor at a fixed angle with respect to the receiver member. An angle of the bone anchor with respect to the receiver member can be adjusted by applying a force sufficient to overcome the frictional force.
The assembled bone anchor can be implanted in a bone of a patient. The bone can be prepared to receive the bone anchor assembly, e.g., by drilling an appropriately sized hole. A driver tool can be fitted with the bone anchor to drive the bone anchor into the prepared hole in the bone. A spinal fixation element, e.g., a rod, can be located in between the arms of the receiver member. A closure mechanism can be engaged with an inner thread formed on opposed arms of the receiver member, proximally of the rod, which can urge the compression member further distally to exert a frictional force on the head of the bone anchor and thus lock the bone anchor at a fixed angle with respect to the receiver member.
Although the invention has been described by reference to specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but that it have the full scope defined by the language of the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/403,114, filed on May 3, 2019. U.S. patent application Ser. No. 16/403,114 is a continuation of U.S. patent application Ser. No. 15/643,075, filed on Jul. 6, 2017 (issued as U.S. Pat. No. 10,321,938). U.S. patent application Ser. No. 15/643,075 is a continuation of U.S. patent application Ser. No. 14/987,812, filed on Jan. 5, 2016 (issued as U.S. Pat. No. 9,724,130). U.S. patent application Ser. No. 14/987,812 is a continuation of U.S. patent application Ser. No. 13/827,092, filed on Mar. 14, 2013 (issued as U.S. Pat. No. 9,259,247). The entire contents of each of these applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2509081 | Bluth et al. | May 1950 | A |
2788045 | Rosan | Apr 1957 | A |
2842180 | Brown et al. | Jul 1958 | A |
4124318 | Sagady | Nov 1978 | A |
4762024 | Graft | Aug 1988 | A |
5009017 | Diekevers et al. | Apr 1991 | A |
5102412 | Rogozinski | Apr 1992 | A |
5129388 | Vignaud et al. | Jul 1992 | A |
5154719 | Cotrel | Oct 1992 | A |
5281223 | Ray | Jan 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5385565 | Ray | Jan 1995 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5474555 | Puno et al. | Dec 1995 | A |
5486174 | Fournet-Fayard et al. | Jan 1996 | A |
5487744 | Howland | Jan 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5520689 | Schlapfer et al. | May 1996 | A |
5562661 | Yoshimi et al. | Oct 1996 | A |
5580246 | Fried et al. | Dec 1996 | A |
5643260 | Doherty | Jul 1997 | A |
5672176 | Biedermann et al. | Sep 1997 | A |
5683390 | Metz-Stavenhagen | Nov 1997 | A |
5782833 | Haider | Jul 1998 | A |
5797911 | Sherman et al. | Aug 1998 | A |
5879350 | Sherman et al. | Mar 1999 | A |
5885286 | Sherman et al. | Mar 1999 | A |
5941882 | Jammet et al. | Aug 1999 | A |
5964591 | Beaty et al. | Oct 1999 | A |
5989250 | Wagner et al. | Nov 1999 | A |
6050997 | Mullane | Apr 2000 | A |
6053917 | Sherman et al. | Apr 2000 | A |
6056753 | Jackson | May 2000 | A |
6068632 | Carchidi et al. | May 2000 | A |
6074391 | Metz-Stavenhagen et al. | Jun 2000 | A |
6077262 | Schlapfer et al. | Jun 2000 | A |
6090111 | Nichols | Jul 2000 | A |
6113601 | Tatar | Sep 2000 | A |
6146383 | Studer et al. | Nov 2000 | A |
6224596 | Jackson | May 2001 | B1 |
6224598 | Jackson | May 2001 | B1 |
6251112 | Jackson | Jun 2001 | B1 |
6258090 | Jackson | Jul 2001 | B1 |
6261287 | Metz-Stavenhagen | Jul 2001 | B1 |
6280442 | Barker et al. | Aug 2001 | B1 |
6296642 | Morrison et al. | Oct 2001 | B1 |
6302888 | Mellinger et al. | Oct 2001 | B1 |
6355038 | Pisharodi | Mar 2002 | B1 |
6361535 | Jackson | Mar 2002 | B2 |
6379356 | Jackson | Apr 2002 | B1 |
6402757 | Moore, III et al. | Jun 2002 | B1 |
6440132 | Jackson | Aug 2002 | B1 |
6454768 | Jackson | Sep 2002 | B1 |
6454772 | Jackson | Sep 2002 | B1 |
6458132 | Choi | Oct 2002 | B2 |
6475218 | Gournay et al. | Nov 2002 | B2 |
6485491 | Farris et al. | Nov 2002 | B1 |
6485494 | Haider | Nov 2002 | B1 |
6488681 | Martin et al. | Dec 2002 | B2 |
6537276 | Metz-Stavenhagen | Mar 2003 | B2 |
6540748 | Lombardo | Apr 2003 | B2 |
6565567 | Haider | May 2003 | B1 |
6629977 | Wolf | Oct 2003 | B1 |
6660004 | Barker et al. | Dec 2003 | B2 |
6663656 | Schmieding et al. | Dec 2003 | B2 |
6723100 | Biedermann et al. | Apr 2004 | B2 |
6726480 | Sutter | Apr 2004 | B1 |
6726687 | Jackson | Apr 2004 | B2 |
6730089 | Jackson | May 2004 | B2 |
6736820 | Biedermann et al. | May 2004 | B2 |
6740086 | Richelsoph | May 2004 | B2 |
6755829 | Bono et al. | Jun 2004 | B1 |
6755836 | Lewis | Jun 2004 | B1 |
6835196 | Biedermann et al. | Dec 2004 | B2 |
6843790 | Ferree | Jan 2005 | B2 |
6869433 | Glascott | Mar 2005 | B2 |
6884244 | Jackson | Apr 2005 | B1 |
6896677 | Lin | May 2005 | B1 |
6905500 | Jeon et al. | Jun 2005 | B2 |
6974460 | Carbone et al. | Dec 2005 | B2 |
6981973 | McKinley | Jan 2006 | B2 |
6997927 | Jackson | Feb 2006 | B2 |
7018378 | Biedermann et al. | Mar 2006 | B2 |
7022122 | Amrein et al. | Apr 2006 | B2 |
7083621 | Shaolian et al. | Aug 2006 | B2 |
7087057 | Konieczynski et al. | Aug 2006 | B2 |
7090679 | Saint-Martin et al. | Aug 2006 | B2 |
7125426 | Moumene et al. | Oct 2006 | B2 |
7179261 | Sicvol et al. | Feb 2007 | B2 |
7186255 | Baynham et al. | Mar 2007 | B2 |
7198625 | Hui et al. | Apr 2007 | B1 |
7211086 | Biedermann et al. | May 2007 | B2 |
7223268 | Biedermann | May 2007 | B2 |
7235075 | Metz-Stavenhagen | Jun 2007 | B1 |
7261716 | Strobel et al. | Aug 2007 | B2 |
7264621 | Coates et al. | Sep 2007 | B2 |
7291153 | Glascott | Nov 2007 | B2 |
7316684 | Baccelli et al. | Jan 2008 | B1 |
7322981 | Jackson | Jan 2008 | B2 |
7325470 | Kay et al. | Feb 2008 | B2 |
7445627 | Hawkes et al. | Nov 2008 | B2 |
7473267 | Nguyen et al. | Jan 2009 | B2 |
7479156 | Lourdel et al. | Jan 2009 | B2 |
7559943 | Mujwid | Jul 2009 | B2 |
7572279 | Jackson | Aug 2009 | B2 |
7591839 | Biedermann et al. | Sep 2009 | B2 |
7604655 | Warnick | Oct 2009 | B2 |
7615068 | Timm et al. | Nov 2009 | B2 |
7625394 | Molz, IV et al. | Dec 2009 | B2 |
7670362 | Zergiebel | Mar 2010 | B2 |
7674277 | Burd et al. | Mar 2010 | B2 |
7678137 | Butler et al. | Mar 2010 | B2 |
7678139 | Garamszegi et al. | Mar 2010 | B2 |
7682377 | Konieczynski et al. | Mar 2010 | B2 |
7686833 | Muhanna et al. | Mar 2010 | B1 |
7699876 | Barry et al. | Apr 2010 | B2 |
7717939 | Ludwig et al. | May 2010 | B2 |
7717942 | Schumacher | May 2010 | B2 |
7722649 | Biedermann et al. | May 2010 | B2 |
7727261 | Barker et al. | Jun 2010 | B2 |
7731736 | Guenther et al. | Jun 2010 | B2 |
7736380 | Johnston et al. | Jun 2010 | B2 |
7766945 | Nilsson et al. | Aug 2010 | B2 |
7766946 | Bailly | Aug 2010 | B2 |
7776072 | Barry | Aug 2010 | B2 |
7780703 | Yuan | Aug 2010 | B2 |
7785354 | Biedermann et al. | Aug 2010 | B2 |
7789900 | Levy et al. | Sep 2010 | B2 |
7806914 | Boyd et al. | Oct 2010 | B2 |
7846190 | Ball | Dec 2010 | B2 |
7850718 | Bette et al. | Dec 2010 | B2 |
7857834 | Boschert | Dec 2010 | B2 |
7867257 | Na et al. | Jan 2011 | B2 |
7892259 | Biedermann et al. | Feb 2011 | B2 |
7901413 | Lewis | Mar 2011 | B1 |
7922748 | Hoffman | Apr 2011 | B2 |
7951172 | Chao et al. | May 2011 | B2 |
7951173 | Hammill, Sr. et al. | May 2011 | B2 |
7951175 | Chao et al. | May 2011 | B2 |
7955359 | Matthis et al. | Jun 2011 | B2 |
7955363 | Richelsoph | Jun 2011 | B2 |
8007522 | Hutchinson | Aug 2011 | B2 |
8016862 | Felix et al. | Sep 2011 | B2 |
8038701 | Rock et al. | Oct 2011 | B2 |
8052724 | Jackson | Nov 2011 | B2 |
8057518 | Frasier et al. | Nov 2011 | B2 |
8066744 | Justis et al. | Nov 2011 | B2 |
8066745 | Kirschman | Nov 2011 | B2 |
8075599 | Johnson et al. | Dec 2011 | B2 |
8083774 | Teitelbaum | Dec 2011 | B2 |
8092494 | Butler et al. | Jan 2012 | B2 |
8097023 | Cline, Jr. et al. | Jan 2012 | B2 |
8097025 | Hawkes et al. | Jan 2012 | B2 |
8100916 | Kumar et al. | Jan 2012 | B2 |
8100946 | Strausbaugh et al. | Jan 2012 | B2 |
8114134 | Winslow et al. | Feb 2012 | B2 |
8157846 | Randol et al. | Apr 2012 | B2 |
8162989 | Khalili | Apr 2012 | B2 |
8162991 | Strauss et al. | Apr 2012 | B2 |
8167910 | Nilsson | May 2012 | B2 |
8167912 | Jacofsky et al. | May 2012 | B2 |
8167914 | Hunt et al. | May 2012 | B1 |
8197517 | Lab et al. | Jun 2012 | B1 |
8197518 | Hammill, Sr. et al. | Jun 2012 | B2 |
8221471 | Kovach et al. | Jul 2012 | B2 |
8221472 | Peterson et al. | Jul 2012 | B2 |
8236035 | Bedor | Aug 2012 | B1 |
8241341 | Walker et al. | Aug 2012 | B2 |
8257396 | Jackson | Sep 2012 | B2 |
8257399 | Biedermann et al. | Sep 2012 | B2 |
8267968 | Remington et al. | Sep 2012 | B2 |
8273112 | Garamszegi et al. | Sep 2012 | B2 |
8277490 | Freeman et al. | Oct 2012 | B2 |
8287576 | Barrus | Oct 2012 | B2 |
8298270 | Justis et al. | Oct 2012 | B2 |
8298274 | Barker, Jr. et al. | Oct 2012 | B2 |
8303594 | Lynch et al. | Nov 2012 | B2 |
8303602 | Biedermann et al. | Nov 2012 | B2 |
8308782 | Jackson | Nov 2012 | B2 |
8313515 | Brennan et al. | Nov 2012 | B2 |
8313516 | Konieczynski et al. | Nov 2012 | B2 |
8337530 | Hestad et al. | Dec 2012 | B2 |
8343191 | Matthis et al. | Jan 2013 | B2 |
8377100 | Jackson | Feb 2013 | B2 |
8377101 | Barrus et al. | Feb 2013 | B2 |
8409260 | Biedermann et al. | Apr 2013 | B2 |
8430914 | Spratt et al. | Apr 2013 | B2 |
8460308 | Marino et al. | Jun 2013 | B2 |
8465528 | Schumacher | Jun 2013 | B2 |
8465530 | Hammill, Sr. et al. | Jun 2013 | B2 |
8491640 | Robinson | Jul 2013 | B1 |
8491641 | Nihalani | Jul 2013 | B2 |
8556938 | Jackson et al. | Oct 2013 | B2 |
8556941 | Hutchinson | Oct 2013 | B2 |
8603145 | Forton et al. | Dec 2013 | B2 |
8608746 | Kolb et al. | Dec 2013 | B2 |
8632571 | Kraus | Jan 2014 | B2 |
8663290 | Doubler et al. | Mar 2014 | B2 |
8696717 | Rock et al. | Apr 2014 | B2 |
8828060 | Biedermann et al. | Sep 2014 | B2 |
8852239 | Jackson et al. | Oct 2014 | B2 |
8870919 | Miller et al. | Oct 2014 | B2 |
8876869 | Schafer et al. | Nov 2014 | B1 |
8900240 | White et al. | Dec 2014 | B2 |
8906068 | Bedor | Dec 2014 | B1 |
8945189 | Barrus et al. | Feb 2015 | B2 |
8951294 | Gennari et al. | Feb 2015 | B2 |
8986349 | German et al. | Mar 2015 | B1 |
9005260 | Dauster et al. | Apr 2015 | B2 |
9034021 | Matthis et al. | May 2015 | B2 |
9066761 | McBride et al. | Jun 2015 | B2 |
9078715 | Biedermann et al. | Jul 2015 | B2 |
9084634 | Lab et al. | Jul 2015 | B1 |
9155567 | Auerbach et al. | Oct 2015 | B2 |
9155580 | Cormier et al. | Oct 2015 | B2 |
9216041 | Jackson et al. | Dec 2015 | B2 |
9254151 | Walker et al. | Feb 2016 | B2 |
9259247 | Chandanson et al. | Feb 2016 | B2 |
9277938 | Biedermann et al. | Mar 2016 | B2 |
9314280 | Corin | Apr 2016 | B2 |
9393048 | Carbone et al. | Jul 2016 | B2 |
9402673 | Cormier et al. | Aug 2016 | B2 |
9433445 | Ramsay et al. | Sep 2016 | B2 |
9451992 | Jensen et al. | Sep 2016 | B2 |
9504497 | Ark et al. | Nov 2016 | B2 |
9510862 | Montello et al. | Dec 2016 | B2 |
9526529 | Charvet | Dec 2016 | B2 |
9554829 | Cahill et al. | Jan 2017 | B2 |
9642654 | Reimels et al. | May 2017 | B2 |
9649134 | Hannen | May 2017 | B2 |
9649135 | Doubler et al. | May 2017 | B2 |
9649142 | Doubler et al. | May 2017 | B2 |
9662143 | Jackson | May 2017 | B2 |
RE46431 | Jackson | Jun 2017 | E |
9700354 | Jackson | Jul 2017 | B2 |
9700355 | Longtain et al. | Jul 2017 | B2 |
9713488 | Hutchinson | Jul 2017 | B2 |
9724130 | Chandanson et al. | Aug 2017 | B2 |
9724145 | Spratt et al. | Aug 2017 | B2 |
9775660 | Spratt et al. | Oct 2017 | B2 |
9782204 | Spratt et al. | Oct 2017 | B2 |
9788865 | Matthis et al. | Oct 2017 | B2 |
9788866 | Jackson | Oct 2017 | B2 |
9801665 | Jackson | Oct 2017 | B2 |
9844400 | Stevenson et al. | Dec 2017 | B2 |
9918747 | Spratt et al. | Mar 2018 | B2 |
9943338 | Biedermann et al. | Apr 2018 | B2 |
9993270 | Butler | Jun 2018 | B2 |
10016223 | Mishra | Jul 2018 | B2 |
10039572 | Harris et al. | Aug 2018 | B2 |
10039578 | Anderson et al. | Aug 2018 | B2 |
10052137 | Landry et al. | Aug 2018 | B2 |
10058354 | Jackson et al. | Aug 2018 | B2 |
10064657 | Spitler | Sep 2018 | B2 |
10172649 | Jackson et al. | Jan 2019 | B2 |
10201377 | Hutchinson | Feb 2019 | B2 |
10226282 | Spratt et al. | Mar 2019 | B2 |
10251677 | Heuer et al. | Apr 2019 | B2 |
10258390 | Biedermann et al. | Apr 2019 | B2 |
10271877 | Biedermann et al. | Apr 2019 | B2 |
10299836 | Daniels | May 2019 | B2 |
10299839 | Sicvol et al. | May 2019 | B2 |
10321938 | Chandanson et al. | Jun 2019 | B2 |
10335202 | Ziolo et al. | Jul 2019 | B2 |
10342582 | Spratt et al. | Jul 2019 | B2 |
10357289 | Biedermann et al. | Jul 2019 | B2 |
10368916 | May | Aug 2019 | B2 |
10368917 | Mishra et al. | Aug 2019 | B2 |
10383659 | Pham et al. | Aug 2019 | B2 |
10413342 | Spratt et al. | Sep 2019 | B2 |
10426520 | Biedermann et al. | Oct 2019 | B2 |
10426538 | Jones et al. | Oct 2019 | B2 |
10441328 | Petit | Oct 2019 | B2 |
10456173 | Casey et al. | Oct 2019 | B1 |
10478227 | Leff et al. | Nov 2019 | B2 |
10478228 | Kim et al. | Nov 2019 | B2 |
10499955 | Faulhaber | Dec 2019 | B2 |
10499957 | Jones et al. | Dec 2019 | B2 |
10507043 | Gladieux | Dec 2019 | B1 |
10517645 | van der Pol | Dec 2019 | B2 |
10524839 | Ahn | Jan 2020 | B2 |
10555759 | Krüger | Feb 2020 | B2 |
10555760 | Buttermann | Feb 2020 | B2 |
10588666 | Samuel et al. | Mar 2020 | B2 |
10595903 | Heuer | Mar 2020 | B2 |
10603081 | Harper et al. | Mar 2020 | B2 |
10603082 | Lish | Mar 2020 | B2 |
10603083 | Gladieux et al. | Mar 2020 | B1 |
10610260 | Biedermann et al. | Apr 2020 | B2 |
10610265 | Ark et al. | Apr 2020 | B1 |
10631901 | Flechter et al. | Apr 2020 | B2 |
10639077 | Nichols et al. | May 2020 | B2 |
10639080 | Sharifi-Mehr et al. | May 2020 | B2 |
10702310 | Leff et al. | Jul 2020 | B2 |
10716609 | Biedermann et al. | Jul 2020 | B2 |
10722276 | Barrus et al. | Jul 2020 | B2 |
10786284 | Spratt et al. | Sep 2020 | B2 |
10987138 | Chandanson et al. | Apr 2021 | B2 |
10987145 | Hutchinson | Apr 2021 | B2 |
11311318 | Spratt et al. | Apr 2022 | B2 |
20020026193 | Barker et al. | Feb 2002 | A1 |
20020058942 | Biedermann et al. | May 2002 | A1 |
20020133159 | Jackson | Sep 2002 | A1 |
20030023243 | Biedermann et al. | Jan 2003 | A1 |
20030055426 | Carbone et al. | Mar 2003 | A1 |
20030073996 | Doubler et al. | Apr 2003 | A1 |
20030100896 | Biedermann et al. | May 2003 | A1 |
20030100904 | Biedermann | May 2003 | A1 |
20030125741 | Biedermann et al. | Jul 2003 | A1 |
20030153911 | Shluzas | Aug 2003 | A1 |
20030187433 | Lin | Oct 2003 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040116929 | Barker et al. | Jun 2004 | A1 |
20040153077 | Biedermann et al. | Aug 2004 | A1 |
20040162560 | Raynor et al. | Aug 2004 | A1 |
20040186473 | Cournoyer et al. | Sep 2004 | A1 |
20040186478 | Jackson | Sep 2004 | A1 |
20040193160 | Richelsoph | Sep 2004 | A1 |
20040243126 | Carbone et al. | Dec 2004 | A1 |
20040249378 | Saint Martin et al. | Dec 2004 | A1 |
20040267264 | Konieczynski et al. | Dec 2004 | A1 |
20050055026 | Biedermann et al. | Mar 2005 | A1 |
20050080415 | Keyer et al. | Apr 2005 | A1 |
20050153077 | Gedeon et al. | Jul 2005 | A1 |
20050154391 | Doherty et al. | Jul 2005 | A1 |
20050154393 | Doherty et al. | Jul 2005 | A1 |
20050159750 | Doherty | Jul 2005 | A1 |
20050182401 | Timm et al. | Aug 2005 | A1 |
20050187548 | Butler et al. | Aug 2005 | A1 |
20050216003 | Biedermann et al. | Sep 2005 | A1 |
20050228326 | Kalfas et al. | Oct 2005 | A1 |
20050273101 | Schumacher | Dec 2005 | A1 |
20050277928 | Boschert | Dec 2005 | A1 |
20060025771 | Jackson | Feb 2006 | A1 |
20060083603 | Jackson | Apr 2006 | A1 |
20060084995 | Biedermann et al. | Apr 2006 | A1 |
20060100621 | Jackson | May 2006 | A1 |
20060100622 | Jackson | May 2006 | A1 |
20060106383 | Biedermann et al. | May 2006 | A1 |
20060129149 | Lott et al. | Jun 2006 | A1 |
20060149241 | Richelsoph et al. | Jul 2006 | A1 |
20060161153 | Hawkes et al. | Jul 2006 | A1 |
20060195092 | Barry | Aug 2006 | A1 |
20060200128 | Mueller | Sep 2006 | A1 |
20060241599 | Konieczynski et al. | Oct 2006 | A1 |
20060264933 | Baker et al. | Nov 2006 | A1 |
20070055240 | Matthis et al. | Mar 2007 | A1 |
20070055241 | Matthis et al. | Mar 2007 | A1 |
20070055244 | Jackson | Mar 2007 | A1 |
20070093826 | Hawkes et al. | Apr 2007 | A1 |
20070118117 | Altarac et al. | May 2007 | A1 |
20070118123 | Strausbaugh et al. | May 2007 | A1 |
20070123862 | Warnick | May 2007 | A1 |
20070123870 | Jeon et al. | May 2007 | A1 |
20070233078 | Justis et al. | Oct 2007 | A1 |
20070260246 | Biedermann | Nov 2007 | A1 |
20070265621 | Matthis et al. | Nov 2007 | A1 |
20070270806 | Foley et al. | Nov 2007 | A1 |
20070270813 | Garamszegi | Nov 2007 | A1 |
20070293862 | Jackson | Dec 2007 | A1 |
20080021473 | Butler et al. | Jan 2008 | A1 |
20080045953 | Garamszegi | Feb 2008 | A1 |
20080119852 | Dalton et al. | May 2008 | A1 |
20080132957 | Matthis et al. | Jun 2008 | A1 |
20080147129 | Biedermann et al. | Jun 2008 | A1 |
20080161859 | Nilsson | Jul 2008 | A1 |
20080172062 | Donahue et al. | Jul 2008 | A1 |
20080200956 | Beckwith et al. | Aug 2008 | A1 |
20080215100 | Matthis et al. | Sep 2008 | A1 |
20080262556 | Jacofsky et al. | Oct 2008 | A1 |
20080269805 | Dekutoski et al. | Oct 2008 | A1 |
20080269809 | Garamszegi | Oct 2008 | A1 |
20080288001 | Cawley et al. | Nov 2008 | A1 |
20080294202 | Peterson et al. | Nov 2008 | A1 |
20080312692 | Brennan et al. | Dec 2008 | A1 |
20080319490 | Jackson | Dec 2008 | A1 |
20090005813 | Crall et al. | Jan 2009 | A1 |
20090012567 | Biedermann et al. | Jan 2009 | A1 |
20090018591 | Hawkes et al. | Jan 2009 | A1 |
20090062861 | Frasier et al. | Mar 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090088803 | Justis et al. | Apr 2009 | A1 |
20090118772 | Diederich et al. | May 2009 | A1 |
20090163962 | Dauster et al. | Jun 2009 | A1 |
20090182384 | Wilcox et al. | Jul 2009 | A1 |
20090198280 | Spratt et al. | Aug 2009 | A1 |
20090216280 | Hutchinson | Aug 2009 | A1 |
20090228051 | Kolb et al. | Sep 2009 | A1 |
20090228053 | Kolb et al. | Sep 2009 | A1 |
20090254125 | Predick | Oct 2009 | A1 |
20090264896 | Biedermann et al. | Oct 2009 | A1 |
20090264933 | Carls et al. | Oct 2009 | A1 |
20090287261 | Jackson | Nov 2009 | A1 |
20090318970 | Butler et al. | Dec 2009 | A1 |
20090326587 | Matthis et al. | Dec 2009 | A1 |
20100004693 | Miller et al. | Jan 2010 | A1 |
20100010540 | Park | Jan 2010 | A1 |
20100010547 | Beaurain et al. | Jan 2010 | A1 |
20100020272 | Kim et al. | Jan 2010 | A1 |
20100023061 | Randol et al. | Jan 2010 | A1 |
20100030272 | Winslow et al. | Feb 2010 | A1 |
20100103099 | Lee | Apr 2010 | A1 |
20100114174 | Jones et al. | May 2010 | A1 |
20100152785 | Forton et al. | Jun 2010 | A1 |
20100160977 | Gephart et al. | Jun 2010 | A1 |
20100168747 | Lynch et al. | Jul 2010 | A1 |
20100198270 | Barker et al. | Aug 2010 | A1 |
20100198272 | Keyer et al. | Aug 2010 | A1 |
20100204735 | Gephart et al. | Aug 2010 | A1 |
20100222827 | Griffiths et al. | Sep 2010 | A1 |
20100234891 | Freeman et al. | Sep 2010 | A1 |
20100249846 | Simonson | Sep 2010 | A1 |
20100305621 | Wang et al. | Dec 2010 | A1 |
20100312279 | Gephart et al. | Dec 2010 | A1 |
20110046683 | Biedermann et al. | Feb 2011 | A1 |
20110098755 | Jackson | Apr 2011 | A1 |
20110106179 | Prevost et al. | May 2011 | A1 |
20110152949 | Biedermann | Jun 2011 | A1 |
20110160778 | Elsbury | Jun 2011 | A1 |
20110160779 | Schlaepfer et al. | Jun 2011 | A1 |
20110190822 | Spitler et al. | Aug 2011 | A1 |
20110213424 | Biedermann et al. | Sep 2011 | A1 |
20110245876 | Brumfield | Oct 2011 | A1 |
20110245877 | Pisharodi | Oct 2011 | A1 |
20110251650 | Biedermann et al. | Oct 2011 | A1 |
20110257690 | Rezach | Oct 2011 | A1 |
20110270322 | Olsen et al. | Nov 2011 | A1 |
20110276098 | Biedermann et al. | Nov 2011 | A1 |
20110282399 | Jackson | Nov 2011 | A1 |
20110288592 | McKinley | Nov 2011 | A1 |
20110288599 | Michielli et al. | Nov 2011 | A1 |
20110295321 | Hutchinson | Dec 2011 | A1 |
20120010661 | Farris et al. | Jan 2012 | A1 |
20120022593 | Kovach et al. | Jan 2012 | A1 |
20120035670 | Jackson et al. | Feb 2012 | A1 |
20120046701 | Gennari et al. | Feb 2012 | A1 |
20120059425 | Biedermann | Mar 2012 | A1 |
20120059426 | Jackson et al. | Mar 2012 | A1 |
20120078307 | Nihalani | Mar 2012 | A1 |
20120083845 | Winslow et al. | Apr 2012 | A1 |
20120089194 | Strausbaugh et al. | Apr 2012 | A1 |
20120136395 | Biedermann et al. | May 2012 | A1 |
20120143266 | Jackson et al. | Jun 2012 | A1 |
20120150239 | Garamszegi | Jun 2012 | A1 |
20120165881 | Biedermann et al. | Jun 2012 | A1 |
20120165882 | Biedermann et al. | Jun 2012 | A1 |
20120179209 | Biedermann et al. | Jul 2012 | A1 |
20120185003 | Biedermann et al. | Jul 2012 | A1 |
20120197313 | Cowan | Aug 2012 | A1 |
20120209336 | Jackson et al. | Aug 2012 | A1 |
20120215264 | Lee | Aug 2012 | A1 |
20120253404 | Timm et al. | Oct 2012 | A1 |
20120277805 | Farris | Nov 2012 | A1 |
20120303070 | Jackson | Nov 2012 | A1 |
20120310284 | Gerchow | Dec 2012 | A1 |
20120310290 | Jackson | Dec 2012 | A1 |
20120316605 | Palagi | Dec 2012 | A1 |
20120328394 | Biedermann et al. | Dec 2012 | A1 |
20120330364 | Jacofsky et al. | Dec 2012 | A1 |
20130013003 | Carbone et al. | Jan 2013 | A1 |
20130046350 | Jackson et al. | Feb 2013 | A1 |
20130053901 | Cormier et al. | Feb 2013 | A1 |
20130060294 | Donahue | Mar 2013 | A1 |
20130066380 | Haskins | Mar 2013 | A1 |
20130072992 | Jackson et al. | Mar 2013 | A1 |
20130096618 | Chandanson et al. | Apr 2013 | A1 |
20130096623 | Biedermann et al. | Apr 2013 | A1 |
20130103093 | Biedermann et al. | Apr 2013 | A1 |
20130110172 | Biedermann et al. | May 2013 | A1 |
20130110180 | Doubler et al. | May 2013 | A1 |
20130123858 | Attia | May 2013 | A1 |
20130144346 | Jackson et al. | Jun 2013 | A1 |
20130144349 | Corin | Jun 2013 | A1 |
20130150904 | Biedermann et al. | Jun 2013 | A1 |
20130211467 | Dickinson | Aug 2013 | A1 |
20130238030 | Steib | Sep 2013 | A1 |
20140018861 | Hutchinson | Jan 2014 | A1 |
20140018867 | Freudiger et al. | Jan 2014 | A1 |
20140025119 | Biedermann et al. | Jan 2014 | A1 |
20140058458 | Barrus et al. | Feb 2014 | A1 |
20140094849 | Spratt et al. | Apr 2014 | A1 |
20140121703 | Jackson et al. | May 2014 | A1 |
20140142633 | Jackson et al. | May 2014 | A1 |
20140142634 | Schlaepfer et al. | May 2014 | A1 |
20140214097 | Jackson et al. | Jul 2014 | A1 |
20140228890 | Raju et al. | Aug 2014 | A1 |
20140257409 | Reed | Sep 2014 | A1 |
20140277153 | Spratt et al. | Sep 2014 | A1 |
20140277157 | Chandanson et al. | Sep 2014 | A1 |
20140277158 | Spratt et al. | Sep 2014 | A1 |
20140277159 | Spratt et al. | Sep 2014 | A1 |
20140277161 | Spratt et al. | Sep 2014 | A1 |
20140277162 | Kostuik et al. | Sep 2014 | A1 |
20140277189 | Spratt et al. | Sep 2014 | A1 |
20150173816 | Biedermann et al. | Jun 2015 | A1 |
20160128733 | Spratt et al. | May 2016 | A1 |
20160135848 | Chandanson et al. | May 2016 | A1 |
20170296235 | Chandanson et al. | Oct 2017 | A1 |
20170354446 | Spratt et al. | Dec 2017 | A1 |
20170354448 | Hutchinson | Dec 2017 | A1 |
20170360482 | Spratt et al. | Dec 2017 | A1 |
20170360491 | Spratt et al. | Dec 2017 | A1 |
20180014863 | Biester et al. | Jan 2018 | A1 |
20180092666 | Wu et al. | Apr 2018 | A1 |
20180193063 | May | Jul 2018 | A1 |
20180325569 | Ramsay et al. | Nov 2018 | A1 |
20190029731 | Shoshtaev | Jan 2019 | A1 |
20190038319 | Biedermann et al. | Feb 2019 | A1 |
20190150989 | Biester et al. | May 2019 | A1 |
20190150990 | Jackson et al. | May 2019 | A1 |
20190209213 | Spratt et al. | Jul 2019 | A1 |
20190223917 | Gray et al. | Jul 2019 | A1 |
20190239936 | Hutchinson | Aug 2019 | A1 |
20190254717 | Chandanson et al. | Aug 2019 | A1 |
20190262044 | Roth et al. | Aug 2019 | A1 |
20190274738 | Heuer | Sep 2019 | A1 |
20190365426 | Spratt et al. | Dec 2019 | A1 |
20200038075 | Barrus et al. | Feb 2020 | A1 |
20200197052 | Heuer et al. | Jun 2020 | A1 |
20200367939 | Loftis et al. | Nov 2020 | A1 |
20210113246 | Biester et al. | Apr 2021 | A1 |
20210275232 | Keyer et al. | Sep 2021 | A1 |
20220280202 | Mickiewicz et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
299 03 342 | Jun 1999 | DE |
0 470 660 | Feb 1992 | EP |
1 295 566 | Mar 2003 | EP |
0 857 465 | Jun 2003 | EP |
1 570 794 | Sep 2005 | EP |
1 774 919 | Aug 2008 | EP |
1 795 134 | Aug 2008 | EP |
2 070 485 | Jun 2009 | EP |
1 694 229 | Jul 2010 | EP |
2 272 451 | Jan 2011 | EP |
2 286 748 | Feb 2011 | EP |
2208472 | Apr 2011 | EP |
2 455 028 | May 2012 | EP |
2 129 310 | Sep 2012 | EP |
91016020 | Oct 1991 | WO |
2004058081 | Jul 2004 | WO |
2004089245 | Oct 2004 | WO |
2005058173 | Jun 2005 | WO |
2008024937 | Feb 2008 | WO |
2008016892 | Feb 2008 | WO |
2008112114 | Sep 2008 | WO |
2008119006 | Oct 2008 | WO |
2009015100 | Jan 2009 | WO |
2009073655 | Jun 2009 | WO |
2010056846 | May 2010 | WO |
2011059732 | May 2011 | WO |
2011109009 | Sep 2011 | WO |
2011127065 | Oct 2011 | WO |
2012024665 | Feb 2012 | WO |
2012030712 | Mar 2012 | WO |
2012035479 | Mar 2012 | WO |
2012060868 | May 2012 | WO |
2013028851 | Feb 2013 | WO |
2016065033 | Apr 2016 | WO |
Entry |
---|
U.S. Appl. No. 12/365,225, filed Feb. 4, 2009, Methods for Correction of Spinal Deformities. |
U.S. Appl. No. 13/205,248, filed Aug. 8, 2011, Methods for Correction of Spinal Deformities. |
U.S. Appl. No. 13/804,012, filed Mar. 14, 2013, Bone Anchors and Surgical Instruments With Integrated Guide Tips. |
U.S. Appl. No. 13/826,161, filed Mar. 14, 2013, Bone Anchor Assemblies and Methods With Improved Locking. |
U.S. Appl. No. 13/827,092, filed Mar. 14, 2013, Locking Compression Members for Use With Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 13/828,236, filed Mar. 14, 2013, Bone Anchor Assemblies With Multiple Component Bottom Loading Bone Anchors. |
U.S. Appl. No. 13/828,882, filed Mar. 14, 2013, Bottom-Loading Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 13/829,000, filed Mar. 14, 2013, Bottom-Loading Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 14/029,005, filed Sep. 17, 2013, Bone Anchor Assemblies. |
U.S. Appl. No. 14/029,037, filed Sep. 17, 2013, Methods for Correction of Spinal Deformities. |
U.S. Appl. No. 14/070,943, filed Nov. 4, 2013, Bone Anchor Assemblies and Methods With Improved Locking. |
U.S. Appl. No. 14/966,531, filed Dec. 11, 2015, Bone Anchor Assemblies and Methods With Improved Locking. |
U.S. Appl. No. 14/987,812, filed Jan. 5, 2016, Locking Compression Members for Use With Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 15/629,825, filed Jun. 22, 2017, Methods for Correction of Spinal Deformities. |
U.S. Appl. No. 15/634,630, filed Jun. 27, 2017, Bone Anchor Assemblies With Multiple Component Bottom Loading Bone Anchors. |
U.S. Appl. No. 15/643,075, filed Jul. 6, 2017, Locking Compression Members for Use With Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 15/692,166, filed Aug. 31, 2017, Bone Anchor Assemblies. |
U.S. Appl. No. 15/692,822, filed Aug. 31, 2017, Bottom-Loading Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 16/271,607, filed Feb. 8, 2019, Methods for Correction of Spinal Deformities. |
U.S. Appl. No. 16/277,889, filed Feb. 15, 2019, Bone Anchor Assemblies. |
U.S. Appl. No. 16/403,114, filed May 3, 2019, Locking Compression Members for Use With Bone Anchor Assemblies and Methods. |
U.S. Appl. No. 16/452,497, filed Jun. 25, 2019, Bone Anchor Assemblies and Methods With Improved Locking. |
U.S. Appl. No. 61/706,860, filed Sep. 28, 2012, Devices and Methods for Breaking and Retaining Surgical Reduction Tabs. |
U.S. Appl. No. 61/707,062, filed Sep. 28, 2012, Bone Anchor Assemblies. |
[No Author Listed] A New Angle on Correction. Expedium. DePuy. 2009. 2 pages. |
[No Author Listed] Definition of “clip,” www.thefreedictionary.com/clip; accessed May 16, 2015. |
[No Author Listed] Expedium Spine System, Dual Innie Independent Locking Technology Brochure, DePuy Spine, Aug. 1, 2004, 6 pages. |
[No Author Listed] Moss Miami Polyaxial Reduction Screw Surgical Technique, DePuy AcroMed, Inc. 1998. |
[No Author Listed] Straight Talk with Expedium. Expedium. 10 pages. Jul. 2007. |
[No Author Listed] Surgical Technique Guide and Ordering Information. Expedium. DePuy Spine Inc. Sep. 2011. 24 Pages. |
[No Author Listed] Value Analysis Brief—Expedium Favored Angle Screw. DePuy Synthes Spine. Aug. 2012. 4 pages. |
[No Author Listed] Viper 2 MIS Extended Tab , DePuy Spine, Inc., Feb. 1, 2009. |
[No Author Listed] Viper 2 MIS Spine System. System Guide. DePuy Spine Inc. Sep. 2011. 60 pages. |
Duerig, T. W., et al., “An Engineer's Perspective of Pseudoelasticity,” p. 370, in Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, 1990. |
International Search Report and Written Opinion for Application No. PCT/US2013/060350, mailed Jan. 3, 2014 (9 pages). |
International Search Report for PCT/US14/021198 mailed Jun. 5, 2014 (3 Pages). |
International Preliminary Report on Patentability for Application No. PCT/US2014/021198, mailed Sep. 24, 2015 (7 pages). |
U.S. Appl. No. 61/706,860, filed Sep. 28, 2012 (66 pages). |
International Preliminary Report and Written Opinion for Application No. PCT/EP2022/055326, mailed Sep. 14, 2023 (9 pages). |
International Search Report and Written Opinion for Application No. PCT/EP2022/055326, issued Sep. 9, 2022 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20210212730 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16403114 | May 2019 | US |
Child | 17218416 | US | |
Parent | 15643075 | Jul 2017 | US |
Child | 16403114 | US | |
Parent | 14987812 | Jan 2016 | US |
Child | 15643075 | US | |
Parent | 13827092 | Mar 2013 | US |
Child | 14987812 | US |