The present invention relates generally to orthopaedic implants used for the correction of spinal injuries or deformities, and more specifically, but not exclusively, concerns apparatuses for fixing a particular segment or level of the spine, to allow for deformity correction or healing thereof.
In the field of spinal surgery, it is known to place implants into vertebrae for a number of reasons, including: (a) correcting an abnormal curvature of the spine; (b) to maintain appropriate vertebral spacing and provide support for broken or otherwise injured vertebrae; and (c) to perform other treatments in the spinal column.
Typical spinal implant or bone stabilization systems utilize a rod as the support and stabilizing element. In such a system, a series of two or more bone fasteners are inserted into two or more vertebrae to be instrumented. A rod or other stabilizing device is then placed within or attached to the heads of the bone fasteners, or is placed within a coupling device that links the rod and the head of the bone fastener. The connections between these multiple components are then secured, thereby fixing a supporting construct to multiple levels in the spinal column.
To advance the state of orthopaedic implants, enhancement to such bone stabilization systems are believed desirable, and addressed herein.
Connecting the stabilization member, the bone fastener and the coupling device together in a bone stabilization system can result in high forces being exerted onto the stabilization member, thereby increasing the potential for post-operative failure to occur. Thus, a need exists for the use of a deformable material for securing the stabilization member in a bone stabilization system. The introduction of a deformable material at the stabilization member and coupling device locking interface will reduce the stresses realized in the stabilization member, decrease the creation of surface stress risers on the stabilization member and enhance the level of securement within the bone stabilization system.
Currently, many locking mechanisms utilized in bone stabilization systems potentially induce component failure during in vivo post-operative loading because of the increase in the level of stresses placed on components as a result of certain implant designs and particular construct materials. Currently, the use of carbon fiber composite polymers and other materials that possess similar flexural moduli in the manufacturing of stabilization members is under development. An advantage that is realized when the stabilization member and components of the locking device are fabricated from similar or the same materials is the decrease or elimination of regions of stress concentrations. The invention described herein addresses the associated problems of the use of dissimilar construct materials by utilizing a deformable material in the fabrication of the locking mechanism. The use of like materials in fabricating the locking device and the stabilization member reduces the generation of stress risers, and thereby causes a decrease in the stress levels realized within the secured stabilization member.
Thus, the shortcomings of the prior art are overcome and additional advantages are provided through the provision of a locking device for use in a bone stabilization system, the bone stabilization system includes a bone anchor, a coupling mechanism and a stabilization member, wherein the coupling mechanism is configured to couple the stabilization member to the bone anchor, the locking device includes a set screw member and a saddle member. The set screw member may be configured to operatively engage with the coupling mechanism to secure the stabilization member within the coupling mechanism. The saddle member is fabricated from a deformable material and is attached to the set screw member. The saddle member includes a distal interface surface and a proximal interface surface, with the distal interface surface being shaped to partially surround the stabilization member when the stabilization member is placed within the coupling mechanism. The proximal interface surface of the saddle member is configured to couple to the set screw member.
The present invention provides, in another aspect, a bone stabilization system which includes a bone anchor, a stabilization member, a coupling mechanism and a locking device. The coupling mechanism is configured to operatively connect the bone anchor and the stabilization member. The locking device includes a set screw member configured to thread into the coupling mechanism and a saddle member. The saddle member is attached to the set screw member and is fabricated from a deformable material.
An enhanced aspect of the locking device for use in a bone stabilization system employing a set screw member and a deformable saddle member is the saddle member to be fabricated from the same material as the stabilization member. The material used to make the saddle member and the stabilization member is a type of plastic. The plastics used for fabricating the saddle member and the stabilization member are deformable and possess a flexural modulus that are either the same or substantially similar to each other. The plastics preferably used for manufacturing the saddle member and the stabilization member is a polyetheretherketone. A potential drawback to the use of polyetheretherketone is the material's susceptibility to breakage due to its inherent notch sensitivity.
The present invention provides, in another aspect, a method for stabilizing a spinal column by the use of a bone stabilization system. The bone stabilization system includes a bone anchor, a stabilization member, a coupling mechanism and a locking device with the coupling mechanism configured to couple the stabilization member to the bone anchor and the locking device being operatively associated to the coupling mechanism. The locking device includes a set screw member configured to engage the coupling mechanism and a saddle member coupled to the set screw member, wherein the saddle member is made from a deformable material. The method further includes positioning the stabilization member within the coupling mechanism and engaging the locking device to the coupling mechanism by threading the set screw member into the coupling mechanism. The set screw member is advanced into the coupling mechanism causing the saddle member to partially compress against the stabilization member and frictionally hold the stabilization member within the coupling mechanism.
Further, additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
As depicted in
With reference to
As shown in
Stabilization member 30 is typically shaped as an elongate and continuous orthopaedic implant, preferably in the shape of a rod. Alternative stabilization members may include, but are not limited to plates, bars, tethers, cables, elastic structures and dynamic stabilization members (not shown). Stabilization member 30 may be fabricated from a plastic material, preferably polyetheretherketone (PEEK) polymer. Alternatively, stabilization member 30 may be fabricated from a material selected from the group consisting of carbon fiber composite polymers, bio-compatible metals, shape memory metals, resorbable polymers, bio-inert polymeric materials, thermoplastic polymers, thermoset polymers and any combinations of these materials.
Referring to
Saddle member 50 preferably includes a proximal interface surface 54 (see
As shown in
The assembly process for connecting saddle member 50 to set screw member 20 typically includes the steps of placing set screw member 20 on a flat surface with distal end 25 being upright. Proximal interface surface 54 is placed onto distal end 25. Saddle member 50 must be aligned to allow for locking nub 23 to pass through hole 52 and protrude above the edge of counter bore 53. Preferably, the next step in the assembly process is for a deforming load to be applied to the end of locking nub 23, thereby generating flare 24 on the end of locking nub 23 as shown in
The steps of the method for stabilizing a spinal column includes, first providing bone stabilization system 60 consisting of bone anchor 40, stabilization member 30, coupling member 10 and locking device 70. Coupling device 10 may be constructed to couple stabilization member 30 to bone anchor 40. The locking device 70 is configured to operatively associate with coupling mechanism 10. The locking device 70 includes saddle member 50 connected to set screw member 20, with saddle member 50 being fabricated from a deformable material. The next step of the method is to preferably position stabilization member 30 into channel 14 located within coupling mechanism 10. The next step is to initiate engagement of locking device 70 to coupling mechanism 10. The last step of the method of stabilizing a spinal column would be to threadingly advance set screw member 20 downward into coupling arms 11 and cause saddle member 50 to contact and partially compress stabilization member 30 within channel 14. Preferably, locking device 70 is sufficiently advanced to frictionally hold stabilization member 30 within coupling mechanism 10. Although the preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions and substitutions can be made without departing from its essence and therefore these are to be considered to be within the scope of the following claims.
This application contains subject matter which is related to the subject matter of the following applications/patents, which are hereby incorporated herein by reference in their entirety: “Multi-Axial Bone Attachment Assembly”, Coates et al., U.S. Ser. No. 10/870,011, filed Jun. 17, 2004, and published on Dec. 22, 2005 as Patent Application Publication No. US 2005/0283157 A1; “Coupling Assemblies for Spinal Implants.”, Justis et al., U.S. Ser. No. 11/197,799, filed Jan. 31, 2006; “Force Limiting Coupling Assemblies for Spinal Implants”, Justis et al., U.S. Ser. No. 11/112,221, filed Jan. 31, 2006; and “Bone Anchor System Utilizing A Molded Coupling Member For Coupling A Bone Anchor To A Stabilization Member And Method Therefor”, Dewey, et al, U.S. Ser. No. ______, co-filed herewith (Attorney Docket No.: P23147.00).