The present application is a 35 U.S.C. ยง371 National Phase conversion of PCT/JP2008/052975, filed Feb. 21, 2008, which claims benefit of Japanese Application Nos. 2007-046810, filed Feb. 27, 2007, and 2007-046812, filed Feb. 27, 2007, the disclosures of which are incorporated herein by reference. The PCT International Application was published in the Japanese language.
The present invention relates to a locking device for locking a movable member such as the backrest or a seat,
In a locking device in JP59-44364U, the front part of the seat is pivotally mounted to the front part of a support base, and the rear part of the seat is urged forward and upward by a spring. In the adjusting metal tool on the lower surface of the rear part of the seat, a plurality of engagement holes communicates with one another via narrower communicating holes to form an adjusting hole. The support base comprises an operating rod which has a larger-diameter portion which passes through the engagement hole, but does not pass through the communicating hole, and a smaller-diameter portion which passes through the smaller-diameter hole to move axially. The smaller-diameter portion fits in the adjusting hole to allow the seat to be adjusted freely in an angle. The smaller-diameter portion is shifted sideward from the adjusting hole to allow the larger-diameter portion to fit in the selected engagement hole, so that the seat is locked at a tilted position determined by the selected engagement hole.
In a conventional chair, an elevating device for the seat or an operating lever for operating a tilting device of the backrest is mounted to the seat, a support base for the backrest, backrest frame or a support member on the lower surface of the seat.
For example, JP2005-163966A discloses the mounting structure in which the end of an operating lever is bent like a crank which actuates a gas spring for urging the backrest to stand up. The shaft of the operating lever is held by a holding tool screwed to the backrest frame.
However, in the locking device in JP59-44364U, an operating rod is loaded by the weight of the occupant who sits on the chair, so that the operating rod is not moved. To move the operating rod, it is necessary for the occupant to leave the seat or to stand up thereby causing poor operativity.
In JP2005-163966A, in order to mount the operating lever, it is necessary to fix the holding metal tool to the support member, which is complicated and needs time. The number of parts is increased.
In view of the disadvantages in the prior art, it is an object of the invention to provide a locking device for a movable member in a chair in which while the movable member is loaded by the weight of an occupant, an operating portion is operated to shift locking to unlocking and vice versa when it is unloaded.
It is an object of the invention to provide a locking device for a movable member in a chair, in which an operating lever is mounted to a support member without use of screws and is mounted easily and securely with the reduced number of parts.
The chair comprises a telescopic column 3 at the center of five radial legs 2 each of which has a caster 1 at the end; a support base 4 at the upper end of the column 3; a pivot shaft 5 which passes through the support base 4; a pair of brackets 6,6 each fixed to each end of the pivot shaft 5; a backrest frame 8 which supports the backrest 7 and connects the pivot shaft 5 and the brackets 6 to a pair of front rod portions 8a,8a extending from the lower end of the backrest frame 8 to turn together around the support base 4; a seat frame 11 coupled to the front part of the support base 4 with a pair of link levers 10,10 to move rearward and downward of the support base 4 with rearward tilting of the backrest frame 8; and armrests 12,12 at each side of a seat 9.
The base portion 13a comprises a horizontal plate 15 having a through hole 14 in which the upper end of the column 3 fits. To the horizontal plate 15 is fixed an outer circumferential frame 16 with which the arms 13c,13c are formed.
A reinforcing plate 17 is fixed on the inner surface of each of the arms 13c,13c of the support frame 13 to form a hollow box thereby improving strength to avoid a large thickness or expensive materials.
At the rear part of the arm 13c and the reinforcing plate 17, a bearing tube 18 is provided. In the bearing tubes 18,18, the pivot shaft 5 is pivotally mounted. On the pivot shaft 5, a pair of torsion springs 19,19 is wound to force the backrest 7 to stand up.
Through the arms 13c and the reinforcing plates 17, there is provided an auxiliary shaft 20 in parallel with the pivot shaft 5 to pivotally support the lower part of the link levers 10,10 for supporting the front part of the seat 9.
Between the arms 13c and 13c of the support frame 13 and between the reinforcing plates 17 and 17, there are provided an upper connecting plate 21 and a lower connecting plate 22 through which a force adjuster 23 for the torsion springs 19,19 passes.
The support frame 13 is like U and the reinforcing plates 17,17 are mounted on the arms 13c,13c. Therefore, the torsion springs 19,19 and the force adjuster 23 can be mounted not only from the above but also from the below and front thereby improving assembling efficiency and strength of the support base 4.
The reinforcing plates 17,17, the torsion springs 19,19, the force adjuster 23, the upper and lower connecting plates 21,22 and parts within the support base 4 (described later) mounted to the support frame 13 are covered with an upper cover 24 and a lower cover 25 improving appearance of the support base 4.
A backrest tilting device in the support base 4 will be described.
The pivot shaft 5 comprises circular parts 5a,5a at the ends and a rectangular part 5b between the circular parts 5a and 5a. The rectangular portion 5b between the reinforcing plates 17 and 17 pass through rectangular holes 27,27 in side portions 26b,26b standing from a spring receiving portion 26a of a spring-receiving member 26 to allow the spring-receiving member 26 to rotate together with the pivot shaft 5 and the backrest 7.
The torsion springs 19,19 are symmetrical to each other. A winding portion 19a comprises a first arm 19b at the outer end and a second arm 19c at the inner end.
In
The guide tube 28 is divided into an upper half 28a and a lower half 28b. A semicircular groove 30 is formed in the outer circumferential surface in the middle of the upper half 28a and a larger-diameter rim 31 is provided on the outer circumferential surface in the middle of the lower half 28b.
The outer end of the lower half 28b which is in contact with the first arm 19b of the torsion spring 19 and the inner end of the upper half 28a which is in contact with the second arm 19c are the largest diameter. The outer circumferential surface of the upper half 28a tapers or gradually gets smaller outward from the largest-diameter portion, while the outer circumferential surface of the lower half 28b tapers or gradually gets smaller inward. It may be formed stepwise instead of tapering.
In
Even if the upper and lower arms 19b,19c of the torsion spring 19 extend in the same direction, they are always guided in contact with the guide tube 28, so that the torsion spring 19 is stably supported without twisting up and down or swaying, and stretched and shrunk along the tapered upper and lower halves 28a,28b of the guide tube 28. Thus, expected reaction force is obtained.
Both of the first arm 19b and the second arm 19c extend in the same direction from the winding portion 19a, so that the torsion spring 19 itself and part which houses it gets smaller in size in a forward and rearward direction. Thus, more compact device can be produced.
The first arm 19b of each of the torsion springs 19,19 is in contact with the upper part of the spring receiving portion 26a, and the second arm 19c is in contact with the lower surface of a spring-supporting member 32 of the force adjuster 23.
The force adjuster 23 is rotatably mounted between the upper connecting plate 21 and the lower connecting plate 22, and comprises a threaded rod 34 provided almost vertically and rotated with a handle 33 under the lower connecting plate 22; an elevating piece 36 having a threaded bore 35 which engages with the threaded rod 34; and the spring-supporting members 32,32 pivotally mounted on each side of the elevating piece 36 like a roller.
When it is not necessary to adjust the force of the torsion springs 19,19, the spring-supporting members 32,32 may be mounted to the upper end of a pulling rod (not shown) which is mounted at the lower end to the lower connecting plate 22 instead of the threaded rod 34.
The spring-receiving member 26 is urged downward by the torsion springs 19,19 and is usually in contact with a stopper 37 on the upper surface of the lower connecting plate 22 to make the backrest 7 upright.
From this situation, an occupant presses the backrest 7 rearward, so that the backrest 7 is tilted rearward together with the pivot shaft 5 and the spring-receiving member 26 around the pivot shaft 5 against the force of the torsion springs 19,19. The force of the torsion springs 19,19 acts as returning force for moving the backrest 7 to the upright position.
Returning force can be adjusted by the force adjuster 23.
When the elevating piece 36 is lowered by turning the threaded rod 34 with the handle 33, the torsion springs 19,19 are synchronously wound to increase the force for making the backrest 7 upright, while the elevating piece 36 is raised, the torsion springs 19,19 are synchronously loosened to decrease the force for making the backrest 7 upright.
Then, a locking device 38 for locking the backrest 7 stepwise at a desired angle of inclination will be described in detail.
In
The lock pin 40 is slidingly disposed in a rectangular case 44 on the spring-receiving member 26, and the left end passes through the left side portion 26b. A slider 45 which fits over the lock pin 40 close to the end of the lock pin 40 projects from the case 44 and slides in an elongate groove 46 on the case 44.
A tube holder 47 is fixed to the left end of the elongate groove 46 on the case, and a spring-receiving portion 48 which projects from the lower surface of the tube holder 47 projects in the casing 44 via the elongate groove 46.
A larger-diameter rim 49 made of E ring is provided in the middle of the lock pin 40. Between the larger-diameter rim 49 and the slider 45, a compression spring 50 is provided as the first urging unit on the lock pin 40 and acts as the first urging unit for urging the lock pin 40 toward the locked position when the wire end 42 is in the pre-locking position. Between the larger-diameter rim 49 and the spring-receiving portion 48, a compression spring 51 is provided on the lock pin 40 as the second urging unit for urging the lock pin 40 toward the unlocking position when the wire end 42 is in the pre-unlocking position.
The spring constant of the compression spring 50 is larger than that of the compression spring 51, and the compression springs 50 and 51 form the urging unit 43.
The operating lever 41 is connected to the wire end 42 via a Bowden cable 52.
The Bowden cable 52 comprises a flexible outer tube 54 one end of which is mounted to a tube holder 59 to which an operating shaft 41a of an operating lever 41 is pivotally mounted, the other end of the outer tube 54 being mounted to the tube holder 47; and a wire 57 which passes through the outer tube 54. One end of the wire 57 pulled from one end of the outer tube 54 is guided along the arc-shaped outer circumferential surface of a wire guide 60 integrally formed with the tube holder 59 and mounted to the end of the first arm 41b projecting from a shaft 41a of the operating lever 41. The other end of the wire 57 pulled from the other end of the outer tube 54 in parallel with motion of the lock pin 40 is mounted to the wire end 42 in the hole 56 of the slider 45 via a slit 55 on the slider 45.
A bearing member 53 is a U-shape and fixed to the lower surface of the upper connecting plate 21.
Via the Bowden cable 52, the operating lever 21 is connected to the wire end 42. Thus, when the operating lever 41 is in the unlocking position, the wire end 42 is in the pre-unlocking position and is moved to the pre-locking position when the operating lever 41 is turned to the locked position.
Then, the function of the locking device will be described.
When the operating lever 41 is in the unlocking position, the wire end 42 is in the pre-unlocking position in
In the situation, when the occupant presses the backrest 7 rearward, the backrest 7 is freely tilted together with the pivot shaft 5 and the spring-receiving member 26 around the pivot shaft 5 against the force of the torsion springs 19,19. When pressing force is released from the backrest 7, the backrest 7 is returned to the initial upright position by the torsion springs 19,19.
From this situation, after the backrest 7 is tilted to a desired position, the operating lever 41 is switched to the locked position and the wire end 42 is moved to the pre-locking position. Thus, the slider 45 is moved to the left, the compression spring 50 is compressed and the lock pin 40 is urged toward the left.
Then, if the lock pin 40 corresponds to any one of the engagement holes 39, the lock pin 40 puts in the engagement hole 39 immediately to the locked position in
Thereafter, when the backrest 7 is slightly tilted forward or backward, the compression spring 50 is stretched and the compression spring 51 is contracted, so that the lock pin 40 is put in the closest engagement hole 39 to cause the locked position in
The operating lever 41 is shifted from the locked position to the unlocking position while the occupant is reclined on the backrest 7, so that the wire end 42 is moved to the pre-unlocking position in
The compression spring 51 remains contracted, while the compression spring 50 stretches to almost non-loaded state to push the slider 45 rightward slightly. The slider 45 stops as shown in
When the backrest 7 is slightly tilted forward or backward, the compression spring 51 stretches and the lock pin 40 leaves the engagement hole 39 to return to the initial unlocking position in
In
Then, in
A smaller-diameter axial hole 61 is formed through each of the side plates 53a,53a of the bearing member 53 of the support base 4. Rectangular recesses 62,62 are formed in the axial hole 61. The right side plate 53a bears the inner end of the operating lever 41, and the left side plate 53a bears the inner end of the operating lever 58.
A threaded bore 63 is formed in front of the axial hole 61, and a positioning hole 64 is formed at the back of the axial hole 61.
At the upper rear part of each of the reinforcing plates 17,17, a bearing portion 65 has a larger-diameter axial hole 66 larger in diameter than the smaller-diameter axial hole 61 and an opening 67 having a width smaller than the diameter of the larger-diameter axial hole 66.
The smaller-diameter axial hole 61 is axially aligned with the larger-diameter axial hole 66 and spaced by a distance D1.
In
The first arm 41 is connected to the locking device 38.
In
Projections 68,68 are provided on the outer circumferential surface of the smaller-diameter shaft 41 to fit in the recesses 62,62.
The thinner portion 41f of the operating shaft 41a passes through the opening 67 to allow the operating shaft 41a to be inserted in the larger-diameter axial hole 66. Then, the operating shaft 41a is moved inward and passed through the hole 60a of the wire guide 60 provisionally mounted on the side of the bearing member 53. While the projections 68,68 fits in the recesses 62,62, the smaller-diameter shaft 41d is inserted in the smaller-diameter axial hole 61 and the operating lever 41 is rotated at proper angles to allow the operating lever 41 to be mounted to the support base 4 easily and securely without screws.
The side plate 53a of the bearing member 53 is disposed between the end face of the operating shaft 41a and the projections 68,68 to allow the operating lever 41 mounted to the support base 4 to be rotatably supported with the side plate 53a and the bearing portion 65 stably and not to move axially.
Between the first arm 41b and the second arm 41e, a stopper pin 69 is bound to the side plate of the bearing member 53 with wire guide 60 with a screw 70 engaged in the threaded bore 63. Thus, the operating lever 41 can be turned between the locked position where the second arm 41e contacts the stopper pin 69 with the wire 57 pulled and the unlocking position where the first arm 41b contacts the stopper pin 69. The projection 68 does not fit in the recess 62 during the rotation from the locked position to the unlocking position.
During rotation of the operating lever 41, the projection 68 does not pass through the recess 62, or the operating lever 41 does not leave the support base 4.
The ends of the winding of the click or torsion spring 71 are in contact with the first arm 41b and the bearing member 53. When the operating lever 41 moves from an intermediate position toward the locked position, the operating lever 41 is urged toward the locked position by the click spring 71. When the operating lever 41 is moved toward the unlocking position, it is urged toward the unlocking position. Thus, the operating lever 41 is stably held between the locked position and the unlocking position.
As well as the operating lever 41, the operating lever 58 comprises an operating shaft 58a having an external diameter which is almost equal to an internal diameter of the larger-diameter axial hole 66; a first arm 58b projecting downward; an operating portion 58c which projects obliquely from the outer end of the operating shaft 58a; a smaller-diameter shaft 58d formed at the inner end of the operating shaft 58a and having an external diameter which is almost equal to the internal diameter of the smaller-diameter axial hole 61; and a second arm 58e which projects rearward from the outer circumferential surface of the operating shaft 58a perpendicular to the first arm 58b.
In the operating shaft 58a of the operating lever 58, there is formed a thinner portion 58f similar to the thinner portion 41f of the operating shaft 41a of the operating lever 41, and a third arm 58g which projects upward.
The operating lever 58 is attached to the left side plate 53a of the bearing member 53 and the left bearing portion 65 in the similar manner to the operating lever 41.
In
While the support base 4 is raised or lowered to a desired height, a hand leaves the operating lever 58, so that the actuating portion 73 is returned to an upright position by an internal returning spring force and the gas spring 72 is locked while it stretches.
With returning of the actuating portion 73 to the upright position, the operating lever 58 is returned to the original position.
In order that the stopper pin 75 may be positioned between the second arm 58e and the third arm 58g, the stopper pin 75 is fixed to the side plate 53a with the screw 75 which engages in the threaded bore 63, so that rotation of the operating lever 58 is limited within a range enough to pull the wire 74. Therefore, during rotation of the operating lever 58, the projection 68 does not pass through the recess 62 and the operating lever 58 does not fall off the support base 4.
As clarified from the above, in this embodiment, even if the spring-receiving member 26 is loaded by the weight of the occupant to cause the lock pin 40 not to move, the operating lever 41 is actuated to shift the wire end 42 as an actuating member between the pre-locking position and the pre-unlocking position. Thereafter, when the lock pin 40 is unloaded, the lock pin 40 is moved to the expected locked position or unlocking position by the force of the urging unit 43.
Therefore, it can be shifted while the occupant still sits, so that operativity is improved.
In this embodiment, the operating levers 41,58 can be attached to the support base 4 easily and securely with screws.
In addition, it is not necessary to use holding metal tools or screws, so that the number of parts can be reduced.
To a slider 45 which is attached to a case 44 to slide in the same direction as that of the lock pin 40, the end of an outer tube 54 of a Bowden cable 52 is mounted. A wire end 42 is mounted to the end of a retractable wire 57 which extends leftward from the end of the outer tube 54. The wire end 42 is mounted to a bracket 78 fixed to the right end of the lock pin 40 with a screw 77. There is a shorter distance between the end of the outer tube 54 and the wire end 42 in
The first urging unit in an urging unit 43 is a compression spring 79 between a bracket 78 and the slider 45, and the second urging unit in the urging unit 43 is a coil spring 80 mounted to the slider 45 and the case 44 to pull the slider 45 rightward. In the pre-locking state as shown in
As clearly shown in the figures, the second embodiment achieves similar advantages.
The present invention is not limited to the foregoing embodiments. Various variations may be made without departing from the scope of claims.
For example, in the foregoing embodiments, the support member is the reinforcing plate 17 in the support base 4, and the movable member is the spring-receiving member 26. But the support member may be the support base 4, and the movable member may be the front rod portion 8a. The locking device according to the present invention may be provided between all the movable members of the chair and the support member for supporting it movably.
In the first embodiment, the support member is the support base 4 provided at the upper end of the column to support the seat 9 and the backrest 7. The movable member is a pivoting member which is the spring-receiving member 26 pivotally mounted to the support base 4 to rotate together with a pair of support links 10,6 supporting the seat 9, and the lock pin 40 is selectively engaged in a plurality of engagement holes 39. It may be considered that the seat 9 is locked at a tilting angle corresponding to the engagement hole 39.
The urging unit 43 may comprise a single coil spring one end of which is mounted to the wire end 42, the other end being mounted to the lock pin 40.
The present invention is not limited to the foregoing embodiments, and various modifications may be made without departing from the scope of claims.
For example, the operating levers 41,58 may be mounted to the lower surface of the seat 9 as support member and the front portion 8a of the backrest frame 8 by similar way to the above.
Number | Date | Country | Kind |
---|---|---|---|
2007-046810 | Feb 2007 | JP | national |
2007-046812 | Feb 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/052975 | 2/21/2008 | WO | 00 | 8/26/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/105314 | 9/4/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3111343 | Pearson | Nov 1963 | A |
4125288 | Hunter | Nov 1978 | A |
5282670 | Karsten et al. | Feb 1994 | A |
5971481 | Emmenegger et al. | Oct 1999 | A |
6033020 | Ito | Mar 2000 | A |
6213552 | Miotto | Apr 2001 | B1 |
6598936 | Klein | Jul 2003 | B1 |
6742843 | Golynsky | Jun 2004 | B2 |
6916067 | Liu | Jul 2005 | B2 |
7278685 | Lin | Oct 2007 | B1 |
7293832 | Huang | Nov 2007 | B2 |
20050077766 | Chen | Apr 2005 | A1 |
20050077767 | Liu | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
49-030744 | Mar 1974 | JP |
58-146109 | Oct 1983 | JP |
59-44364 | Mar 1984 | JP |
11-169251 | Jun 1999 | JP |
11-169255 | Jun 1999 | JP |
2000-139602 | May 2000 | JP |
2001-29162 | Feb 2001 | JP |
2005-163966 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20100109402 A1 | May 2010 | US |