Information
-
Patent Grant
-
6454020
-
Patent Number
6,454,020
-
Date Filed
Tuesday, January 29, 200222 years ago
-
Date Issued
Tuesday, September 24, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 173 93
- 173 935
- 173 217
- 173 216
- 173 213
- 173 176
- 173 104
- 173 47
-
International Classifications
-
Abstract
A locking device for output shaft of electric tools includes a plurality of brake pads arranged as a circle in a passage in a casing and the brake pads can be limited by a driving disk to co-rotate with a cam mounted on an output shaft. When the output shaft is rotated manually, the brake pads are pushed by the cam and contact the inside of the passage so as to secure the output shaft to output a torque. The driving disk has a hole wherein two hill portions extend from two opposite sides of the hole. The output shaft extends through the hole. A cover plate is mounted to the driving disk and has an aperture whose two opposite sides are located alignment with the two opposite sides of the hole in the driving disk. The driving disk has pawls on a surface thereof and limit the brake pads not to contact the inside of the passage.
Description
FIELD OF THE INVENTION
The present invention relates to a locking device for securing the output shaft of an electric tool when the shaft is used manually with electric power.
BACKGROUND OF THE INVENTION
A conventional electric tool is generally driven by electric power which can be a rechargeable pack or a power supply coming from the wall. An active gear connected to the driving shaft of motor is engaged with a gear set which is then engaged with a passive gear connected to the output shaft. When the electric power is out, the user may use the output shaft manually and the passive gear is used as an active gear to drive the driving shaft of the motor. This causes the drill spins together with the operation and cannot output a torque to unscrew a screw or bolt. Some manufacturers develop a locking device for secure the output shaft during manual operation so that the output shaft can output a torque. The locking device includes several brake pads each having a longitudinal protrusion and a radial protrusion. These brake pads are supposed to contact an inside of a casing in which the output shaft is located. A cam is mounted to the output shaft and rotated with the output shaft. A driving disk is connected to the gear set and includes several fan-shaped bosses which are respectively located between the brake pads. When the driving disk is rotated, the bosses shift the longitudinal protrusions to release the brake status of the brake pads so that the output shaft, the cam and the brake pads are co-rotated. When the driving disk stops, and the output shaft is rotated in opposite direction, the cam pushes the brake pads to contact the inside of the casing to secure the output shaft. However, the longitudinal protrusions of the brake pads could separate from the driving disk when-the driving disk reduces its speed. The brake pads will impact the inside of the casing and generate noise.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, there is provided a locking device for output shaft of electric tools and the device includes a casing having a passage through which a shaft extends. The shaft has a polygonal distal end on which a cam is mounted. The cam has a plurality of protrusions and recesses are defined between the protrusions. A plurality of brake pads each have two blocks and are located in the passage of the casing. A driving disk has a plurality of pawls on a first surface thereof and a width of each of the pawls is less than a distance between two blocks of each of the brake pads. A hole is defined through the driving disk and the distal end of the output shaft is engaged with the hole of the driving disk. Two opposite sides of the hole of the driving disk have a hill portion at an intermediate portion thereof. A plurality of concavities are defined in a second surface of the driving disk and each of which receives a spring a ball therein. A cover plate is mounted to the second surface of the driving disk and a plurality of holes are defined through the cover plate. The number of the holes in the cover plate are two times of the number of the concavities in the driving disk. The balls are engaged with half number of the holes. The cover plate has an aperture and two opposite sides of the aperture are in alignment with two opposite sides of the hole in the driving disk.
The primary object of the present invention is to provide a locking device wherein the swing of the brake pads are limited when the rotation of speed of the driving disk is reduced so that the brake pads will not impact the inside of the passage of the casing.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, a preferred embodiment in accordance with the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an exploded view to show the locking device of the present invention;
FIG. 2
is an exploded view to show the driving disk and a cover plate of the locking device of the present invention;
FIG. 3
is an exploded view to show another embodiment of the driving disk and a cover plate of the locking device of the present invention;
FIG. 4
is a cross sectional view to show the locking device of the present invention;
FIG. 5
is a cross sectional view seen from the cutting line A—A;
FIG. 6
is a plan view to show the locking device when the shaft is driven counter clockwise by the driving disk, and
FIG. 7
is a plan view to show the locking device when the shaft is driven clockwise by the driving disk.
DETAILED DESCRIPTION OF THE INVENTION
Referring to
FIGS. 1
to
4
, the locking device for an electric tool of the present invention comprises a casing
1
which is connected to a barrel of the tool which is not shown, and a passage
11
is defined through the casing
1
. A knurl surface
110
is defined in an inside of the passage
11
. An output shaft
2
with a bearing is received in the passage
11
and includes a distal end
21
which includes two surfaces defined in two sides thereof. A cam
5
has a hole
51
in which the distal end
21
is engaged and the cam
5
includes protrusions
52
and recesses
53
defined between the protrusions
52
. Five brake pads
3
are arranged as a circle and received in the passage
11
. Each of the brake pad
5
has two blocks
32
on two ends thereof and a knurl surface
33
is defined in an outside of each of the brake pads
3
. The brake pads
3
are respectively located in the recesses
53
of the cam
5
of the output shaft
2
.
A driving disk
4
for driving the output shaft
2
includes a hole
42
through which the distal end
21
of the shaft
2
extends. Two opposite sides of the hole
42
each have a hill portion
421
on the intermediate portion thereof so that two fan-shaped spaces
422
are defined at two sides of the hill portion
421
. A raised portion
41
extends from a first surface of the driving disk
4
and a plurality of pawls
411
extend from the raised portion
41
. The width of each of the pawls
411
is less than the distance between two blocks
31
of each of the brake pads
3
. A plurality of rods
43
extend from a second surface of the driving disk
4
and pinions (not shown) are respectively mounted on the rods
43
so that the driving disk
4
can be rotated by a gear set (not shown). A plurality of concavities
44
are defined in the second surface of the driving disk
4
and each concavity
44
has a spring
6
a ball
7
received therein. A cover plate
8
is mounted to the second surface of the driving disk
4
and a plurality of holes
81
are defined through the cover plate
8
. The number of the holes
81
is two times of the number of the concavities
44
. The balls
7
are urged by the corresponding springs
6
and engaged with the holes
81
so that the cover plate
8
cannot rotated relative to the driving disk
4
. The cover plate
8
has an aperture
82
and two opposite sides
821
of the aperture
82
are located in alignment with the two parallel sides of two fan-shaped spaces
422
on different sides as shown in FIG.
6
. The two respective sides of other two fan-shaped spaces
422
of the hole
42
are not located in alignment with the other two sides of the aperture
82
.
As shown in
FIG. 2
, a plurality of recesses
46
are defined in the second surface of the driving disk
4
and each recess
46
communicates with a notch
47
located adjacent to the recess
46
. A plurality of flanges
83
extending from the cover plate
8
and may insert through the notches
47
when connecting the cover plate
8
to the driving disk
4
, and the flanges
83
are then slid into the recesses
46
. This allows the cover plate
8
to be rotatable relative the driving disk
4
but will not disengaged from the driving disk
4
.
FIG. 3
shows the other way that the driving disk
4
is engaged with the cover plate
8
. A pressing plate
9
having a circular hole
91
is matched with the cover plate
8
. The driving disk
4
has stubs
45
which extend through holes in the cover plate
8
and then are pressed to be flat to press on a periphery of the pressing plate
9
and secure the cover plate
8
and the pressing plate
9
to the driving disk
4
.
The pawls
411
are arranged between the two blocks
31
of the brake pads
3
and the angle that the distal end
21
of the output shaft
2
can swing in the two fan-shaped spaces
422
is larger than the angle that the pawls
411
swing between the two blocks
31
, such that the two ends of the pawls
411
contact the blocks
31
when the driving disk
4
is rotated clockwise or counter clockwise.
The motor of the tool drives the gear set which drives the driving disk
4
The pawls
411
contact the blocks
31
on one end of the brake pads
3
and restrain the swing of the brake pads
3
. Therefore, the outer surface of the brake pads
3
will not contact the inside of the passage
11
so that the output shaft
2
, the cam
5
and the brake pads
5
can be rotated by the driving disk
4
.
When no electric power is supplied, an torque is applied to the output shaft
2
, the distal end
21
drives the cam
5
and the protrusions
52
push protrusion on the inner surface
32
of the brake pads
3
and the knurl surface
33
of the brake pads
3
contact the knurl surface
110
in the passage
11
so as to secure the output shaft
2
which is not driven by the driving disk
4
. Therefore the output shaft
2
can be operated manually to output a torque.
In order to avoid the impact between the brake pads
3
and the inside of the passage
11
when the speed of the driving disk
4
is reduced to cause the distal end
21
of the output shaft
2
to swing within the fan-shaped spaces
422
and the brake pads
3
to swing due to initial movement, the cover plate
8
provides a correction function. The aperture
82
of the cover plate
8
is completely matched with the distal end
21
of the output shaft
2
so that the distal end
21
of the output shaft
2
does not have any room to move in the fan-shaped spaces
422
during the rotation of the output shaft
2
. When the speed of the driving disk
4
is reduced, the output shaft
2
does not move in the fan-shaped spaces
422
and the brake pads
3
stop swinging so that the no noise is generated and the output shaft
2
is rotated smoothly without the interruption of the brake pads
3
.
FIG. 6
shows that when the driving disk
4
rotates counter clockwise, the balls
7
are engaged with the holes
81
on the left side of the cover plate
8
. The two sides of the distal end
21
contact the two sides of the two fan-shaped spaces
422
on opposite sides, so that the output shaft
2
can be rotated counter clockwise by the driving disk
4
. When the output shaft
2
is to be rotated clockwise, the user holds the knob (not shown) on the driving disk
4
and rotates the driving disk
4
clockwise till the balls
7
are engaged with the holes
81
on the right side as shown in FIG.
7
. The driving disk
4
can be rotated and drives the output shaft
2
clockwise without any noise.
While we have shown and described the embodiment in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
Claims
- 1. A locking device for output shaft of electric tools, comprising:a casing having a passage; a shaft rotatably received in the passage and having a polygonal distal end; a cam mounted to the output shaft and co-rotated with the output shaft, the cam having a plurality of protrusions and recesses defined between the protrusions; a plurality of brake pads each having two blocks and a protrusion extending from an inner surface of each of the brake pads, the brake pads located in the passage of the casing; a driving disk having a plurality of pawls on a first surface thereof and a width of each of the pawls being less than a distance between two blocks of each of the brake pads, a hole defined through the driving disk and the distal end of the output shaft engaged with the hole of the driving disk, two opposite sides of the hole of the driving disk each having a hill portion at an intermediate portion thereof, a plurality of concavities defined in a second surface of the driving disk and each of which receives a spring a ball therein, and a cover plate mounted to the second surface of the driving disk and a plurality of holes defined through the cover plate, the number of the holes in the cover plate being two times of the number of the concavities in the driving disk, the balls engaged with half number of the holes, the cover plate having an aperture and two opposite sides of the aperture being in alignment with two opposite sides of the hole in the driving disk.
- 2. The device as claimed in claim 1, wherein the second surface of the driving disk has a plurality of recesses and each recess communicating with a notch located adjacent to the recess, the cover plate having a plurality of flanges which are inserted into the notches and slid into the recesses to connect the cover plate to the driving disk.
- 3. The device as claimed in claim 1, wherein the second surface of the driving disk has a plurality of stubs which extend through the cover plate and are pressed to be flat to secure the cover plate to the driving disk.
US Referenced Citations (7)