An Embodiment of the present invention relates to a locking device including a key and a cylinder lock having an inner cylinder rotated by the key.
Conventionally, various cylinder locks have been known. A certain type of cylinder lock rotatably accommodates an inner cylinder having a key insertion slot in an outer cylinder fixed to a mounting object such as a hook. Furthermore, the cylinder lock is provided with multiple tumblers so as to straddle the outer cylinder and the inner cylinder, and the outer cylinder and the inner cylinder are directly engageable with and disengageable from each other (see, for example, Patent Document 1).
Then, when a regular mechanical key that is not counterfeit or the like is inserted into the key insertion port, all the tumblers are driven to release the locked state between the outer cylinder and the inner cylinder, so the inner cylinder is able to be rotated with respect to the outer cylinder.
By rotating the key by a required angle and rotating the inner cylinder by a required angle, a cam mechanism or the like in the inner cylinder is driven to drive a deadbolt, and locking or unlocking is performed.
On the other hand, there is also known a technology in which a locking bar is provided so as to straddle the outer cylinder and the inner cylinder in place of the above-mentioned tumblers, and the both cylinders are locked (see, for example, Patent Document 2).
However, the technique disclosed by Patent Document 1 includes a spring 25 or the like such as springs 50 and 58, which energizes one end of multiple tumblers 22 and 23 to the outer periphery of the inner cylinder such as an inner cylinder 13. For example, the springs 25 and the like are springs 50 and 58. As a result, Patent Document 1 has a problem that the number of parts is large and the configuration of the entire cylinder lock is complicated.
In addition, the key disclosed in Patent Document 2 has a problem that forgery is easy because the key 2 is formed of a flat plate.
The problem to be solved by the present invention is to provide a locking device which is simple in construction by reducing the number of parts by driving a tumbler without using a spring, etc., so that it is not easy to forge a key.
A locking device according to an embodiment includes a key and a cylinder lock, having a cylindrical shaft in which a guide groove is formed in an axial direction.
The cylinder lock includes an outer cylinder, an inner cylinder, and a tumbler. The inner cylinder has an inner cylinder main body rotatably accommodated in the outer cylinder, a rod fixed to the inner cylinder main body, a key insertion slot, and a key insertion guide. The key insertion guide is fixed to the inner cylinder main body so as to be located in the key insertion slot. The tumbler has a locking bar and an inner concave portion. The locking bar is interposed between the inner cylinder and the outer cylinder, and is engaged with and disengaged from the inner cylinder and the outer cylinder to prevent the rotation of the inner cylinder. The inner concave portion is rotatably accommodated in the inner cylinder so as to rotatably engage with the guide groove of the key and to drop the locking bar.
When the shaft of the key is inserted inward from the key insertion slot of the inner cylinder along the key insertion guide, it works as follows. The guide convex portion is engaged with the guide groove of the key. The tumbler is rotated along the guide groove of the key to align the inner concave portion with the position of the locking bar. The locking bar is inserted radially in the bar insertion hole of the inner cylinder. The locked state of the inner cylinder and the outer cylinder is released by dropping the locking bar to the inner concave portion side of the tumbler. Thus, the inner cylinder is made rotatable.
According to the present invention, it is possible to provide a locking device which is simple in construction by reducing the number of parts by driving a tumbler without using a spring, etc., so that is not easy to forge a key.
Hereinafter, a present embodiment will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
As shown in
As shown in
The shaft 2b includes key insertion marks 2c and 2d with relief or the like on the one end portion on the grip 2a side, respectively indicating an insertion position and an insertion direction of the key 2 at a predetermined interval in an axial direction. For example, each of the key insertion marks 2c and 2d is a quadrangle, a triangle or the like, and the marks 2c and 2d form a left and right pair in the drawing.
The shaft 2b includes a key groove 2e which is an example of a guide groove. In the upper part of
The shaft 2b has key tip 2f (left end in
As shown in
As shown in
Then, as shown in
The first and second arc-shaped convex portions 5b and 5c are formed in midair. The first and second arc-shaped convex portions 5b and 5c have arc-shaped first and second outer concave portions 5d and 5e for engagement on the inner surfaces, respectively. Each of the first and second arc-shaped convex portions 5b and 5c is formed to have a required length in the axial direction of the outer cylinder main body 5a. The first and second arc-shaped convex portions 5b and 5c and the outer concave portions 5d and 5e are disposed apart from each other in the circumferential direction of the outer cylinder main body 5a by a required angle such as 90°. For example, the first arc-shaped convex portion 5b and the first outer concave portion 5d are formed such that their centers are arranged at the 12 o'clock position on a dial display on a clock (hereinafter referred to as “clock display”). Further, the second arc-shaped convex portion 5b and the second outer concave portion 5e are formed such that the center of the second outer concave portion 5d is arranged at the 3 o'clock position.
Then, as shown in
As shown in
The inner cylinder 8 is fixed to the outer surface of the bottom 8c of the inner cylinder main body 8a using a swaging tool of the open end 5f of the outer cylinder 5. The bottom of the cylindrical or hollow cylindrical key insertion guide 10 is concentrically fixed and protruded on the center of the inner surface of the bottom 8c of the inner cylinder main body 8a. The inner cylinder main body 8a forms an annular space 11 of a required size around the outer periphery of the key insertion guide 10. The inner cylinder main body 8a forms a required outer peripheral space around the key insertion guide 10 as a key insertion space into which the shaft 2b of the key 2 is inserted. The key insertion guide 10 protrudes free closing tip surface slightly outward from the open end 8b of the inner cylinder main body 8a. The free closing tip surface of the key insertion guide 10 is peaked in the same direction as the rod 9 protrudes. For example, in the free closing tip surface, a positioning mark 10a in the form of a triangular concave portion whose apex angle is oriented in the same direction as the protruding direction of the rod 9 is formed.
As shown in
The inner cylinder 8 is formed by cutting out a pair of left and right rectangular openings of engaged concave portions 8e and 8f on the left and right sides (upper and lower parts in
As shown in
As shown in
Each of the pairs of engaging portions 12b and 12c, 13b and 13c, and 14b and 14c is formed substantially rectangular in shape and size. The dimension Sa (shown in
Then, in
As shown in
Further, a pair of upper and lower guide convex portions 12e and 12f protruding in the annular center direction is provided to protrude from the inner peripheral portion of the annular tumbler main body 12a, thereby, the first layer tumbler 12 is formed. A pair of upper and lower guide convex portions 13e and 13f protruding in the annular center direction is provided to protrude from the inner peripheral portion of the annular tumbler main body 13a, thereby the second layer tumbler 13 is formed. A pair of upper and lower guide convex portions 14e and 14f protruding in the annular center direction is provided to protrude from the inner peripheral portion of the annular tumbler main body 14a, thereby the third layer tumbler 14 is formed.
The upper guide convex portions 12e, 13e and 14e engage with the upper key groove 2e of the key 2 shown in
The positional relationship between the inner concave portions 12d to 14d and the guide convex portions 12e to 14e at the top is slightly different for each of the first to third layers of the tumblers 12 to 14. The positional relationship is slightly shifted in the stacking direction of the first to third stage tumblers 12 to 14. However, the tumblers 12 to 14 of the first to third layers do not have to be entirely shifted in the stacking direction. The tumblers 12 to 14 may be one or more than one.
As shown in
Each spacer main body 15a forms a pair of left and right engaging portions 15b and 15c, and a pair of upper and lower arc-shaped inner concave portions 15d and 15e for engagement in the drawing.
The pair of left and right engaging portions 15b and 15c is formed in substantially the same shape as the pair of left and right engaging portions 12b and 12c, 13b and 13c, and 14b and 14c of the first to third layers of the tumblers 12 to 14, respectively. However, the engaging portions 15b and 15c are formed to be slightly longer in the circumferential direction, for example, about twice as long, and are fitted closely to the pair of left and right engaged concave portions 8e and 8f of the inner cylinder main body 8a. The pair of left and right engaging portions 15b and 15c are substantially prevented from rotating even when the first to third layers of tumblers 12 to 14 rotate in the circumferential direction.
In
As shown in
The guide ring 5h is disposed on the inner side of the open end 8b of the inner cylinder 8 shown in
As shown in
The pair of upper and lower rotation restricting grooves 8g and 8h is formed at a required central angle, such as “90°”, so as to straddle between circumferentially opposite end portions of either one of the concave portions, such as “8e”, for engagement. The rotation restricting grooves 8g and 8h are slidably engaged with the locking convex portion 5j in the outer cylinder 5 shown in
That is, the rotation angle restricting means is formed such that the rotation center angle thereof is equal to the rotation center angle from the center of the first outer concave portion 5d to the center of the second outer concave portion 5e. The first outer concave portion 5d is in the first arc-shaped convex portion 5b of the outer cylinder 5. The second outer concave portion 5e is in the second arc-shaped convex portion 5c. That is, the inner cylinder 8 is configured to be able to rotate 90° reversibly. It should be noted that the rotation center angle may not be 90°, and may be changed as needed.
Subsequently, an operation of the locking device 1 configured as described above will be described.
Before inserting the shaft 2b of the key 2 into the key insertion slot 3 of the cylinder lock 4, the cylinder lock 4 is in the state as shown in
As shown in
Therefore, as shown in
Then, as shown in
As a result, the upper guide convex portions 12e, 13e, 14e protruding from the inner peripheral portions of the first to third layers of the tumblers 12 to 14 sequentially engage with the key groove 2e. At the same time, the first to third layer tumblers 12 to 14 are guided by the insertion pressure and the zigzag meandering of the key groove 2e according to the further insertion of the shaft portion 2b of the key 2 and the first to third layer tumblers 12 to 14 rotate around their central axes. The required angle is respectively rotated in the left or right direction in the figure. The rotation angle and the rotation direction depend on the bending angle and bending direction of the key groove 2e with which each of the guide convex portions 12e, 13e and 14e engages.
Thus, the key 2 is pushed to the back of the predetermined position. At that time, first, as shown in
And then, for example, the inner cylinder 8 is turned to rotate the key 2 clockwise in the drawing so as to turn the inner cylinder 8 clockwise. At the start of the rotation, the upper right end of the locking bar 7 accommodated in the bar insertion hole 8d of the inner cylinder 8 strikes the lower right end of the first outer engagement recess 5d, the upper right end of the locking bar 7 being a portion protruding upward in the figure from the bar insertion hole 8d. Thus, the entire locking bar 7 is pressed toward the center of the inner cylinder 8 by the arc surface of the abutment.
Therefore, as shown in
As a result, the locking bar 7 is interposed between the inner peripheral surface of the outer cylinder main body 5a and the outer peripheral surface of the inner cylinder main body 8a, and the locked state in which both are locked is released. That is, the inner cylinder 8 is able to be rotated in the outer cylinder 5.
Next, as shown in
The rotation angle of the inner cylinder 8 is restricted by the rotation restricting grooves 8g and 8h provided in the inner cylinder 8 and the locking convex portion 5j of the outer cylinder 5 engaged therewith. The rotation angle is not limited to 90° and can be changed appropriately.
And then, at the 3 o'clock position, the key 2 is pulled outward from the key insertion slot 3. Then, the tumblers 12 to 14 in the first to third layers slightly rotate around the central axis in the clockwise or counterclockwise direction, respectively, in accordance with the bending angle of the key groove 2e. The first to third layer tumblers 12 to 14 have guide convex portions 12e, 13e and 14e engaged with the key groove 2e of the key 2.
Thereby, as shown in
Thus, the locking bar 7 is interposed between the inner peripheral surface of the outer cylinder main body 5a and the outer peripheral surface of the inner cylinder main body 8a at the 3 o'clock position. That is, it is locked between the two main bodies 5a and 8a. Thereby, the further rotation of the inner cylinder main body 8a is blocked, and the blocked state has been maintained.
As described above, when the inner cylinder main body 8a is rotated by a predetermined central angle, the rod 9 fixed to the bottom of the inner cylinder main body 8a is also rotated by the same rotation angle as the rotation angle of the inner cylinder 8. As such, locking operation or unlocking operation can be performed. That is, for example, as shown in
It should be noted that the locking receptacle such as the strike may be arranged in the position of 3 o'clock. In this case, the locking position and the unlocking position are reversed as compared to the above case.
Then, as shown in
As described above, in the state in which the inner cylinder main body 8a is positioned at the 3 o'clock position, the positions of the inner concave portions 12d, 13d and 14d of the respective tumblers 12 to 14 of the first to third layers are in an unmatched state.
In the unmatched state, the shaft 2b of the key 2 is again inserted into the key insertion slot 3 of the cylinder lock 4. Then, the upper guide convex portions 12e, 13e and 14e of the tumblers 12 to 14 of the first to third layers are engaged in the key groove 2e in the same manner as at 12 o'clock. Then, each of the tumblers 12 to 14 of the first to third layers is guided by the key groove 2e, and rotates by a required angle.
As a result, all of the inner engagement recesses 12d, 13d and 14d are aligned at the three o'clock position. By rotating the key 2 counterclockwise, the inner cylinder 8 is rotated counterclockwise. Thereby, the locking bar 7 which has been engaged all the time in the second outer concave portion 5e of the outer cylinder 5 falls into the inner concave portions 12d, 13d and 14d of all the tumblers 12 to 14 through the bar insertion hole 8d of the inner cylinder body 8a by the same action as mentioned above regarding the 12 o'clock position. As a result, the inner cylinder main body 8a shifts to the rotatable state again.
Then, when the key 2 is further turned back to the 12 o'clock side, the locking bar 7 reaches the 12 o'clock position. As shown in
Thereby, the locking bar 7 is interposed and locked between the inner peripheral surface of the outer cylinder main body 5a and the outer peripheral surface of the inner cylinder main body 8a. As a result, the further rotation of the inner cylinder main body 8a is blocked and held at the 12 o'clock position.
In this way, the rod 9 rotates from the 3 o'clock position to the 12 o'clock position, so it is locked or unlocked again.
Therefore, according to the present locking device 1, it is possible to turn all the tumblers 12 to 14 simply by inserting and removing the shaft 2b of the key 2 into the key insertion slot 3 of the cylinder lock 4. Thereby, it is possible to rearise simplification of the entire configuration of the cylinder lock 4 and to reduce cost because the number of parts is reduced by omitting the driving member of the tumbler such as the spring.
Further, it is possible to further simplify the configuration of the cylinder lock 4. This is because it is possible to rearise the mechanism for rotating the first to third layers of the tumblers 12 to 14 by the simple configuration of the key groove 2e and the guide convex portions 12e, 13e and 14e engaged with the key groove 2e in a detachable manner.
Furthermore, it is possible to make the forgery more difficult than a flat plate key. This is because the shaft 2b of the key 2 is formed in a three-dimensional cylindrical isostatic shape. Also, the use of a forged key is prevented in advance, so it is possible to further enhance the difficulty to forge the key 2. This is because the key insertion slot 3 is provided with the guide ring 5h which allows only the shaft 2b of the regular key 2 to be inserted.
Furthermore, the key groove 2e is a groove for aligning the positions of all the inner concave portions 12d, 13d and 14d of the first to third layers of the tumblers 12 to 14 when the key 2 is inserted into the key insertion slot 3, and for returning to the original position. Therefore, the key groove 2e is required to have high accuracy. Since the further difficulty to forge the key 2 is enhanced, it is possible to further enhance the forgery prevention or reduction effect.
Furthermore, according to the present embodiment, the key insertion guide 10, the key insertion mark 2c, and the positioning mark 10a are provided. Thereby, it is possible to realize prevention of key misinsertion and smooth key insertion. Further, it is possible for a user to recognize the position of the rod 9 by the positioning mark 10a of the key insertion guide 10, and to recognize that the locking device 1 is either locking or unlocking.
Furthermore, a rotation restricting means for restricting the reversible rotation angle of the inner cylinder 8 is realized by the pair of rotation restricting grooves 8g and 8h of the inner cylinder 8 being engaged with the locking convex portion 5j of the outer cylinder 5. Thereby, it is possible to regulate the rotation angle of the inner cylinder 8 accurately and reliably.
Further, the highly slidable spacer 15 is inserted between the multiple tumblers 12 to 14. Thereby, it is possible to realize the certainty and the accuracy of the rotation of the tumblers 12 to 14. It should be noted that the spacer 15 may be omitted.
In the above embodiment, the case where only three tumblers 12 to 14 (three layers) are provided has been described. However, the present invention is not limited to this case, and one tumbler may be used, and one or more tumblers may be used.
The inner concave portions 12d, 13d and 14d and the guide convex portions 12e to 14e having different positions respectively may be provided. Further, multiple types of tumblers may be provided, and multiple combinations of multiple types of the tumblers corresponding to the two portions with different positional relationships respectively are provided. Thereby, it is possible to further enhance the forgery prevention or reduction effect.
Furthermore, the shape of the key groove 2e for driving the tumblers is complicated by providing the multiple types of combination patterns of multiple types of tumblers. As a result, it is possible to prevent the forgery of the key 2 and further improve the reduction effect.
In the above embodiment, the case where the key groove 2e is formed on the upper surface of the shaft 2b of the key 2 has been described as an example. However, it is not limited to that case. For example, the present invention may have the second key 2A provided with the second key groove 2eA on the lower surface on the diametrically opposite side, instead of the key groove 2e. In this case, when the second key 2A is inserted into the key insertion slot 3, the lower (second) guide convex portions 12f, 13f and 14f of the first to third layers of the tumblers 12 to 14 are engageably engaged with the second key groove 2eA and rotate. The inner cylinder 8 may be configured to be rotatable with the inner concave portions 12d, 13d and 14d of the tumblers 12 to 14 all in alignment with the required position.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
1: locking device, 2: key, 2a: grip, 2b: shaft, 2c or 2d: key insertion mark, 2e: key groove (guide groove), 2f: key tip, 2g: key groove opening, 3: key insertion slot, 3a: rectangular concave portion, 4: cylinder lock, 5: outer cylinder, 5a: outer cylinder main body, 5b: first arc-shaped convex portion, 5c: second arc-shaped convex portion, 5d: first outer concave portion, 5e: second outer concave portion, 5f: open end, 5g: end plate, 5h: guide ring, 5h1: ring main body, 5h2: engaging portion, 5j: locking convex portion, 7: locking bar, 8: inner cylinder, 8a: inner cylinder main body, 8b: open end, 8c: bottom, 8d: bar insertion hole, 8e and 8f: pair of left and right engaged concave portions, 8g and 8h: pair of rotation restricting grooves, 9: rod, 10: key insertion guide, 10a: positioning mark, 11: annular space, 12, 13 and 14: first to third layer tumblers, 12a, 13a or 14a: tumbler main body, 12b and 12c: pair of left and right engaging portions, 13b and 13c: pair of left and right engaging portions, 14b and 14c: pair of left and right engaging portions, 12d, 13d or 14d: inner concave portion, 12e, 12f, 13e, 13f, 14e or 14f: guide convex portion, 15: spacer, 15a: spacer main body, 15b and 15c: pair of left and right engaging portions, 15d or 15e: inner concave portion
Number | Date | Country | Kind |
---|---|---|---|
2016-234378 | Dec 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/017063 | 4/28/2017 | WO | 00 |