Formation degradation, such as pavement milling, mining, or excavating, may be performed using impact resistant picks. These picks may be mounted to a driving mechanism in a variety of ways, some of which may be more effective in formation degradation applications than others. Thus, many efforts have been made to optimize the method of attachment to the driving mechanism.
In one aspect of the invention, a degradation assembly comprises an impact tip brazed to a carbide bolster. A stem protrudes from the bolster, being adapted to be retained within a bore connected to a driving mechanism. A locking fixture is disposed within the bore and locking the stem to a wall of the bore.
The carbide bolster may comprise a cavity formed in its base end and may be interlocked with the stem. The stem may be interlocked with the bolster through a threadform. The stem may be interlocked through at least one catch. The stem may be interlocked through a press fit. The stem may be formed of the same material as the bolster. The locking fixture may comprise a snap ring. The locking fixture may comprise a ring disposed around the stem. The ring may comprise at least one barb on its outer surface adapted to engage the wall of the bore. The locking fixture may comprise a threadform. The assembly may comprise a tensioning mechanism adapted to apply tension on the stem. The tensioning mechanism may comprise a shrunk material. The tensioning mechanism may comprise at least one threadform and a nut. The bolster may comprise a tapered base end. The bolster may comprise a lip adapted to accommodate the removal of the assembly from the bore.
In another aspect of the invention, a method for assembling a degradation assembly, may comprise the steps of providing the degradation assembly comprising an impact tip brazed to a carbide bolster with a stem protruding from the bolster being adapted to be retained within a bore connected to a driving mechanism. The method may further comprise the step of securing the stem within the bore by inserting the stem into the bore such that a locking fixture disposed around the stem permanently locks against a wall of the bore. The method also may comprise the step of adding a metal insert into the bore prior to securing the stem within the bore. The method may also comprise the step of removing the assembly from the bore. The method may also comprise the step of inserting another degradation assembly with a shorter stem into the bore.
a is another cross-sectional diagram of an embodiment of a degradation assembly.
b is another cross-sectional diagram of an embodiment of a degradation assembly.
a is another cross-sectional diagram of an embodiment of a degradation assembly.
b is another cross-sectional diagram of an embodiment of a degradation assembly.
c is another cross-sectional diagram of an embodiment of a degradation assembly.
a is a cross-sectional diagram of an embodiment of a degradation assembly on a rotary drag bit.
a is a cross-sectional diagram of another embodiment of a degradation assembly on a roller cone.
b is a diagram of another embodiment of a fastening assembly.
The super hard material 104 may comprise diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof. The super hard material may be a polycrystalline structure with an average grain size of 10 to 100 microns. In this embodiment, the carbide bolster 101 comprises a cavity 105 into which the stem 113 is inserted. The stem 113 may be held in place using a snap ring 106 which is inserted into the cavity 105 and disposed between the stem 113 and a lip of the bolster 101. Springs 110 may be disposed around the stem 113 and be adapted to push off the anchor 111 to apply tension to the stem. An insert 109 is disposed around the stem 113 and intermediate the bolster 101 and springs 110. A threadform may connect a nut to the stem to provide a surface for the spring to load the stem. The anchor may comprise barbs 120 that engage that secure the insert 109 to a wall of the bore 122 upon insertion of the degradation assembly 100 into the bore 121. A steel ring 107 is disposed intermediate the bolster 101 and a meltable spacer 108. A tightening assembly 140 within the degradation assembly 100 is adapted to apply tension between the bolster 101 and anchor 111 through the stem 113.
The meltable spacer 108 is adapted to melt when heat is applied to the degradation assembly 100 through the carbide bolster 101. As the meltable spacer 108 melts the tension on the stem pulls the bolster closer to the anchor, effectively tightening the connection. The tightening assembly 140 pulls on the carbide bolster 101 thus securing the bolster 101 to the driving mechanism 125. The meltable space may comprise lead, bismuth, tin, cadmium, wax, plastic or combinations thereof. The meltable spacer may melt at a temperature significantly lower than the bolster and/or stem. The meltable spacer may be a ring, a shim, wedge, ball, cube, roller, arc segment, or combinations thereof Preferably the meltable spacer comprise comprises a characteristic such that when it changes from a solid phase to a liquid phase, the phase change occurs rapidly. In some embodiments, the pull down stroke is no greater than an inch. In some embodiments, the lip through molding or the lip may be formed by grinding, or a CNC process.
The springs 110 may be Bellville springs, biased rings, coil springs, gas springs, rubber, an elastomeric material or combinations thereof. The springs may also provide the benefit of providing a variable pull down force on the bolster. Often degradation assemblies will heat up while in operation causing all of the components to thermally expand. Often the bolster will have a lower coefficient of thermal expansion that the material forming the bore wall and therefore the bore wall may want to separate from the bolster. The pull-down force of the springs will keep the bolster snug against the bore wall under the differing temperature and expansion changes.
The invention is especially well suited for applications where inserts or some kind of connection is in needed to be made in a blind hole.
a shows a cross-sectional diagram of an embodiment of a degradation assembly 100. In this embodiment, the wall of the bore 122 comprises a series of stepped notches 210 adapted to fit to the increased size of the insert 109. After having used a degradation assembly 100, the used assembly is removed from the bore 121 and replaced with another assembly 100. The newly inserted assembly 100 comprises at least one barb 120 on the anchor such that upon insertion of the assembly 100, the at least one barb 120 contacts the wall of the bore 122 at a different location than the previous barb was used.
b shows another cross-sectional diagram of an embodiment of a degradation assembly 100. In this embodiment, the wall of the bore 122 also comprises a series of stepped notches 210 adapted to fit to the increased size of the insert 109. After having used a second degradation assembly 100, the used assembly is removed from the bore 121 and replaced with another assembly 100. The newly inserted assembly 100 comprises at least one barb 120 disposed such that upon insertion of the assembly 100, the at least one barb 120 contacts the wall of the bore 122 father from the bottom of the bore 150 than the point of contact of the previous assembly.
a shows another cross-sectional diagram of an embodiment of a degradation assembly 100. The degradation assembly 100 may be press fit into the bore 121. The meltable spacer 108 is disposed intermediate the bolster 101 and the insert 109. The meltable spacer 108 may cause the bolster 101 to sit slightly elevated out of the bore 121 leaving a gap 901 intermediate the bolster 101 and the driving mechanism 125.
b shows another cross-sectional diagram of an embodiment of a degradation assembly 100. In the absence of a solid meltable spacer (shown in
c discloses an embodiment of the bolster being removed from the bore. A puller 5002 comprises a first portion 5000 that braces against the driving mechanism and a second portion 5001 that attaches to the bolster 101 and pulls on the bolster 101. This movement breaks the stem 113 and allows the bolster 101 to be recycled while leaving the anchor in place. The stem 113 and insert 109 may then be removed more easily. In other embodiments another bolster may be inserted into the bore being tensioned off of another anchor which is located above the previous anchor.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation of U.S. patent application Ser. No. 12/051,738 which is a continuation-in-part of U.S. patent application Ser. No. 12/051,689 which is a continuation of U.S. patent application Ser. No. 12/051,586 which is a continuation-in-part of U.S. patent application Ser. No. 12/021,051 which is a continuation-in-part of U.S. patent application Ser. No. 12/021,019 which was a continuation-in-part of U.S. patent application Ser. No. 11/971,965 which is a continuation of U.S. patent application Ser. No. 11/947,644, which was a continuation-in-part of U.S. patent application Ser. No. 11/844,586. U.S. patent application Ser. No. 11/844,586 is a continuation-in-part of U.S. patent application Ser. No. 11/829,761. U.S. patent application Ser. No. 11/829,761 is a continuation-in-part of U.S. patent application Ser. No. 11/773,271. U.S. patent application Ser. No. 11/773,271 is a continuation-in-part of U.S. patent application Ser. No. 11/766,903. U.S. patent application Ser. No. 11/766,903 is a continuation of U.S. patent application Ser. No. 11/766,865. U.S. patent application Ser. No. 11/766,865 is a continuation-in-part of U.S. patent application Ser. No. 11/742,304. U.S. patent application Ser. No. 11/742,304 is a continuation of U.S. patent application Ser. No. 11/742,261. U.S. patent application Ser. No. 11/742,261 is a continuation-in-part of U.S. patent application Ser. No. 11/464,008. U.S. patent application Ser. No. 11/464,008 is a continuation-in-part of U.S. patent application Ser. No. 11/463,998. U.S. patent application Ser. No. 11/463,998 is a continuation-in-part of U.S. patent application Ser. No. 11/463,990. U.S. patent application Ser. No. 11/463,990 is a continuation-in-part of U.S. patent application Ser. No. 11/463,975. U.S. patent application Ser. No. 11/463,975 is a continuation-in-part of U.S. patent application Ser. No. 11/463,962. U.S. patent application Ser. No. 11/463,962 is a continuation-in-part of U.S. patent application Ser. No. 11/463,953. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695,672. U.S. patent application Ser. No. 11/695,672 is a continuation-in-part of U.S. patent application Ser. No. 11/686,831. All of these applications are herein incorporated by reference for all that they contain.
Number | Date | Country | |
---|---|---|---|
Parent | 12051738 | Mar 2008 | US |
Child | 12112743 | US | |
Parent | 12051586 | Mar 2008 | US |
Child | 12051689 | US | |
Parent | 11947644 | Nov 2007 | US |
Child | 11971965 | US | |
Parent | 11766865 | Jun 2007 | US |
Child | 11766903 | US | |
Parent | 11742261 | Apr 2007 | US |
Child | 11742304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12051689 | Mar 2008 | US |
Child | 12051738 | US | |
Parent | 12021051 | Jan 2008 | US |
Child | 12051586 | US | |
Parent | 12021019 | Jan 2008 | US |
Child | 12021051 | US | |
Parent | 11971965 | Jan 2008 | US |
Child | 12021019 | US | |
Parent | 11844586 | Aug 2007 | US |
Child | 11947644 | US | |
Parent | 11829761 | Jul 2007 | US |
Child | 11844586 | US | |
Parent | 11773271 | Jul 2007 | US |
Child | 11829761 | US | |
Parent | 11766903 | Jun 2007 | US |
Child | 11773271 | US | |
Parent | 11742304 | Apr 2007 | US |
Child | 11766865 | US | |
Parent | 11464008 | Aug 2006 | US |
Child | 11742261 | US | |
Parent | 11463998 | Aug 2006 | US |
Child | 11464008 | US | |
Parent | 11463990 | Aug 2006 | US |
Child | 11463998 | US | |
Parent | 11463975 | Aug 2006 | US |
Child | 11463990 | US | |
Parent | 11463962 | Aug 2006 | US |
Child | 11463975 | US | |
Parent | 11463953 | Aug 2006 | US |
Child | 11463962 | US | |
Parent | 11695672 | Apr 2007 | US |
Child | 11463953 | US | |
Parent | 11686831 | Mar 2007 | US |
Child | 11695672 | US |