Locking fixture for a degradation assembly

Abstract
In one aspect of the invention, a degradation assembly comprises an impact tip brazed to a carbide bolster. A stem protrudes from the bolster, being adapted to be retained within a bore connected to a driving mechanism. A locking fixture is disposed within the bore and locking the stem to a wall of the bore.
Description
BACKGROUND OF THE INVENTION

Formation degradation, such as pavement milling, mining, or excavating, may be performed using impact resistant picks. These picks may be mounted to a driving mechanism in a variety of ways, some of which may be more effective in formation degradation applications than others. Thus, many efforts have been made to optimize the method of attachment to the driving mechanism.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the invention, a degradation assembly includes an impact tip brazed to a carbide bolster. A stem protrudes from the bolster, being adapted to be retained within a bore connected to a driving mechanism. A locking fixture is disposed within the bore and locking the stem to a wall of the bore.


The carbide bolster may have a cavity formed in its base end and may be interlocked with the stem. The stem may be interlocked with the bolster through a threadform. The stem may be interlocked through at least one catch. The stem may be interlocked through a press fit. The stem may be formed of the same material as the bolster. The locking fixture may comprise a snap ring. The locking fixture may comprise a ring disposed around the stem. The ring may comprise at least one barb on its outer surface adapted to engage the wall of the bore. The locking fixture may have a threadform. The assembly may include a tensioning mechanism adapted to apply tension on the stem. The tensioning mechanism may be a shrunk material. The tensioning mechanism may include at least one threadform and a nut. The bolster may have a tapered base end. The bolster may have a lip adapted to accommodate the removal of the assembly from the bore.


In another aspect of the invention, a method for assembling a degradation assembly, may comprise the steps of providing the degradation assembly having an impact tip brazed to a carbide bolster with a stem protruding from the bolster being adapted to be retained within a bore connected to a driving mechanism. The method may further comprise the step of securing the stem within the bore by inserting the stem into the bore such that a locking fixture disposed around the stem permanently locks against a wall of the bore. The method may further comprise the step of adding a metal insert into the bore prior to securing the stem within the bore. The method may further comprise the step of removing the assembly from the bore. The method may further comprise the step of inserting another degradation assembly with a shorter stem into the bore.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of an embodiment of a tool for use in a degradation assembly with a magnified portion.



FIG. 2
a is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 2
b is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 3 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly with a magnified portion.



FIG. 4 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 5 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 6 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 7 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 8 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 9
a is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 9
b is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 9
c is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 10 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 11 is a cross-sectional view of another embodiment of a tool for use in a degradation assembly.



FIG. 12 is a cross-sectional view of an embodiment of a degradation assembly on a drum.



FIG. 13 is a cross-sectional view of an embodiment of a degradation assembly on a cone crusher.



FIG. 14 is a cross-sectional view of an embodiment of a degradation assembly on a percussion bit.



FIG. 15 is a cross-sectional view of an embodiment of a degradation assembly on a rotary drag bit.



FIG. 15
a is a cross-sectional view of another embodiment of a degradation assembly on a rotary drag bit.



FIG. 16 is a cross-sectional view of an embodiment of a degradation assembly on a roller cone.



FIG. 16
a is a cross-sectional view of another embodiment of a degradation assembly on a roller cone.



FIG. 17 is an embodiment of a method for assembling a degradation assembly.



FIG. 18 is an embodiment of a method for tightening a degradation assembly.



FIG. 19 is view of an embodiment of a fastening assembly.



FIG. 20 is a view of another embodiment of a fastening assembly.



FIG. 21
a is a view of another embodiment of a fastening assembly.



FIG. 21
b is a view of another embodiment of a fastening assembly.



FIG. 22 is a cross-sectional view of another embodiment of a fastening assembly.





DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENT


FIG. 1 shows a cross-sectional diagram of an embodiment of a tool 100A for use in a degradation assembly inserted within a bore 121A of a driving mechanism 125A with magnified portion. The degradation assembly 100A has an impact tip 102A attached to a carbide bolster 101A. In some embodiments, the impact tip 102A may comprise a superhard material 104A attached to a cemented metal carbide substrate 103A.


The super hard material 104A may be diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof. The super hard material 104A may be a polycrystalline structure with an average grain size of 10 to 100 microns.


In this embodiment, the carbide bolster 101A has a cavity 105A into which a first end 177A of a stem 113A is inserted. The cavity 105A includes a lip 150A defined by a portion of the cavity 105A having a lip diameter 175A smaller than a cavity diameter 176A. The first end 177A of the stem 113A includes an enlarged portion having a stem diameter 180A less than the lip diameter 175A. The stem 113A may be held in place using a snap ring 106A having an snap ring outer diameter 178A greater than the lip diameter 175A and a snap ring inside diameter 179A less than the stem diameter 180A. The snap ring 106A is inserted into the cavity 105A and disposed between the stem 113A and a lip 150A of the bolster 101A.


A tightening assembly 140A within the tool 100A is adapted to apply tension between the bolster 101A and an anchor 111A through the stem 113A. Tightening assembly 100A may include springs 110A disposed around the stem 113A and adapted to push off the anchor 111A to apply tension to the stem 113A. An insert 109A is disposed around the stem 113A and between the bolster 101A and springs 110A. A threadform 112A may connect a nut 160A to the stem 113A to provide a surface for the spring 110A to load the stem 113A.


An anchor 111A may have barbs 120A that engage a wall 122A of the bore 121A of the driving mechanism 125A to secure an insert 109A within the bore 121A upon insertion of the tool 100A into the bore 121A. A steel ring 107A is disposed between the bolster 101A and a meltable spacer 108A.


The meltable spacer 108A is adapted to melt when heat is applied to the tool 100A through the carbide bolster 101A. As the meltable spacer 108A melts, the tension on the stem 113A pulls the bolster 101A closer to the anchor 111A, effectively tightening the connection. The tightening assembly 140A pulls on the carbide bolster 101A thus securing the bolster 101A to the driving mechanism 125A. The meltable spacer may comprise lead, bismuth, tin, cadmium, wax, plastic or combinations thereof. The meltable spacer 108A may melt at a temperature significantly lower than the bolster 101A and/or stem 113A. The meltable spacer may be a ring, a shim, wedge, ball, cube, roller, arc segment, or combinations thereof. Preferably the meltable spacer 108A has a characteristic such that when it changes from a solid phase to a liquid phase, the phase change occurs rapidly. In some embodiments, the pull down stroke is no greater than an inch. In some embodiments, the lip the lip may be formed by molding, grinding, or a CNC process.


The springs 110A may be Bellville springs, biased rings, coil springs, gas springs, rubber, an elastomeric material or combinations thereof. The springs 110A may also provide the benefit of providing a variable pull down force on the bolster 101A. Often tools, such as tool 100A, will heat up while in operation causing all of the components to thermally expand. Often the bolster 101A will have a lower coefficient of thermal expansion that the material forming the bore wall 122A and therefore the bore wall 122A may want to separate from the bolster. The pull-down force of the springs 110A will keep the bolster 101A snug against the bore wall 122A under the differing temperature and expansion changes.


The invention is especially well suited for applications where inserts or some kind of connection is in needed to be made in a blind hole.



FIG. 2
a shows a cross-sectional diagram of another embodiment of a tool 100B inserted within the bore 121A of the driving mechanism 125A. In this embodiment, a wall 122A of the bore 121A has a series of stepped notches 210B adapted to fit to an increased size of an insert 109B. After having used the tool 100A of FIG. 1, the used tool 100A is removed from the bore 121A and replaced with another assembly 100B. The newly inserted assembly 100B includes at least one barb 120B on an anchor 111B such that upon insertion of the tool 100B, the at least one barb 120B contacts the wall 122A of the bore 121A at a location different than where the previous barb 120A engaged the wall 122A of the bore 121A.



FIG. 2
b shows another cross-sectional diagram of another embodiment of a tool 100C inserted within the bore 121A of the driving mechanism 125A. In this embodiment, the wall 121A of the bore 122A includes the series of stepped notches 210B adapted to fit to the increased size of the insert 109C. After having used a second tool 100B, the used tool 100B is removed from the bore 121A and replaced with another tool 100C. The newly inserted tool 100C has at least one barb 120C disposed such that upon insertion of the tool 100C, the at least one barb 120C contacts the wall 122A of the bore 121A farther from a bottom 150B of the bore 121A than a point of contact of the previous tool 100B.



FIG. 3 shows another cross-sectional diagram of another embodiment of a tool 100D inserted within a bore 121D of a driving mechanism 125D. A stem 113D is restricted from removal from a cavity 105D of a bolster 101D by a snap ring 106D disposed around the stem 113D and a notch 300D disposed on an enlarged portion 305D of the stem 113A. The snap ring 106A contacts a wall 301D of the cavity 105D and the notch 300D, thus restricting the removal of stem 113D from the cavity 105D.



FIG. 4 shows another cross-sectional diagram of another embodiment of a tool 100E inserted within the bore 121D of the driving mechanism 125D of FIG. 3. A stem 113E may be secured to an anchor 400E through a press fit. The anchor 400E, in this embodiment, is disposed farther from a bottom 150E of the bore 121E than a previously used anchor 401D. A spacer 402E is disposed intermediate the anchor 400E and the bolster 101E. In other embodiments, the anchor 400E may be secured through threads, a hydraulically activated mechanism, inserts, wedges, balls, an interlocking geometry or combinations thereof.



FIG. 5 shows another cross-sectional diagram of another embodiment of a tool 100F secured in the bore 121D of the driving mechanism of FIG. 3. A third tool 100F is shown in this embodiment. Previous anchors 501, 502, are shown disposed closer to the bottom 150D of the bore 121D than an anchor 500 used by the tool 100F in this embodiment.



FIG. 6 shows another cross-sectional diagram of another embodiment of a tool 100G inserted in the bore 121D of the driving mechanism 125D of FIG. 3. A stem 113G is secured to an anchor 111G through a threadform 112G.



FIG. 7 shows another cross-sectional diagram of another embodiment of a tool 100H inserted in the bore 121D of the driving mechanism 125D of FIG. 3. The anchor 111H is secured to the driving mechanism 125H through a threadform 700H.



FIG. 8 shows another cross-sectional diagram of another embodiment of a tool 100J inserted in the bore 121D of the driving mechanism 125D of FIG. 3. The stem 113J is secured to the bolster 101J through a threadform 800J.



FIG. 9
a shows another cross-sectional diagram of an embodiment of a tool 100K inserted in a bore 121K of a driving mechanism 125K. The tool 100K may be press fit into the bore 121K. A meltable spacer 108K is disposed between a bolster 101K and an insert 109K. The meltable spacer 108K may cause the bolster 101K to sit slightly elevated out of the bore 121K leaving a gap 901K intermediate the bolster 101K and the driving mechanism 125K.



FIG. 9
b shows another cross-sectional diagram of an embodiment of a tool 100L inserted in the bore 121K of the driving mechanism 125K of FIG. 9a. In the absence of a solid meltable spacer between a bolster 101L and an insert 109L (as shown in FIG. 9a), a tightening assembly, such as the tightening assembly 140A of FIG. 1 may pull the bolster 101L into the bore 121K and seat the bolster 101L against a tapered surface of the driving mechanism 125K. In some embodiments, a meltable spacer 108L may flow into a gap between a stem 113L and the insert 109L.



FIG. 9
c discloses an embodiment of the bolster 101L of FIG. 9b being removed from the bore 121K. A puller 5002 comprises a first portion 5000 that braces against the driving mechanism 125K and a second portion 5001 that attaches to the bolster 101L and pulls on the bolster 101L. This movement breaks the stem 113L′ and allows the bolster 101L to be recycled while leaving an anchor 111L in place. The stem 113L′ and insert 109L may then be removed more easily. In other embodiments, another bolster (not shown) may be inserted into the bore 121K being tensioned off of another anchor (not shown) which is located above the previous anchor 111L.



FIG. 10 shows another cross-sectional diagram of an embodiment of a tool 100M inserted in the bore 121K of the driving mechanism 125K of FIG. 9a. A stem 113M may comprise a radial protrusion 1000 adapted to interlock with a recess 1001 disposed in an anchor 111K. The interlocking radial protrusion 1000 and recess 1001 secure the anchor 111K to the stem 113K.



FIG. 11 shows another cross-sectional diagram of an embodiment of the tool 100K of FIG. 9 inserted in the bore 121K of the driving mechanism 125K. Heat is applied with a torch 1100 to an impact tip 102K, and/or a bolster 101K to melt the meltable spacer 108K (shown in FIG. 9a). In some embodiments, the heat may be applied through a direct flame, radiant heat, furnace, heating coil, or combinations thereof.



FIG. 12 shows another cross-sectional diagram of an embodiment of a degradation assembly 100N having a tool 101N. In this embodiment, the degradation assembly 100N is attached to a drum 1200 by way of drive mechanism 125N.



FIG. 13 shows another cross-sectional diagram of an embodiment of a degradation assembly 100P. In this embodiment, the degradation assembly 100P is attached to a cone crusher 1300.



FIG. 14 shows another cross-sectional diagram of an embodiment of a degradation assembly 100Q. In this embodiment, the degradation assembly 100Q is attached to a percussion bit 1400.



FIG. 15 shows another cross-sectional diagram of an embodiment of a degradation assembly 100R. In this embodiment, the degradation assembly 100R is attached to a shear bit 1500.



FIG. 15
a shows another cross-sectional diagram of an embodiment of a degradation assembly 100S which an assembly protruding beyond the face 5004 of the drill bit.



FIG. 16 shows another cross-sectional diagram of an embodiment of a degradation assembly 100T. In this embodiment, the degradation assembly 100T is attached to a roller cone 1600. The roller cone 1600 is shown degrading a formation 1610.



FIG. 16
a discloses another embodiment of a roller cone. The gauge insert 1650 in this embodiment is a flat and adapted to reduce wear on the gauge row of the roller cone. Although not shown, in some embodiments, the inserts may be enhanced with a harder material such as polycrystalline diamond, cubic boron nitride, hard facing, carbide, or combinations thereof.



FIG. 17 is an embodiment of a method 900 for assembling a tool, such as the tool 100A of FIG. 1. Referring to FIG. 1, the method 900 may include the steps of providing 901 the tool 100A comprising an impact tip 102A brazed to a carbide bolster 101A with a stem 113A protruding from the bolster 101A being adapted to be retained within a bore 121A connected to a driving mechanism 125A; securing 902 the stem 113A within the bore by inserting the stem 113A into the bore 121A such that a locking fixture disposed around the stem 113A permanently locks against a wall of the bore 122A.



FIG. 18 is an embodiment of a method 1000 for tightening a tool such as the tool 100 of FIG. 1. Referring to FIG. 1, the method 1000 may include the steps of providing 1001a tightening assembly 140A adapted to apply tension between a structural element 101A and an anchor 111A and at least one meltable spacer 108A adapted to separate the structural element 101A and the anchor 111A; anchoring 1002 the tightening assembly 140A into a bore 121A by pushing the assembly 100A into the bore 121A such that the anchor 111A firmly engages a wall of the bore 122A; tightening 1003 the assembly 100A by heating the at least one meltable spacer 108A such that the at least one meltable spacer 108A melts, allowing the tightening assembly 140A to pull the structural element 101A closer to the anchor 111A.



FIG. 19 discloses a structural element 2000 secured within a bore similar to how the stem is secured within the bore in FIG. 1. The bore 121U may be formed in a driving mechanism, a frame, a wall, a floor, a support, a vehicle, a bolster, table or combinations thereof. The structural element 2000 may be a component of the overall structure which is tightly secured to the bore 121U.



FIG. 20 discloses the fastening mechanism 2600A connecting a chair leg 2500 to a chair seat 2501.



FIG. 21
a discloses two boards 5006 being held together with a fastening assembly 2600B through a blind hole 5005.



FIG. 21
b discloses a fastening mechanism 2600C connecting a cabinet 2601 to a wall 2602. The fastening mechanism 2600A may be used to connect any structure to another, especially where the connection involves a blind hole.



FIG. 22 discloses another embodiment of a fastening mechanism 2600D. In this embodiment, the anchor comprises at least one slot 5007, which provides a radial spring force adapted to hold the anchor against the wall of the bore. In this embodiment, the springs are between the anchor and an insert.


Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.

Claims
  • 1. A tool for use in a degradation assembly, said degradation assembly having a bore for receiving said tool, said tool comprising: a bolster having a base end and a working end;an impact tip brazed to said working end;a stem coupled to said bolster, said stem protruding from said base end;an anchor disposed about said stem, said anchor being adapted to lock within said bore;means for mechanically coupling said anchor with said stem; anda tensioning mechanism adapted to provide tension to said stem between said bolster and said anchor.
  • 2. The tool of claim 1, wherein said bolster has a cavity formed in said base end and wherein said cavity is interlocked with said stem.
  • 3. The tool of claim 2, wherein said cavity has an internal threadform and wherein said stem has an external threadform, wherein said stem is interlocked with said cavity through an interaction of said internal thread form and said external threadform.
  • 4. The tool of claim 1, wherein said means for mechanically coupling said anchor with said stem is a bore within said anchor, said bore being sized and shaped to receive said stem in a press fit.
  • 5. The tool of claim 1, wherein said stem and said bolster are formed of the same material.
  • 6. The tool of claim 2, further comprising a snap ring disposed within said cavity, wherein said stem is interlocked with said cavity by said snap ring.
  • 7. The tool of claim 1, wherein said anchor is a ring disposed around said stem.
  • 8. The tool of claim 7, wherein said ring includes at least one barb on its outer surface, said at least one barb adapted to engage said bore.
  • 9. The tool of claim 1, wherein said anchor includes a threadform.
  • 10. The tool of claim 1, wherein said tensioning mechanism is a shrunk material.
  • 11. The tool of claim 1, wherein said tensioning mechanism includes at least one threadform and a nut.
  • 12. The tool of claim 1, further comprising a meltable spacer between said bolster and said anchor, said meltable spacer being formed of a material selected from a group consisting of lead, cadmium, tin, bismuth, wax, and plastic.
  • 13. The tool of claim 6 wherein said stem includes a portion having an enlarged diameter, said cavity includes a portion with a restricted diameter, and said snap ring has an outer diameter greater than said restricted diameter and an inside diameter less than said enlarged diameter, wherein said snap ring is disposed about said stem within said cavity.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 12/051,738 filed on Mar. 19, 2008 and now U.S. Pat. No. 7,669,674, which is a continuation of U.S. patent application Ser. No. 12/051,689 filed on Mar. 19, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 12/051,586 filed on Mar. 19, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 12/021,051 filed on Jan. 28, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 12/021,019 filed on Jan. 28, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/971,965 filed on Jan. 10, 2008 and now U.S. Pat. No. 7,648,210 which is a continuation of U.S. patent application Ser. No. 11/947,644 filed on Nov. 29, 2007, which is a continuation-in-part of U.S. patent application Ser. No. 11/844,586 filed on Aug. 24, 2007 and now U.S. Pat. No. 7,600,823. U.S. patent application Ser. No. 11/844,586 is a continuation-in-part of U.S. patent application Ser. No. 11/829,761 filed on Jul. 27, 2007 and now U.S. Pat. No. 7,722,127. U.S. patent application Ser. No. 11/829,761 is a continuation-in-part of U.S. patent application Ser. No. 11/773,271 filed on Jul. 3, 2007. U.S. patent application Ser. No. 11/773,271 is a continuation-in-part of U.S. patent application Ser. No. 11/766,903 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,903 is a continuation of U.S. patent application Ser. No. 11/766,865 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,865 is a continuation-in-part of U.S. patent application Ser. No. 11/742,304 filed on Apr. 30, 2007 and now U.S. Pat. No. 7,475,948. U.S. patent application Ser. No. 11/742,304 is a continuation of U.S. patent application Ser. No. 11/742,261 filed on Apr. 30, 2007 and now U.S. Pat. No. 7,469,971. U.S. patent application Ser. No. 11/742,261 is a continuation-in-part of U.S. patent application Ser. No. 11/464,008 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,338,135. U.S. patent application Ser. No. 11/464,008 is a continuation-in-part of U.S. patent application Ser. No. 11/463,998 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,384,105. U.S. patent application Ser. No. 11/463,998 is a continuation-in-part of U.S. patent application Ser. No. 11/463,990 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,320,505. U.S. patent application Ser. No. 11/463,990 is a continuation-in-part of U.S. patent application Ser. No. 11/463,975 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,445,294. U.S. patent application Ser. No. 11/463,975 is a continuation-in-part of U.S. patent application Ser. No. 11/463,962 filed Aug. 11, 2006 and now U.S. Pat. No. 7,413,256. U.S. patent application Ser. No. 11/463,962 is a continuation-in-part of U.S. patent application Ser. No. 11/463,953 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,464,993. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695,672 filed on Apr. 30, 2007 and now U.S. Pat. No. 7,396,086. U.S. patent application Ser. No. 11/695,672 is a continuation-in-part of U.S. patent application Ser. No. 11/686,831 filed on Mar. 15, 2007 and now U.S. Pat. No. 7,568,770. All of these applications are herein incorporated by reference for all that they contain.

US Referenced Citations (171)
Number Name Date Kind
2004315 Fean Jun 1935 A
2124438 Struk Jul 1938 A
3254392 Novkov Jun 1966 A
3342531 Krekeler Sep 1967 A
3342532 Krekeler Sep 1967 A
3397012 Krekeler Aug 1968 A
3512838 Kniff May 1970 A
3519309 Engle et al. Jul 1970 A
3650565 Kniff Mar 1972 A
3655244 Swisher Apr 1972 A
3746396 Radd Jul 1973 A
3807804 Kniff Apr 1974 A
3830321 McKenry Aug 1974 A
3932952 Helton Jan 1976 A
3942838 Bailey et al. Mar 1976 A
3945681 White Mar 1976 A
3957307 Varda May 1976 A
4005914 Newman Feb 1977 A
4006936 Crabiel Feb 1977 A
4098362 Bonnice Jul 1978 A
4109737 Bovenkerk Aug 1978 A
RE29900 Kniff Feb 1979 E
4149753 Stoltz et al. Apr 1979 A
4156329 Daniels May 1979 A
4199035 Thompson Apr 1980 A
4201421 Den Besten May 1980 A
4247150 Wrulich et al. Jan 1981 A
4268089 Spence et al. May 1981 A
4277106 Sahley Jul 1981 A
4397362 Dice et al. Aug 1983 A
4439250 Acharya Mar 1984 A
4465221 Acharya Aug 1984 A
4484644 Cook Nov 1984 A
4489986 Dziak Dec 1984 A
4497520 Ojanen Feb 1985 A
4537448 Ketterer Aug 1985 A
4583786 Thorpe et al. Apr 1986 A
4627665 Ewing et al. Dec 1986 A
4660890 Mills Apr 1987 A
4678237 Collin Jul 1987 A
4682987 Brady Jul 1987 A
4684176 Den Besten et al. Aug 1987 A
4688856 Elfgen Aug 1987 A
4694918 Hall Sep 1987 A
4702525 Sollami et al. Oct 1987 A
4725098 Beach Feb 1988 A
4728153 Ojanen et al. Mar 1988 A
4729603 Elfgen Mar 1988 A
4765686 Adams Aug 1988 A
4765687 Parrott Aug 1988 A
4776862 Wiand Oct 1988 A
4804231 Buljan et al. Feb 1989 A
4811801 Salesky et al. Mar 1989 A
4836614 Ojanen Jun 1989 A
4850649 Beach et al. Jul 1989 A
4880154 Tank Nov 1989 A
4893875 Lonn et al. Jan 1990 A
4921310 Hedlund May 1990 A
D308683 Meyers Jun 1990 S
4932723 Mills Jun 1990 A
4940288 Stiffler Jul 1990 A
4944559 Sionnet Jul 1990 A
4951762 Lundell Aug 1990 A
4956238 Griffin Sep 1990 A
5007685 Beach et al. Apr 1991 A
5011515 Frushour Apr 1991 A
5018793 Den Besten May 1991 A
5098167 Latham Mar 1992 A
5112165 Hedlund May 1992 A
5119714 Scott et al. Jun 1992 A
5141289 Stiffier Aug 1992 A
5154245 Waldenstrom et al. Oct 1992 A
5186892 Pope Feb 1993 A
5251964 Ojanen Oct 1993 A
5261499 Grubb Nov 1993 A
5303984 Ojanen Apr 1994 A
5332348 Lemelson Jul 1994 A
5333938 Gale Aug 1994 A
5374111 Den Besten et al. Dec 1994 A
5415462 Massa May 1995 A
5417475 Graham May 1995 A
5447208 Lund Sep 1995 A
5503463 Ritchey Apr 1996 A
5535839 Brady Jul 1996 A
5542993 Rabinkin Aug 1996 A
5653300 Lund Aug 1997 A
5662720 O'Tighearnaigh Sep 1997 A
5725283 Montgomery, Jr. Mar 1998 A
5738698 Kapoor Apr 1998 A
5823632 Burkett Oct 1998 A
5837071 Andersson Nov 1998 A
5842747 Winchester Dec 1998 A
5845547 Sollami Dec 1998 A
5875862 Jurewicz Mar 1999 A
5884979 Latham Mar 1999 A
5890552 Scott et al. Apr 1999 A
5934542 Nakamura Aug 1999 A
5935718 Demo Aug 1999 A
5944129 Jensen Aug 1999 A
5967250 Lund Oct 1999 A
5992405 Sollami Nov 1999 A
6000483 Jurewicz et al. Dec 1999 A
6006846 Tibbitts Dec 1999 A
6019434 Emmerich Feb 2000 A
6044920 Massa Apr 2000 A
6051079 Andersson Apr 2000 A
6056911 Griffin May 2000 A
6065552 Scott May 2000 A
6113195 Mercier Sep 2000 A
6170917 Heinrich Jan 2001 B1
6193770 Sung Feb 2001 B1
6196636 Mills Mar 2001 B1
6196910 Johnson Mar 2001 B1
6199956 Kammerer Mar 2001 B1
6216805 Lays Apr 2001 B1
6270165 Peay Aug 2001 B1
6341823 Sollami Jan 2002 B1
6354771 Bauschulte Mar 2002 B1
6357832 Sollami Mar 2002 B1
6364420 Sollami Apr 2002 B1
6371567 Sollami Apr 2002 B1
6375272 Ojanen Apr 2002 B1
6419278 Cunningham Jul 2002 B1
6460637 Siracki et al. Oct 2002 B1
6478383 Ojanen Nov 2002 B1
6481803 Ritchey Nov 2002 B2
6499547 Scott Dec 2002 B2
6508516 Kammerer Jan 2003 B1
6517902 Drake Feb 2003 B2
RE38151 Penkunas et al. Jun 2003 E
6585326 Sollami Jul 2003 B2
6585327 Sollami Jul 2003 B2
6601662 Matthias et al. Aug 2003 B2
6644755 Kammerer Nov 2003 B1
6651758 Xiang et al. Nov 2003 B2
6685273 Sollami Feb 2004 B1
6692083 Latham Feb 2004 B2
6709065 Peay Mar 2004 B2
6719074 Tsuda Apr 2004 B2
6732914 Cadden May 2004 B2
6733087 Hall et al. May 2004 B2
6739327 Sollami May 2004 B2
6758530 Sollami Jul 2004 B2
6786557 Montgomery, Jr. Sep 2004 B2
6824225 Stiffler Nov 2004 B2
6851758 Beach Feb 2005 B2
6854810 Montgomery, Jr. Feb 2005 B2
6861137 Griffin Mar 2005 B2
6863352 Sollami Mar 2005 B2
6880744 Noro Apr 2005 B2
6889890 Yamazaki May 2005 B2
6966611 Sollami Nov 2005 B1
6994404 Sollami Feb 2006 B1
7094473 Takayama Aug 2006 B2
7204560 Mercier Apr 2007 B2
7369743 Noro May 2008 B2
7380888 Ojanen Jun 2008 B2
7387345 Hall et al. Jun 2008 B2
7390066 Hall et al. Jun 2008 B2
7413258 Hall et al. Aug 2008 B2
20020175555 Mercier Nov 2002 A1
20030140350 Watkins et al. Jul 2003 A1
20030209366 McAlvain Nov 2003 A1
20030230926 Mondy Dec 2003 A1
20030234280 Cadden Dec 2003 A1
20040026983 McAlvain Feb 2004 A1
20040065484 McAlvain Apr 2004 A1
20050159840 Lin et al. Jul 2005 A1
20050173966 Mouthaan Aug 2005 A1
20060125306 Sollami Jun 2006 A1
20060237236 Sreshta Oct 2006 A1
Foreign Referenced Citations (13)
Number Date Country
3431495 Mar 1986 DE
3500261 Jul 1986 DE
3818213 Nov 1989 DE
4039217 Jun 1992 DE
19821147 Nov 1999 DE
10163717 May 2003 DE
0295151 Jun 1988 EP
0412287 Jul 1990 EP
1186744 Mar 2002 EP
1574309 Sep 2005 EP
2004315 Mar 1979 GB
2037223 Nov 1979 GB
5280273 Oct 1993 JP
Related Publications (1)
Number Date Country
20080197691 A1 Aug 2008 US
Continuations (3)
Number Date Country
Parent 12051689 Mar 2008 US
Child 12051738 US
Parent 11947644 Nov 2007 US
Child 11971965 US
Parent 11766865 Jun 2007 US
Child 11766903 US
Continuation in Parts (20)
Number Date Country
Parent 12051738 Mar 2008 US
Child 12112743 US
Parent 12051586 Mar 2008 US
Child 12051689 US
Parent 12021051 Jan 2008 US
Child 12051586 US
Parent 12021019 Jan 2008 US
Child 12021051 US
Parent 11971965 Jan 2008 US
Child 12021019 US
Parent 11844586 Aug 2007 US
Child 11947644 US
Parent 11829761 Jul 2007 US
Child 11844586 US
Parent 11773271 Jul 2007 US
Child 11829761 US
Parent 11766903 Jun 2007 US
Child 11773271 US
Parent 11742304 Apr 2007 US
Child 11766865 US
Parent 11742261 Apr 2007 US
Child 11742304 US
Parent 11464008 Aug 2006 US
Child 11742261 US
Parent 11463998 Aug 2006 US
Child 11464008 US
Parent 11463990 Aug 2006 US
Child 11463998 US
Parent 11463975 Aug 2006 US
Child 11463990 US
Parent 11463962 Aug 2006 US
Child 11463975 US
Parent 11463953 Aug 2006 US
Child 11463962 US
Parent 12112743 US
Child 11463962 US
Parent 11695672 Apr 2007 US
Child 12112743 US
Parent 11686831 Mar 2007 US
Child 11695672 US