The present invention relates to a catheter guidewire and a method of retaining a catheter guidewire in a guidewire tube.
Catheter guidewires are used to facilitate introduction of a catheter into a patient. In a typical catheter installation, an insertion site is located, and an incision is made by the inserting physician at the insertion site. A syringe is inserted into the patient through the incision to locate the blood vessel, such as a vein, to be catheterized. A flexible metal guidewire is typically inserted through the syringe and into the blood vessel to further enable the inserting physician to insert the catheter into the patient. The guidewire typically has a “J-shaped” distal end, so as not to tear into the patient's blood vessel during insertion. The guidewire is quite flexible so that it can bend with the contours of the blood vessel, but the flexibility of the guidewire, along with the “J-shape”, can make it difficult for the physician to insert the distal end of the guidewire into the syringe. Guidewire straighteners are used to straighten out the “J-shape” and to assist the physician in inserting the distal tip of the guidewire into the syringe for advancement into the blood vessel.
A guidewire is typically stored in a coiled plastic tube, both for ease of physician use and for sterility. However, during shipping, the guidewire can work its way out of the tube, making the guidewire more difficult to handle and potentially compromising the sterility of the guidewire.
A known guidewire straightener is disclosed in U.S. Pat. No. 5,125,905. This guidewire straightener utilizes a cantilevered extension at the proximal end of the straightener to grasp a guidewire and retain the guidewire in its tube. It is believed by the inventors that the prior art design does not provide sufficient gripping between the straightener and the guidewire. It is also believed by the inventors that the prior art design may be prone to breakage from fatigue.
It would be beneficial to provide a guidewire straightener that provides increased gripping between the straightener and the guidewire so that the guidewire does not work its way out of the tube, as well as a guidewire straightener that is less prone to breakage from fatigue.
Briefly, the present invention provides a guidewire straightener assembly. The assembly comprises a guidewire tube including a tubular passage having a first diameter and a distal end including a collar having a second diameter, larger than the first diameter. The assembly also includes a guidewire straightener having a distal end, a proximal end having an exterior surface with a diameter sized to fit within the guidewire tube, and a longitudinal passageway sized to accept the guidewire, the passageway extending between the proximal end and the distal end. The assembly further includes a guidewire having a third diameter, smaller than the first diameter, wherein the guidewire is disposed within the tubular passage and the longitudinal passageway. The proximal end of the guidewire straightener further includes at least one finger extending therefrom such that, when the guidewire straightener is disposed within the guidewire tube in a first position in the tubular passage, the at least one finger is biased by the tubular passage into frictional engagement with the guidewire. When the guidewire straightener is disposed within the guidewire tube in a second position in the collar, the at least one finger is disposed away from frictional engagement with the guidewire.
The present invention also provides a catheter guidewire tube comprising a body having a distal end, a proximal end, and a tube passageway extending between the distal end and the proximal end, wherein the tube has a first diameter. The assembly also includes a collar fixedly connected to the distal end, wherein the collar comprises a longitudinal passage having a second diameter, larger than the first diameter, and wherein the collar further comprises a distal opening having a third diameter, smaller than the second diameter.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate the presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention. In the drawings:
In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. The words “proximal” and “distal” refer to directions away from and closer to, respectively, the insertion tip of the guidewire in the guidewire assembly according to the present invention. The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import. The following describes a preferred embodiment of the invention. However, it should be understood based on this disclosure, that the invention is not limited by the preferred embodiment described herein.
A catheter guidewire straightener 10 according to an embodiment of the present invention is shown in
Referring back to
Each biasing assembly 20, 22, extends longitudinally along the proximal end 14 of the straightener 10, with channels 28, 30 disposed on either side of the biasing assemblies 20, 22. The channels 28, 30 allow the lugs 24 and the biasing members 26 to deflect toward the straightener passageway 18 when force is applied on the lugs 24 toward the straightener passageway 18. The biasing members 26 resist such force and bias the lugs 24 away from the straightener passageway 18.
Preferably, the guidewire straightener 10 is constructed from a polymer, such as polypropylene, although those skilled in the art will recognize that other, suitable materials may be used.
A guidewire assembly 50 incorporating the guidewire straightener 10 of the present invention is shown in
The guidewire tube 56 is preferably coiled as shown for the ease of the user. The guidewire 52 is typically approximately 24 inches (61 cm) long and, by coiling the guidewire 52 along with the guidewire tube 56, the user can more readily handle the guidewire 52 and advance the guidewire 52 into the patient.
The guidewire tube 56 includes an open distal end 58, through which the guidewire 52 is advanced, the distal end 58 having a collar with an inner diameter larger than tube passageway diameter “d”. The distal end 58 of the guidewire tube 56 is inserted over the proximal end 14 of the guidewire straightener 10, so that the distal end 58 of the guidewire tube 56 and the proximal end of the guidewire straightener 10 engage each other with a press fit.
The diameter “D” of the lugs 24 is larger than the diameter “d” of the tube passageway 54 so that, as is seen in
Referring now to the guidewire insertion procedure of
The guidewire 52 is next inserted into the vein 116 through the needle 114. To insert the guidewire 52 into the vein 116, the proximal end 14 of the straightener 10 is removed from the tube 56. The biasing members 26 bias away from the straightener passageway 18, releasing the guidewire 52 from between the biasing members 26. The distal end 53 (see
Using thumb 118 and forefinger 120 on the guidewire 52 between the straightener 10 and the tube 56, the physician advances the guidewire 52 through the needle 114 and into the vein 116. Once the guidewire 52 is in place, the tube 56 and the straightener 10 are removed by advancing each of the tube 56 and the straightener 10 along the guidewire 52 away from the distal end 53 of the guidewire 52 and then off the proximal end of the guidewire 52. Next, the needle 114 is removed by advancing the needle 114 along the guidewire 52 away from the distal end 53 of the guidewire 52 and then off the proximal end of the guidewire 52. A dilator (not shown) and a tearable sheath (not shown) are introduced over the guidewire 52 and partially into the vein 116. The insertion site 112 is now ready to accept a catheter assembly (not shown). At least one catheter lumen is disposed over the proximal end of the guidewire 52 and advanced toward the distal end 53 of the guidewire 52 and into the vein.
An alternate embodiment of a guidewire straightener assembly 200 is shown in
Referring to
The biasing member 216 includes a plurality of fingers 220 that extend in a proximal direction. While eight fingers 220 are shown in
The guidewire advancer 210 also includes a generally elongated portion 230 that extends between the distal end 212 and the proximal end 214. The generally elongated portion 230 extends below the guidewire 202 and is open so that the guidewire 202 is accessible. A generally convex raised portion 232 extends from the generally elongated portion 230 and provides a thumb rest for advancing the guidewire 202 distally through the advancer 210.
The guidewire tube 250 includes a distal end 252 that engages the straightener 210. The guidewire tube 250 has an inner diameter D2 that is sized to allow the proximal end 214 of the straightener 210 to be inserted into the guidewire tube 250. The guidewire tube 250 also has an outer diameter D3. A cylindrical collar 260 is fixedly connected to the distal end 252 of the tube 250.
The collar 260 is preferably constructed from a polymer, such as polypropylene, or some other suitable material. Those skilled in the art will recognize that the collar 260 may be a separate piece from the tube 250, or the collar 260 may be integrally formed with the tube 250. If the collar 260 is a separate piece from the tube 250, the collar 260 is fixedly connected to the tube 250 by known methods, such as by an adhesive, by ultrasonic welding, or other means known in the art for connecting the collar 260 to the tube 250.
The collar 260 includes a proximal collar end 262 that fits over the exterior of the distal end 252 of the tube 250, seen best in
The collar 260 also includes a tapered portion 266 that tapers from the proximal collar end 262, outward to the distal collar end 264. Preferably, the tapered portion 266 begins at the distal end 252 of the tube 250, although those skilled in the art will recognize that the tapered portion 266 may begin either proximally or distally of the distal end 252 of the tube 250.
The assembly 200 is provided with the straightener 210 fully inserted into the tube 250, as shown in
After the guidewire 202 is inserted a desired distance into the patient, the guidewire straightener assembly 200 is removed from the guidewire 202 by sliding the assembly 200 proximally along the guidewire 202 until the guidewire 202 exits the assembly 200. The assembly 200 is discarded and the catheter insertion procedure continues according to steps and processes well known in the art.
While the guidewire assembly 200 with the collar 260 fixed to the distal end 252 of the tube 250 is preferred, those skilled in the art will recognize that a guidewire assembly 300, shown in
In use, the straightener 210 is advanced distally with respect to the tube 250 until the proximal end 214 of the straightener 210 is removed from the tube, as show in
After the guidewire 202 is inserted a desired distance into the patient, the guidewire straightener assembly 300 is removed from the guidewire 202 by sliding the assembly 300 proximally along the guidewire 202 until the guidewire 202 exits the assembly 200. The assembly 300 is discarded and the catheter insertion procedure continues according to steps and processes well known in the art.
Yet another embodiment of the present invention is shown in
The straightener 410 includes a distal end 412 that is generally conically or frusto-conically shaped. The distal end 412 is shaped to facilitate insertion of the distal end 412 into an introducer device, such as an introducer needle (not shown). The straightener 410 also includes a proximal end 414 that includes a biasing member 416. A longitudinal axis 417 extends through the straightener 410. A straightener passageway 418 extends along the longitudinal axis 417 through the straightener 410 between the distal end 412 and the proximal end 414. The passageway 418 has a diameter D1 that is sized to allow the guidewire 402 to be able to be translated therethrough with a minimal force during insertion of the guidewire 402 into the patient.
The biasing member 416 includes a plurality of fingers 420 that extend in a proximal direction. Similar to the biasing member 216 described above and shown in
The straightener 410 includes an annular groove 430 disposed between the distal end 412 and the proximal end 414. The groove 430 is sized and shaped to allow the distal end of the swivel lock assembly 460 to be rotatably attached to the straightener 410, as will be described more in detail later herein.
The guidewire tube 450 includes a distal end 452 that engages the straightener 410. The guidewire tube 450 has an inner diameter D2 that is sized to allow the proximal end 414 of the straightener 410 to be inserted into the guidewire tube 450. The guidewire tube 450 also has an outer diameter D3. The swivel lock assembly 460 includes a cylindrical collar 462 that is fixedly connected to the distal end 452 of the tube 450 and a swivel lock 470 that is rotatably connected to the straightener 410.
The collar 462 is preferably constructed from a polymer, such as polypropylene, or some other suitable material. Those skilled in the art will recognize that the collar 462 may be a separate piece from the tube 450, or the collar 462 may be integrally formed with the tube 450. If the collar is a separate piece from the tube 450, the collar 462 is fixedly connected to the tube 450 by known methods, such as by an adhesive, by ultrasonic welding, or other means known in the art for connecting the collar 462 to the tube 450. Preferably, the collar 462 includes a stop 461 that limits the distance that the collar 462 may be advanced over the distal end 452 of the tube 450.
The collar 462 includes a distal collar end 464 that includes male threads 466. The swivel lock 470 includes female threads 472 that threadingly engage with the male threads 466. A distal end of the swivel lock 470 includes a lip 474 that rotates within the groove 430 in the straightener 410 to allow the swivel lock 470 to rotate about the longitudinal axis 417 with respect to the straightener 410.
The assembly 400 is provided with the straightener 410 fully inserted into the tube 450 and the swivel lock 470 connected to the collar 462, as shown in
After the guidewire 402 is inserted a desired distance into the patient, the guidewire straightener assembly 400 is removed from the guidewire 402 by sliding the assembly 400 proximally along the guidewire 402 until the guidewire 402 exits the assembly 400. The assembly 400 is discarded and the catheter insertion procedure continues according to steps and processes well known in the art.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
The present application is a Divisional of U.S. patent application Ser. No. 10/960,737, filed on Oct. 7, 2004 now U.S. Pat. No. 7,455,660, in turn a Continuation-in-Part of U.S. patent application Ser. No. 10/366,247, filed on Feb. 13, 2003 now abandoned, which claims priority from U.S. Provisional Patent Application Ser. No. 60/434,262, filed on Dec. 18, 2002.
Number | Name | Date | Kind |
---|---|---|---|
4076285 | Martinez | Feb 1978 | A |
4205675 | Vaillancourt | Jun 1980 | A |
4349023 | Gross | Sep 1982 | A |
4799496 | Hargreaves et al. | Jan 1989 | A |
4940062 | Hampton et al. | Jul 1990 | A |
5002535 | Gross | Mar 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5117839 | Dance | Jun 1992 | A |
5125905 | Wright et al. | Jun 1992 | A |
5191888 | Palmer et al. | Mar 1993 | A |
5217435 | Kring | Jun 1993 | A |
5263938 | Orr et al. | Nov 1993 | A |
5267955 | Hanson | Dec 1993 | A |
5273042 | Lynch et al. | Dec 1993 | A |
5279573 | Klosterman | Jan 1994 | A |
5282478 | Fleischhaker, Jr. et al. | Feb 1994 | A |
5282479 | Havran | Feb 1994 | A |
5290247 | Crittenden | Mar 1994 | A |
5322513 | Walker | Jun 1994 | A |
5358495 | Lynn | Oct 1994 | A |
5360403 | Mische | Nov 1994 | A |
5443081 | Klosterman | Aug 1995 | A |
5546958 | Thorud et al. | Aug 1996 | A |
5634475 | Wolvek | Jun 1997 | A |
5634897 | Dance et al. | Jun 1997 | A |
5700251 | Miyauchi et al. | Dec 1997 | A |
5836306 | Duane et al. | Nov 1998 | A |
5843002 | Pecor et al. | Dec 1998 | A |
5851189 | Forber | Dec 1998 | A |
5978699 | Fehse et al. | Nov 1999 | A |
6030349 | Wilson et al. | Feb 2000 | A |
6039722 | Greive | Mar 2000 | A |
6059484 | Greive | May 2000 | A |
6139540 | Rost et al. | Oct 2000 | A |
6193706 | Thorud et al. | Feb 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6551281 | Raulerson et al. | Apr 2003 | B1 |
6641563 | Vitullo et al. | Nov 2003 | B1 |
7455660 | Schweikert et al. | Nov 2008 | B2 |
20040122416 | Schweikert et al. | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20090118706 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60434262 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10960737 | Oct 2004 | US |
Child | 12256182 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10366247 | Feb 2003 | US |
Child | 10960737 | US |