The present technology is directed generally to locking line capture devices for unmanned aircraft, and associated systems and methods.
Unmanned aircraft or aerial vehicles (UAVs) provide enhanced and economical access to areas where manned flight operations are unacceptably costly and/or dangerous. For example, UAVs outfitted with remotely controlled cameras can perform a wide variety of surveillance missions, including spotting schools of fish for the fisheries industry, monitoring weather conditions, providing border patrols for national governments, and providing military surveillance before, during and/or after military operations.
Existing UAV systems suffer from a variety of drawbacks. For example, existing UAVs systems (which can include the aircraft itself along with launch devices, recovery devices, and storage devices) typically require substantial space. Accordingly, these systems can be difficult to install and operate in cramped quarters, such as the deck of a small fishing boat, land vehicle, or other craft. Another drawback with some existing UAVs is that, due to small size and low weight, they can be subjected to higher acceleration and deceleration forces than larger, manned aerial vehicles and can accordingly be prone to damage, particularly when manually handled during recovery and launch operations in hostile environments, such as a heaving ship deck. Yet another drawback with some existing UAV systems is that they may not be suitable for recovering aircraft in tight quarters, without causing damage to either the aircraft or the platform from which the aircraft is launched and/or recovered. Accordingly, there remains a need in the industry for improved methods for operating UAVs in confined environments.
The present technology is directed generally to unmanned aerial vehicles (UAVs) having locking capture devices, and associated systems and methods. In particular embodiments, the capture devices are mounted on the wing tips of the UAV and are used to “snag” the UAV on a recovery line, thus eliminating the need for a runway, net, and/or other landing arrangement. A representative capture device includes a slot and a retainer that can prevent the recovery line from disengaging from the slot once the UAV has been captured. A locking device further secures the retainer, and can be released by the operator after the UAV has been captured in preparation for detaching the UAV from the recovery line.
Several details describing structures or processes that are well-known and often associated with UAVs and corresponding systems and subsystems, but that may unnecessarily obscure some significant aspects of the disclosed technology, are not set forth in the following description for purposes of clarity. Moreover, although the following disclosure sets forth several embodiments of different aspects of the technology, some other embodiments can have different configurations and/or different components than those described in this section. Accordingly, the technology may have other embodiments with additional elements and/or without several of the elements described below with reference to
Referring now to
In one aspect of this embodiment, the end of the extendable boom 131 can be positioned at an elevation A above the local surface (e.g., the water shown in
In any of the foregoing embodiments, the UAV 110 is captured when it flies into the recovery line 133. Once captured, the UAV 110 is suspended from the recovery line, e.g., by one of the wings 113. Further details of apparatuses and methods for capturing the UAV 110 are described below with reference to
In operation, the line capture device 140 engages the recovery line 133 to releasably and securely attach the UAV 110 to the recovery line 133. Accordingly, the device 140 can include a line slot 143 positioned in the body 141, and retainer 142 movably attached to the body 141. As the UAV 110 flies toward the recovery line 133 (as indicated by arrow C), the recovery line 133 strikes the wing leading edge 114 and causes the UAV 110 to yaw toward the recovery line 133, which then slides outboard along the leading edge 114 toward the line capture device 140 (as indicated by arrow B). The recovery line 133 then passes into the line slot 143 and is retained in the line slot 143 by the retainer 142, as described in greater detail below. If the UAV 110 is not properly aligned with the recovery line 133 during its approach, the recovery line 133 may strike the line capture device 140 instead of the leading edge 114. In one embodiment, the body 141 includes a guide portion 146 having a body leading edge 155 that is swept aft so as to deflect the recovery line 133 away from the UAV 110. This can prevent the recovery line 133 from fouling and can reduce the yawing moment imparted to the UAV 110, allowing the UAV 110 to recover from the missed capture and return for another capture attempt.
As described above, the recovery line 133 travels outboard along the wing leading edge 114 toward the line capture device 140. As the recovery line 133 enters the line slot 143, it forces the retainer 142 to move from the closed position shown in
The locking device 160 can include a locking element 165 that slides axially within a lock groove 166, as indicated by arrow F. The locking element 165 can include a protrusion 164 that is positioned underneath the flat portion 147 of the retainer 142 when the locking device 160 is not engaged (e.g., when the locking device 160 is in an unlocked position). When the locking device 160 is not engaged, the retainer 142 is free rotate freely as indicated by arrow E, while the flat portion 147 rotates over the protrusion 164 below. The protrusion 164 pops into the notch 149 when the locking device 160 is engaged, as is described further below with reference to
The locking device 160 can further include a line strike device 161 positioned toward the closed end 151 of the line slot 143. The line strike device 161 is positioned to pull the locking element 165 from left to right when the recovery line 133 strikes the line strike device 161. Accordingly, the line strike device 161 can include a line strike flat portion 162 that extends over and across the capture slot 143, and can move between an unstruck position and a struck position under the force of the recovery line 133.
The release device 180 is coupled to the locking device 160, e.g., via the line strike device 161 and/or the locking element 165. The release device 180 can include a release device spring 181 that biases the release device 180 toward an engaged position shown in
In
As shown in
10D are partially schematic, plan view illustrations of a line capture device 1040 configured in accordance with still another embodiment of the present technology. In one aspect of this embodiment, the line capture device 1040 includes a body 1041 having a line capture slot 1043, and a retainer 1042 pivotably attached to the body 1041 so as to pivot about a pivot axis 1053 that extends inwardly and outwardly out of the plane of
In operation, the line capture device is initially set to the initial or starting position shown in
Devices in accordance with embodiments of the technology described above with reference to
One feature of at least some of the embodiments described above with reference to
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. For example, several of the components described above and illustrated in
Certain aspects of the technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, features of the release device 180 described above with reference to
This application arises from a division of U.S. patent application Ser. No. 15/194,492, filed Jun. 27, 2016. The entirety of U.S. patent application Ser. No. 15/194,492 is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
965881 | Draper | Aug 1910 | A |
968339 | Geraldson | Aug 1910 | A |
975953 | Hourwich | Nov 1910 | A |
1144505 | Steffan | Jun 1915 | A |
1164967 | Thorp | Dec 1915 | A |
1317631 | Kinser | Sep 1919 | A |
1383595 | Black | Jul 1921 | A |
1384036 | Anderson | Jul 1921 | A |
1428163 | Harriss | Sep 1922 | A |
1499472 | Pratt | Jul 1924 | A |
1530010 | Neilson | Mar 1925 | A |
1532736 | Dodds | Apr 1925 | A |
1556348 | Ray et al. | Oct 1925 | A |
1624188 | Simon | Apr 1927 | A |
RE16613 | Moody et al. | May 1927 | E |
1634964 | Steinmetz | Jul 1927 | A |
1680473 | Parker | Aug 1928 | A |
1686298 | Uhl | Oct 1928 | A |
1712164 | Peppin | May 1929 | A |
1716670 | Sperry | Jun 1929 | A |
1731091 | Belleville | Oct 1929 | A |
1737483 | Verret | Nov 1929 | A |
1738261 | Perkins | Dec 1929 | A |
1748663 | Tucker | Feb 1930 | A |
1749769 | Johnson | Mar 1930 | A |
1756747 | Holland | Apr 1930 | A |
1777167 | Forbes | Sep 1930 | A |
1816976 | Kirkham | Aug 1931 | A |
1825578 | Cernuda | Sep 1931 | A |
1836010 | Audrain | Dec 1931 | A |
1842432 | Stanton | Jan 1932 | A |
1869506 | Richardson | Aug 1932 | A |
1892357 | Moe | Dec 1932 | A |
1909445 | Ahola | May 1933 | A |
1912723 | Perkins | Jun 1933 | A |
1925212 | Steiber | Sep 1933 | A |
1940030 | Steiber | Dec 1933 | A |
1960264 | Heinkel | May 1934 | A |
2211089 | Berlin | Aug 1940 | A |
2286381 | Rubissow | Jun 1942 | A |
2296988 | Endter | Sep 1942 | A |
2333559 | Grady et al. | Nov 1943 | A |
2342773 | Wellman | Feb 1944 | A |
2347561 | Howard et al. | Apr 1944 | A |
2360220 | Goldman | Oct 1944 | A |
2364527 | Haygood | Dec 1944 | A |
2365778 | Schwab | Dec 1944 | A |
2365827 | Liebert | Dec 1944 | A |
2380702 | Persons | Jul 1945 | A |
2390754 | Valdene | Dec 1945 | A |
2401853 | Bailey | Jun 1946 | A |
2435197 | Brodie | Feb 1948 | A |
2436240 | Wiertz | Feb 1948 | A |
2447945 | Knowler | Aug 1948 | A |
2448209 | Boyer et al. | Aug 1948 | A |
2465936 | Schultz | Mar 1949 | A |
2488050 | Brodie | Nov 1949 | A |
2488051 | Brodie | Nov 1949 | A |
2515205 | Fieux | Jul 1950 | A |
2526348 | Gouge | Oct 1950 | A |
2669403 | McKay | Feb 1954 | A |
2671938 | Roberts | Mar 1954 | A |
2735391 | Buschers | Feb 1956 | A |
2787185 | Rea et al. | Apr 1957 | A |
2814453 | Trimble, Jr. et al. | Nov 1957 | A |
2843342 | Ward | Jul 1958 | A |
2844340 | Daniels et al. | Jul 1958 | A |
2908240 | Hodge | Oct 1959 | A |
2919871 | Sorensen | Jan 1960 | A |
2933183 | Koelsch | Apr 1960 | A |
2937827 | Duce | May 1960 | A |
2954946 | O'Neil et al. | Oct 1960 | A |
3069118 | Bernard | Dec 1962 | A |
RE25406 | Byrne et al. | Jun 1963 | E |
3163380 | Brodie | Dec 1964 | A |
3268090 | Wirkkala | Aug 1966 | A |
3411398 | Blakeley et al. | Nov 1968 | A |
3454244 | Walander | Jul 1969 | A |
3468500 | Carlsson | Sep 1969 | A |
3484061 | Niemkiewicz | Dec 1969 | A |
3512447 | Vaughn | May 1970 | A |
3516626 | Strance et al. | Jun 1970 | A |
3589651 | Niemkiewicz | Jun 1971 | A |
3657956 | Bradley et al. | Apr 1972 | A |
3672214 | Yasuda | Jun 1972 | A |
3684219 | King | Aug 1972 | A |
3708200 | Richards | Jan 1973 | A |
3765625 | Myhr et al. | Oct 1973 | A |
3771484 | Schott et al. | Nov 1973 | A |
3827660 | Doolittle | Aug 1974 | A |
3939988 | Wellman | Feb 1976 | A |
3943657 | Leckie | Mar 1976 | A |
3980259 | Greenhalgh et al. | Sep 1976 | A |
4037807 | Johnston et al. | Jul 1977 | A |
4067139 | Pinkerton et al. | Jan 1978 | A |
4079901 | Mayhew et al. | Mar 1978 | A |
4143840 | Bernard et al. | Mar 1979 | A |
4147317 | Mayhew et al. | Apr 1979 | A |
4149840 | Tippmann | Apr 1979 | A |
D256816 | McMahon et al. | Sep 1980 | S |
4236686 | Barthelme et al. | Dec 1980 | A |
4238093 | Siegel et al. | Dec 1980 | A |
4267987 | McDonnell | May 1981 | A |
4279195 | Miller | Jul 1981 | A |
4296894 | Schnäbele et al. | Oct 1981 | A |
4296898 | Watson | Oct 1981 | A |
4311290 | Koper | Jan 1982 | A |
4372016 | LaViolette et al. | Feb 1983 | A |
4408737 | Schwaerzler | Oct 1983 | A |
4410151 | Höppner et al. | Oct 1983 | A |
4457479 | Daude | Jul 1984 | A |
4471923 | Höppner et al. | Sep 1984 | A |
4523729 | Frick | Jun 1985 | A |
4566658 | DiGiovanniantonio et al. | Jan 1986 | A |
4645142 | Soelter | Feb 1987 | A |
4653706 | Ragiab | Mar 1987 | A |
4678143 | Griffin | Jul 1987 | A |
4730793 | Thurber, Jr. et al. | Mar 1988 | A |
4753400 | Reuter et al. | Jun 1988 | A |
4790497 | Yoffe | Dec 1988 | A |
4809933 | Buzby et al. | Mar 1989 | A |
4842222 | Baird | Jun 1989 | A |
4909458 | Martin | Mar 1990 | A |
4979701 | Colarik et al. | Dec 1990 | A |
4991739 | Levasseur | Feb 1991 | A |
5007875 | Dasa | Apr 1991 | A |
5039034 | Burgess et al. | Aug 1991 | A |
5042750 | Winter | Aug 1991 | A |
5054717 | Taylor | Oct 1991 | A |
5060888 | Vezain et al. | Oct 1991 | A |
5109788 | Heinzmann | May 1992 | A |
5119935 | Stump et al. | Jun 1992 | A |
5145129 | Gebhard | Sep 1992 | A |
5176339 | Schmidt | Jan 1993 | A |
5222694 | Smoot | Jun 1993 | A |
5253605 | Collins | Oct 1993 | A |
5253606 | Ortelli | Oct 1993 | A |
5259574 | Carrot | Nov 1993 | A |
5378851 | Brooke et al. | Jan 1995 | A |
5390550 | Miller | Feb 1995 | A |
5407153 | Kirk et al. | Apr 1995 | A |
5509624 | Takahashi | Apr 1996 | A |
5583311 | Rieger | Dec 1996 | A |
5603592 | Sadri et al. | Feb 1997 | A |
5655944 | Fusselman | Aug 1997 | A |
5687930 | Wagner et al. | Nov 1997 | A |
5762456 | Aasgaard | Jun 1998 | A |
5816761 | Cassatt et al. | Oct 1998 | A |
5906336 | Eckstein | May 1999 | A |
5913479 | Westwood, III | Jun 1999 | A |
6161797 | Kirk et al. | Dec 2000 | A |
6237875 | Menne et al. | May 2001 | B1 |
6264140 | McGeer et al. | Jul 2001 | B1 |
6343768 | Muldoon | Feb 2002 | B1 |
6370455 | Larson et al. | Apr 2002 | B1 |
6371410 | Cairo-Iocco et al. | Apr 2002 | B1 |
6416019 | Hilliard et al. | Jul 2002 | B1 |
6442460 | Larson et al. | Aug 2002 | B1 |
6457673 | Miller | Oct 2002 | B1 |
6478650 | Tsai | Nov 2002 | B1 |
6626077 | Gilbert | Sep 2003 | B1 |
6695255 | Husain | Feb 2004 | B1 |
6758440 | Repp et al. | Jul 2004 | B1 |
6772488 | Jensen et al. | Aug 2004 | B1 |
6835045 | Barbee et al. | Dec 2004 | B1 |
6874729 | McDonnell | Apr 2005 | B1 |
6925690 | Sievers | Aug 2005 | B2 |
7059564 | Dennis | Jun 2006 | B2 |
7066430 | Dennis et al. | Jun 2006 | B2 |
7090166 | Dennis et al. | Aug 2006 | B2 |
7114680 | Dennis | Oct 2006 | B2 |
7121507 | Dennis et al. | Oct 2006 | B2 |
7128294 | Roeseler et al. | Oct 2006 | B2 |
7140575 | McGeer | Nov 2006 | B2 |
7143974 | Roeseler et al. | Dec 2006 | B2 |
7152827 | McGeer | Dec 2006 | B2 |
7155322 | Nakahara et al. | Dec 2006 | B2 |
7165745 | McGeer et al. | Jan 2007 | B2 |
7175135 | Dennis et al. | Feb 2007 | B2 |
7219856 | Watts et al. | May 2007 | B2 |
7259357 | Walker | Aug 2007 | B2 |
7264204 | Portmann | Sep 2007 | B1 |
7410125 | Steele | Aug 2008 | B2 |
7422178 | DeLaune | Sep 2008 | B2 |
7472461 | Anstee | Jan 2009 | B2 |
7510145 | Snediker | Mar 2009 | B2 |
7578467 | Goodrich | Aug 2009 | B2 |
7686247 | Monson et al. | Mar 2010 | B1 |
7740210 | Pilon et al. | Jun 2010 | B2 |
7748661 | Harris et al. | Jul 2010 | B2 |
7798445 | Heppe et al. | Sep 2010 | B2 |
7806366 | Jackson | Oct 2010 | B2 |
8016073 | Petzl et al. | Sep 2011 | B2 |
8028952 | Urnes, Sr. | Oct 2011 | B2 |
8038090 | Wilson et al. | Oct 2011 | B2 |
8136766 | Dennis | Mar 2012 | B2 |
8172177 | Lovell et al. | May 2012 | B2 |
8205537 | Dupont | Jun 2012 | B1 |
8313057 | Rednikov | Nov 2012 | B2 |
8348714 | Newton et al. | Jan 2013 | B2 |
8387540 | Merems | Mar 2013 | B2 |
8683770 | diGirolamo et al. | Apr 2014 | B2 |
8820698 | Balfour et al. | Sep 2014 | B2 |
8944373 | Dickson et al. | Feb 2015 | B2 |
8950124 | Wellershoff | Feb 2015 | B2 |
9085362 | Kilian et al. | Jul 2015 | B1 |
9266610 | Knapp et al. | Feb 2016 | B2 |
9340301 | Dickson et al. | May 2016 | B2 |
9359075 | von Flotow et al. | Jun 2016 | B1 |
9932110 | McNally | Apr 2018 | B2 |
20020011223 | Zauner et al. | Jan 2002 | A1 |
20020049447 | Li | Apr 2002 | A1 |
20020100838 | McGeer et al. | Aug 2002 | A1 |
20030116107 | Laimbock | Jun 2003 | A1 |
20030122384 | Swanson et al. | Jul 2003 | A1 |
20030202861 | Nelson et al. | Oct 2003 | A1 |
20030222173 | McGeer et al. | Dec 2003 | A1 |
20040129833 | Perlo et al. | Jul 2004 | A1 |
20040232282 | Dennis | Nov 2004 | A1 |
20050017129 | McDonnell | Jan 2005 | A1 |
20050132923 | Lloyd | Jun 2005 | A1 |
20050187677 | Walker | Aug 2005 | A1 |
20060006281 | Sirkis | Jan 2006 | A1 |
20060091258 | Chiu et al. | May 2006 | A1 |
20060102783 | Dennis et al. | May 2006 | A1 |
20060175466 | Snediker et al. | Aug 2006 | A1 |
20060249623 | Steele | Nov 2006 | A1 |
20060271251 | Hopkins | Nov 2006 | A1 |
20070023582 | Steele et al. | Feb 2007 | A1 |
20070051849 | Watts et al. | Mar 2007 | A1 |
20070158498 | Snediker | Jul 2007 | A1 |
20070200027 | Johnson | Aug 2007 | A1 |
20070261542 | Chang et al. | Nov 2007 | A1 |
20080156932 | McGeer et al. | Jul 2008 | A1 |
20080191091 | Hoisington | Aug 2008 | A1 |
20090114761 | Sells, II | May 2009 | A1 |
20090191019 | Billings | Jul 2009 | A1 |
20090194638 | Dennis | Aug 2009 | A1 |
20090224097 | Kariv | Sep 2009 | A1 |
20090236470 | Goossen et al. | Sep 2009 | A1 |
20090294584 | Lovell et al. | Dec 2009 | A1 |
20100181424 | Goossen et al. | Jul 2010 | A1 |
20100237183 | Wilson et al. | Sep 2010 | A1 |
20100243799 | Al-Qaffas | Sep 2010 | A1 |
20100276537 | Kutzmann et al. | Nov 2010 | A1 |
20100318475 | Abrahamson | Dec 2010 | A1 |
20120210853 | Abershitz et al. | Aug 2012 | A1 |
20120223182 | Gilchrist, III et al. | Sep 2012 | A1 |
20130082137 | Gundlach et al. | Apr 2013 | A1 |
20130320138 | Dickson | Dec 2013 | A1 |
20140117147 | Hanna et al. | May 2014 | A1 |
20150129716 | Yoffe | May 2015 | A1 |
20150166177 | Bernhardt | Jun 2015 | A1 |
20150239578 | McGeer | Aug 2015 | A1 |
20160023760 | Goodrich | Jan 2016 | A1 |
20160114906 | McGeer et al. | Apr 2016 | A1 |
20160137311 | Peverill et al. | May 2016 | A1 |
20160144980 | Kunz et al. | May 2016 | A1 |
20160152339 | von Flotow et al. | Jun 2016 | A1 |
20160264259 | Dickson et al. | Sep 2016 | A1 |
20160327945 | Davidson | Nov 2016 | A1 |
20160375981 | McDonnell | Dec 2016 | A1 |
20170225784 | Hayes et al. | Aug 2017 | A1 |
20170369185 | Grubb | Dec 2017 | A1 |
20180162528 | McGrew et al. | Jun 2018 | A1 |
20190003511 | Leon et al. | Jan 2019 | A1 |
20190006749 | Mack et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1032645 | May 1989 | CN |
101549754 | Oct 2009 | CN |
102384702 | Mar 2012 | CN |
4301671 | Jul 1993 | DE |
19602703 | Feb 1997 | DE |
102010010508 | Sep 2011 | DE |
0742366 | Sep 1998 | EP |
854371 | Apr 1940 | FR |
1445153 | Aug 1976 | GB |
2080216 | Feb 1982 | GB |
2093414 | Sep 1982 | GB |
2150895 | Jul 1985 | GB |
2219777 | Dec 1989 | GB |
2231011 | Nov 1990 | GB |
76726 | Jan 1991 | IL |
07304498 | Nov 1995 | JP |
2008540217 | Nov 2008 | JP |
0075014 | Dec 2000 | WO |
0107318 | Feb 2001 | WO |
2008015663 | Feb 2008 | WO |
2011066400 | Jun 2011 | WO |
2012047677 | Apr 2012 | WO |
2014080386 | May 2014 | WO |
Entry |
---|
European Patent Office, “Extended European Search Report,” issued in connection with European Patent Application No. 19216040.6, dated Mar. 18, 2020, 11 pages. |
“Ames Builds Advanced Yawed-Wing RPV,” Aviation Week and Space Technology, Jan. 22, 1973, 2 pages. |
Robinson, “Dynamic Analysis of a Carousel Remotely Piloted Vehicle Recovery System,” 1977, Naval Post-Graduate School Master's Thesis No. ADA052401, 70 pages. |
Whitmore, “Development of a Closed-Loop Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment,” Jan. 1997, NASA Technical Memorandum 4775, 31 pages. |
Dorr, “The XF-85 Goblin,” https://www.defensemedianetwork.com/stories/the-sf-85-goblin-the-parasite-fighter-that-didnt-work/, DefenseMediaNetwork, Sep. 11, 2014, 5 pages. |
Gross, “Investigation of Lift, Drag, and Aeordynamic Pitching Moment During In-Flight Recovery of a Remotely Piloted Vehicle,” Air Force Institute of Technology, NTIS, Sep. 1973, 99 pages. |
Phillips, “Alternate Aquila Recovery System Demonstration Recovery System Flight Test,” Final Report, Jan. 19, 20177, 67 pages. |
Plane Talk, The Newsletter of the War Eagles Air Museum, www.war-eagles-air-museum.com, vol. 25, No. 1, First Quarter Jan.-Mar. 2012, 8 pages. |
Dickard, “Mini-RPV Recover System Conceptual Study,” Contract DA4J02-76-C-0048, Report No. USAAMRDL-TR077-24, 321 pages. |
Hunton et al., “An Investigation of the McDonnell XP-85 Airplane in the Ames 40 by 80 Foot Wind Tunnel—Force and Moment Tests,” NACA Research Memorandum for the Air Material Command, U.S. Air Force, National Advisory Committee for Aeronautics, Sep. 27, 1948, 155 pages. (Uploaded in 2 parts). |
Galinski et al., “Results of the Gust Resistant MAV Programme,” 28th International Congress of the Aeronautical Sciences, 2012, 10 pages. |
European Patent Office, “Extended European Search Report,” issued in connection with European Patent Application No. 17177785.7, dated Nov. 8, 2017, 8 pages. |
United States Patent and Trademark Office, “Final Office Action,” issued in connection with U.S. Appl. No. 15/194,492, dated Apr. 4, 2019, 26 pages. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 15/194,492, dated May 3, 2018, 38 pages. |
United States Patent and Trademark Office, “Notice of Allowance and Fee(s) Due,” issued in connection with U.S. Appl. No. 15/194,492, dated Jun. 18, 2019, 23 pages. |
State of Israel,The Patent Authority, “Notification of Deficiencies in Patent Application,” issued in connection with Israeli Patent Application No. 252290, dated Dec. 21, 2020, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190359350 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15194492 | Jun 2016 | US |
Child | 16533251 | US |