This application claims the benefit of priority of Chinese patent application 200910153579.4, filed Oct. 20, 2009, the content of which is incorporated herein by reference in its entirety.
This application is related to the U.S. Patent application entitled “A Locking Door for an Electrical Outlet” filed Jun. 2, 2010 by Shaohua Gao.
The present disclosure relates generally to electrical sockets and provides locking protective doors for restricted access to plug bush connections.
Existing technologies for the equipment and operation of electrical appliances in household or commercial buildings includes transmission of current through a current distribution system to the electrical appliances. In such a distribution system, traditional electrical socket consists of a pair of T holes or jacks, which are aligned with plug bush connections. Currently the pins of an electrical plug can be inserted into the jacks and reach the plug bush connections in the socket directly, achieving the electrical connection purpose. Because most of such sockets are used in dwelling buildings and are located near the ground, latent electric shocking danger exists for children and infants. For example, they may insert small objects into the jacks. Moreover, when electrical contact occurs with the wet mouth of a child, a passage of electricity from the live line through the body of the child to the ground will be formed, resulting in grounding failure and burning or electrical shocking. Besides the fingers and mouth, the children may also insert various conductive materials such as metal objects into the sockets. Many such objects are commonly used ones, such as clips, electroprobes, hairpins, matches, keys and coils. Believing such objects are safe, some parents do not restrict contact with them. For this reason, every dwelling building is required to install protective electrical sockets and grounding failure breakers in the current distribution system of the whole building.
As for the currently available circuit breaking device, e.g. the device described in U.S. Pat. No. 4,595,894, jointly owned, a tripping device is used to mechanically break the electrical connection among one or more input/output wires. Such a device can be reset after it trips when finding a grounding failure. However, the grounding failure current breaker only breaks the current after current is contacted. Therefore, unless there is a protective electrical socket, the person may still undergo the initial temporary electric shocking.
The other patents, such as U.S. Pat. Nos. 2,552,061 and 2,610,999 are characterized by a notched sliding plate on the upper cover. It must be removed manually to match the notched sliding plate being covered to allow plugging in or unplugging off the electrical socket notch. The sliding closing plate provides better protection while adding an extra material layer between the plug pins and the socket connections. This reduces the contact area between the plug pins and the connections, resulting in a latent temperature rise or a dangerous electric arc. The manually moveable plate has another shortcoming: children, through observation, may learn to expose the electrical socket.
U.S. Pat. No. 7,355,117 mentions a protective electrical socket with an automatic resetting sliding block in it. However, because of the structural restriction of the sliding block in such a protective electrical socket, the material consumption and the fabrication cost are high.
The disclosure provides an electrical socket with locking protective doors that can prevent insertion of foreign objects other than the electrical plug pins, thereby achieving the protection function. Meanwhile, it has a simple structure and a low fabrication cost.
An embodiment provides an electrical socket with locking protective doors, comprising an upper cover comprising a first upper port and a second upper port. A bottom case is configured to cooperatively couple with the upper cover. The bottom case comprises at least one pair of socket terminals. A middle frame may be between the upper cover and the bottom case, the middle frame may comprise mounting brackets.
An adjustable lockable large protective door may be between the upper cover and the middle frame. An adjustable lockable small protective door may be between the upper cover and the middle frame. A lock mounting guide plate may be coupled to the middle frame. The lock mounting guide plate may comprise a large guide plate port corresponding to the first upper port and a small guide plate port corresponding to the second upper port.
The large protective door may be located on the lock mounting guide plate and the small protective door may be located between the large protective door and the lock mounting guide plate.
The first upper port and the second upper port may correspond to and vertically align with the at least one pair of socket terminals. The large guide plate port and the small guide plate port may correspond to and vertically align with the at least one pair of socket terminals.
When the protective door is in a first position, the protective door is configured to prevent an object from passing through the upper cover to the first guide plate port and the second guide plate port. When the protective door is in a second position, the protective door is configured to allow plug pins to access to the first guide plate port and the second guide plate from the upper cover.
An electrical socket having the locking protective door of this disclosure has the following beneficial effects. A small locking protective door is provided for a first “T”-shaped port on a 20A upper cover. The small locking protective door can prevent the insertion of foreign objects other than electrical plug pins, thereby achieving the protection function. Meanwhile, it has a simple structure and a low fabrication cost.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As shown in
Large locking protective door 122 is provided between middle frame 185 and 20A upper cover 102. When large locking protective door 122 shelters first port 104 and second port 106, it is in the first position. When large locking protective door 122 moves away from first port 104 and second port 106 to allow plug pins to contact socket terminals 184, it is in the second position.
Middle frame 185 is provided with a lock mounting guide plate 150 corresponding to large locking protective door 122, and large locking protective door 122 is located on the lock mounting guide plate 150. Lock mounting guide plate has a large port 154 corresponding to first port 104 and a small port 152 corresponding to second port 106. Large port 154 and small port 152 correspond to socket terminals 184.
An adjustable small locking protective door 160 is provided between large locking protective door 122 and lock mounting guide plate 150. Small door spring 145 is provided between small locking protective door 160 and lock mounting guide plate 150. The small locking protective door 160 is provided with a first guide slope 164 and a second guide slope 166. Large locking protective door 122 is provided with a first guide notch 138 corresponding to first guide slope 164 and a second guide notch 140 corresponding to second guide slope 166. Small locking protective door 160 is provided with hook 162. Lock mounting guide plate 150 is provided with hook guide rail 159 corresponding to hook 162.
Large locking protective door 122 is provided with first slope 126 corresponding to first port 104. Large locking protective door 122 is provided with second slope 124 corresponding to second port 106. Second slope 124 is provided with an upper lock block 120. 20A upper cover 102 is provided with an upper notch 108 corresponding to upper lock block 120. Second slope 124 is provided with lower lock block 130. Lock mounting guide plate 150 is provided with a lower notch 156 corresponding to lower lock block 130.
On the inner side, first slope 126 is provided with a spring supporting shaft 128. Lock mounting guide plate 150 is provided with spring locating plate 157 corresponding to spring supporting shaft 128. Return spring 142 is provided between spring supporting shaft 128 and spring locating plate 157. Elevating jacking block 144 is provided between lock mounting guide plate 150 and large locking protective door 122. Elevating spring 146 is provided between lock mounting guide plate 150 and elevating jacking block 144.
During the actual service of the electrical socket with a locking protective door, as shown in
When the plug pins 192 of 15A plug are inserted into the first port 104 and the second port 106, they contact with the first slope 126 and the second slope 124, further pressing the plug pins 192 downwards. Under the action of plug pin 192 and the first slope 126 and plug pin 192 and the second slope 124, large locking protective door 122 presses elevating jacking block 144 downwards, making elevating spring 146 compress. Meanwhile, large locking protective door 122 moves and compresses return spring 142.
As shown in
As shown in
The plug is inserted further downwards, as shown in
When small locking protective door 160 is acted on by an inserted object singly, large locking protective door 122 does not move, as the upper lock block 120 is blocked in the upper notch 108. First guide slope 164 on small locking protective door 160 acts with the corresponding first guide notch 138, and the second guide slope 166 acts with the corresponding first guide notch 140, making the small locking protective door be locked against the force of the inserted object and unmovable.
As shown in
As shown in
With the locking protective door, the plug can be inserted easily when the insertion pressure is balanced, while foreign objects can not be inserted in any direction. This can prevent insertion of foreign objects other than electrical plug pins, thereby achieving the protection function. Meanwhile, it has a simple structure and a low fabrication cost.
In the preceding specification, various preferred embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various other modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2009 1 0153579 | Oct 2009 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2552061 | Popp | May 1951 | A |
2610999 | Silver | Sep 1952 | A |
4595894 | Doyle et al. | Jun 1986 | A |
7355117 | Castaldo et al. | Apr 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20110092085 A1 | Apr 2011 | US |