The present disclosure relates generally to a downhole tool, and in particular to a downhole tool having a locking ring system and/or a protective sleeve, for use in fracking operations.
Downhole tools have been widely used in oil and gas industries. Many downhole tools comprise pressure-actuatable valves. For example, a prior-art ball-actuated sliding valve comprises a tubular valve housing having a bore and receiving in the bore a sliding sleeve. The sliding sleeve comprises a ball seat at an uphole end thereof, and is initially configured to an uphole closed position blocking one or more fluid ports on the sidewall of the valve housing. To actuate the sliding valve, a ball is dropped and seats against the ball seat of the sliding sleeve. Then, a fluid pressure is applied to the ball to actuate the sliding sleeve downhole to an open position to open the fluid ports on the valve housing.
One or more ball-actuated sliding valves may be used in a fracking process for fracking a subterranean formation. However, an issue in cascading a plurality of ball-actuated sliding valves for fracking is that the bore of a downhole sliding valve has to be smaller than that of the sliding valves uphole thereof to allow a smaller-size ball to pass through those uphole sliding valves to reach the target downhole sliding valve. In other words, the bores of the cascaded sliding valves have to reduce from uphole to downhole to ensure successful operation, thereby causing reduced flow rate at the downhole end.
U.S. Pat. No. 4,043,392 to Gazda teaches a well system for selectively locking well tools along a flow conductor in a well bore and a tool string for use in the flow conductor including a locking mandrel, a sleeve shifting device, and a well safety valve. The selective locking system has a landing and locking recess profile including both upwardly and downwardly facing stop shoulders. One form of the locking system is in a sliding sleeve valve including a cam release shoulder to free a selector and locking key when the sleeve valve is moved between spaced longitudinal locations. Another form of the locking system may be along a landing nipple and require that the well tool locked therein be disabled for release of the selector and locking tools. The sleeve shifting device has means for opening and closing the sliding sleeve valve including keys having upwardly and downwardly facing stop shoulders and recess profiles which are compatible with the landing and locking recess profile of the sleeve valve or of a landing nipple. The sleeve shifting device may be used also as a locking mandrel. Selectivity is provided by variation in the landing and locking profiles and the key profiles.
In U.S. Pat. No. 4,043,392, the spring-biased key profiles are mutually exclusive. A key profile will only engage a slidable sleeve with a mating internal profile.
U.S. Pat. No. 4,436,152 to Fisher, et al. teaches an improved shifting tool connectable in a well tool string and useful to engage and position a slidable sleeve in a sliding sleeve device in a well flow conductor. The selectively profiled shifting tool keys provide better fit with and more contact area between keys and slidable sleeves. When the engaged slidable sleeve cannot be moved up and the shifting tool is not automatically disengaged, emergency disengagement means may be utilized by applying upward force to the shifting tool sufficient to shear pins and cause all keys to be cammed inwardly at both ends to completely disengage for removal of the shifting tool from the sliding sleeve device.
U.S. Pat. No. 5,305,833 to Collins teaches a shifting tool for sliding sleeve valves for use in oil and gas wells which has locating dogs that are used for selectively locating and engaging a shoulder inside the valve. Primary keys engage and selectively shift the sliding sleeve to an equalized position as well as prevent premature shifting to a fully open position. Also included is apparatus for selectively overriding the shifting prevention following equalization. Secondary keys lead the primary keys in the shifting direction and engage the sleeve and move it to the fully open detent position. There is also selective disengagement of the shifting tool from the sleeve valve to allow withdrawal of the shifting tool form the well. Furthermore, a method for selectively and sequentially shifting the sliding sleeve for a sliding sleeve valve from the closed to equalizing position, and then from the equalizing to fully open position is disclosed.
In particular, U.S. Pat. No. 5,305,833 teaches two separate spring biased keys, wherein a first of the two keys can fit in the profile of a second of the two keys. However, the second key cannot fit in the profile of the first key.
U.S. Pat. No. 5,309,988 to Shy, et al. teaches a subsurface well flow control system including a series of movable sleeve type flow control devices installed in a well flow conductor at various fluid-containing fracture zones, and a shifter tool movable through the conductor and operable to selectively shift any selected number of the sleeve portions of the flow control devices, in either direction between their open and closed positions, without removing the tool from the conductor. Radially retractable anchor and shifter key sets are carried in sidewall openings of the tool body, and are respectively configured to be lockingly engaged with interior side surface groove sets on the body and movable sleeve portions of any of the flow control devices. The key sets are spring-biased radially outwardly toward extended positions, and an electromechanical drive system disposed within the tool body is operative to radially retract the key sets, and to axially drive the shifter key set toward or away from the anchor key set. This permits the tool to be moved into and through any of the flow control devices in either axial direction, locked to the device, operated to shift its sleeve portion fully or partially in either direction, and then disengaged from the flow control device and moved to any other one of the flow control devices to shift its sleeve portion. Interengaged V-threads on the body and sleeve portions of each flow control device facilitate the releasable retention of the sleeve portion in a partially shifted position.
U.S. Pat. No. 5,309,988 also teaches two mutually exclusive key profiles.
U.S. Pat. No. 5,730,224 to Williamson, et al. teaches a subterranean structure for controlling tool access to a lateral wellbore extending from a wellbore. The subterranean structure comprises a bushing that is located in the wellbore and proximate an opening to the lateral wellbore and that has an access window therethrough for allowing access by a tool to the lateral well through the opening. The bushing further has a slidable access control device coaxially coupled thereto. Also included is a shifter that is engageable with the slidable access control device to cause the slidable access control device to slide between an open position wherein a tool is allowed to pass through the window and the opening and into the lateral wellbore and a closed position wherein the tool is prevented from passing through the window and the opening and into the lateral wellbore. Such patent further teaches a method of controlling tool access to a lateral wellbore extending from a wellbore. The preferred method comprises the steps of: 1) locating a bushing in the wellbore proximate an opening to the lateral wellbore, the bushing having an access window therethrough for allowing access by a tool to the lateral wellbore through the opening, the bushing further having a slidable access control device coaxially coupled thereto; 2) engaging the slidable access control device with a shifter to slide the slidable access control device with respect to the bushing; and 3) sliding the slidable access control device between an open position wherein a tool is allowed to pass through the window and the opening and into the lateral wellbore and a closed position wherein the tool is prevented from passing through the window and the opening mad into the lateral wellbore.
U.S. Pat. No. 5,730,224 teaches two key profiles with one is a reverse of the other.
U.S. Pat. Nos. 7,325,617 and 7,552,779 to Murray teach a system allowing for sequential treatment of sections of a zone. Access to each portion can be with a sliding sleeve that has a specific internal profile. Pump down plugs can be used that have a specific profile that will make a plug latch to a specific sleeve. Pressure on the plug when latched allows a sequential opening of sleeves while zones already affected that are below are isolated. The pump down plugs have a passage that is initially obstructed by a material that eventually disappears under anticipated well conditions. As a result, when all portions of a zone are handled a flow path is reestablished through the various latched plugs. The plugs can also be blown clear of a sliding sleeve after operating it and can feature a key that subsequently prevents rotation of the plug on its axis in the event is later needs milling out.
U.S. Pat. No. 9,611,727 to Campbell, et al. teaches an apparatus and method for fracturing a well in a hydrocarbon bearing formation. The apparatus includes a valve subassembly assembled with sections of casing pipe to form a well casing for the well. The valve subassembly includes a sliding piston that is pinned in place to seal off ports that provide communication between the interior of the well casing and a production zone of the formation. A dart having a cup seal can be inserted into the well casing and propelled by pressurized fracturing fluid until the dart reaches the valve subassembly to plug off the well casing below the valve subassembly. The force of the fracturing fluid against the dart and cup seal thereof forces the piston downwards to shear off the pins and open the ports. The fracturing fluid can then exit the ports to fracture the production zone of the formation.
U.S. Pat. No. 9,739,117 to Campbell, et al. teaches a method and apparatus for selectively actuating a downhole tool in a tubular conduit. An actuator tool has an actuator mandrel having an actuator bore through and a bypass and a profile key to selectively engage the downhole tool. The downhole tool has one or more profile receivers adapted to actuate the downhole tool. The actuator tool is conveyed into the tubular conduit and the actuator tool and the downhole tool are engaged if the profile key and the profile receiver match, and the actuator tool and the downhole tool are non-engaged if the profile key and the profile receiver do not match. Fluid may be circulated through the actuator bore to flush or wash ahead of the actuator tool.
US Patent Publication No. 2003/0173089 to Westgard teaches a full bore selective location and orientation system including a nipple installable in a tubular string and having internal location and orientation features of known configuration and a locating device runnable within the tubular string and having location and orientation features engageable with said internal features of said nipple. A method of locating and orientating a downhole tool including installing a tubular nipple having a particular inside dimensions configuration in a tubular string running a locating device having a complementary outside dimensions configuration to engage with said inside dimensions configuration and rotating said locating device to a position where a biased member extends from said locating device into a recess in said tubular member.
US Patent Publication No. 2015/0226034 to Jani teaches an apparatus and related methods for selectively actuating sliding sleeves in sub members which are placed downhole in a wellbore, to open ports in such sub members to allow fracking of the wellbore, or to detonate explosive charges thereon for perforating a wellbore, or both. A simplified dart and sleeve is used which reduces machining operations on each. The dart is preferably provided with coupling means to permit a retrieval tool to be coupled thereto, which upon the retrieval tool being so coupled allows a bypass valve to operate to assist in withdrawing the dart from within the valve subs. Upward movement of the retrieval tool allows a wedge-shaped member to disengage the dart member from a corresponding sleeve to allow the dart to be withdrawn.
US Patent Publication No. 2014/0209306 to Hughes, et al. teaches a wellbore treatment tool for setting against a constraining wall in which the wellbore treatment tool is positionable. The wellbore treatment tool includes a tool body including a first end formed for connection to a tubular string and an opposite end; a no-go key assembly including a tubular housing and a no-go key, the tubular housing defining an inner bore extending along the length of the tubular housing and an outer facing surface carrying the no-go key, the no-go key configured for locking the no-go key and tubular housing in a fixed position relative to the constraining wall, the tubular housing sleeved over the tool body with the tool body installed in the inner bore of the tubular housing; and a sealing element encircling the tool body and positioned between a first compression ring on the tool body and a second compression ring on the tubular housing, the sealing element being expandable to form an annular seal about the tool body by compression between the first compression ring and the second compression ring.
US Patent Publication No. 2015/0218916 to Richards, et al. teaches circulating sleeves that can be opened and closed and permanently closed. A completion system includes a completion string having a circulating sleeve movably arranged therein, the circulating sleeve having a locking profile defined on an outer radial surface thereof and a shifting profile defined on an inner radial surface thereof, a service tool configured to be arranged at least partially within the completion string and including a shifting tool having one or more shifting keys configured to mate with the shifting profile. When the shifting keys locate and mate with the shifting profile, an axial load applied on the service tool axially moves the circulating sleeve, and a release shoulder assembly arranged within the completion string and comprising a release shoulder that defines a channel configured to receive a locking mechanism occluded within the channel until the release shoulder is moved axially.
Canadian Patent No. 2,412,072 to Fehr, et al. teaches a tubing string assembly for fluid treatment of a wellbore. The tubing string can be used for staged wellbore fluid treatment where a selected segment of the wellbore is treated, while other segments are sealed off. The tubing string can also be used where a ported tubing string is required to be run in in a pressure tight condition and later is needed to be in an open-port condition.
Alternative and/or improved designs which allow for consistent and reliable engagement and actuation of subsurface valves, as well as improved sealing, are always of extreme interest to the fracking industry.
According to one aspect of this disclosure, there is provided a sliding valve for opening one or more fluid ports in a piping string. The sliding sleeve comprises:
wherein the sliding sleeve comprises: a longitudinal bore and a sleeve-profile thereon for receiving therein a unique locking profile of a collet member; and a stop ring, having on an uphole side edge thereof a stop shoulder adapted to abut a portion of the unique locking profile of the collet member when said unique locking profile engages said sleeve profile and prevents downhole motion of the collet member relative to the sliding sleeve.
In some embodiments, at least said stop shoulder of said stop ring is hardened to a hardness greater than that of the material of the sliding sleeve or comprises a material having a hardness greater than the hardness of sliding sleeve.
In some embodiments, said stop ring is comprised of a material having a hardness greater than that of the material of the sliding sleeve.
In some embodiments, at least said stop shoulder of said stop ring is comprised of a material selected from the group of materials comprising tungsten carbide, cobalt-chromium alloys, and nitrided steels, or a combination thereof.
In some embodiments, said sleeve profile on said sliding sleeve is uphole to the stop ring.
In some embodiments, the stop shoulder forms an acute angle with respect to a longitudinal axis of the sliding valve such that an inner edge of said stop shoulder is situated more uphole than an outer edge of said stop shoulder.
In some embodiments, the sliding sleeve, downhole of said stop ring, further comprises a coupling portion; and said slidable sleeve further comprises a protection sleeve, an uphole end of said protection sleeve coupled to said coupling portion, said protection sleeve extending downhole; and wherein the stop ring is an annular member; and the sliding sleeve further comprises a stop-ring seat for sandwiching the stop ring between the stop-ring seat and an uphole end of the protection sleeve.
In some embodiments, the protection sleeve forms an annulus between a portion of an outer periphery thereof and said valve body when the sliding sleeve is at the closed position; and the protection sleeve isolates the annulus from the second bore.
According to one aspect of this disclosure, there is provided a sliding valve for opening one or more fluid ports in a production string. The sliding sleeve comprises:
wherein the sliding sleeve further comprises a stop ring forming a first stop shoulder which prevents, when said unique locking profile of said collet member matingly engages said sleeve-profile of said sleeve member, downhole motion of the collet member relative to the sliding sleeve.
In some embodiments, at least said stop shoulder of said stop ring is hardened to a hardness greater than that of the material of the sliding sleeve or comprises a material having of a hardness greater than the hardness of sliding sleeve.
In some embodiments, said stop ring is comprised of a material having a hardness greater than that of the material of the sliding sleeve.
In some embodiments, at least said stop shoulder of said stop ring is hardened to a hardness equal to that of the downhole portion of the unique locking profile of said collet member.
In some embodiments, the stop shoulder of the stop ring is comprised of a material having a hardness approximately equal to that of the downhole portion of the unique locking profile of said collet member.
In some embodiments, at least said stop shoulder of said stop ring is comprised of a material selected from the group of materials comprising tungsten carbide, cobalt-chromium alloys, and nitrided steels, or a combination thereof.
In some embodiments, said sleeve-profile on said sliding sleeve is uphole to the stop ring.
In some embodiments, the stop shoulder forms an acute angle with respect to a longitudinal axis of the sliding valve such that an inner edge of said stop shoulder is situated more uphole than an outer edge of said stop shoulder.
In some embodiments, the sliding sleeve, downhole of said stop ring, further comprises a coupling portion; and said slidable sleeve further comprises a protection sleeve, an uphole end of said protection sleeve coupled to said coupling portion, said protection sleeve extending downhole. The stop ring is an annular member; and the sliding sleeve further comprises a stop-ring seat for sandwiching the stop ring between the stop-ring seat and an uphole end of the protection sleeve.
In some embodiments, the protection sleeve forms an annulus between a portion of an outer periphery thereof and said valve body when the sliding sleeve is at the closed position; and the protection sleeve isolates the annulus from the second bore.
In some embodiments, said unique locking profile of the collet member comprises a stop shoulder at a downhole end thereof, for engaging the stop shoulder of the stop ring.
In some embodiments, the stop shoulder on said collet member forms an acute angle with respect to the longitudinal axis of the sliding valve such that an inner edge of said stop shoulder on said collet member is situated more uphole than an outer edge of said stop shoulder on said collet member.
In some embodiments, the unique locking profile of said collet member is a radially flexible collet-profile adapted to matingly engage said sleeve-profile on said sliding sleeve.
In some embodiments, the collet member further comprises a cylindrical uphole portion, a cylindrical downhole portion, and a plurality of flexible splines therebetween coupled to the uphole and downhole portions, said flexible splines having thereon said unique locking profile.
According to one aspect of this disclosure, there is provided a sliding valve for opening one or more fluid ports in a production string. The sliding sleeve comprises:
a valve body having a longitudinal bore, the valve body comprising said one or more fluid ports on an uphole portion of the sidewall thereof; and
a sliding sleeve received in the longitudinal bore of the valve body and movable between an uphole closed position closing the one or more fluid ports and a downhole open position opening the one or more fluid ports;
wherein the sliding sleeve comprises:
wherein at least a coupling portion of the protection sleeve is received in the sleeve body for coupling the protection sleeve to the sleeve body;
wherein at least when the sliding sleeve is at the closed position, the protection sleeve and the valve body form an annulus therebetween; and
wherein the protection sleeve isolates the annulus from the longitudinal bore of the valve body.
In some embodiments, the sliding sleeve further comprises a stop shoulder for preventing a collet in the longitudinal bore of the sliding sleeve from moving downhole.
In some embodiments, the stop shoulder has a first acute angle with respect to a longitudinal axis of the sliding valve such that an inner edge of said stop shoulder is situated more uphole than an outer edge of said stop shoulder.
In some embodiments, the stop shoulder is formed by a stop ring received in the sliding sleeve.
In some embodiments, the sleeve body comprises a stop-ring seat for sandwiching the stop ring between the stop-ring seat and an uphole end of the protection sleeve.
In some embodiments, at least said stop shoulder is hardened to a hardness greater than that of the material of the sliding sleeve or comprises a material having of a hardness greater than the hardness of sliding sleeve.
In some embodiments, said stop ring is comprised of a material having a hardness greater than that of the material of the sliding sleeve.
In some embodiments, at least said stop shoulder is hardened to a hardness equal to that of a unique locking profile of a collet member.
In some embodiments, the stop shoulder is comprised of a material having a hardness approximately equal to that of the downhole portion of a unique locking profile of a collet member.
Further advantages and other embodiments of the invention will now appear from the above along with the following detailed description of the various particular embodiments of the invention, taken together with the accompanying drawings each of which are intended to be non-limiting, in which:
Embodiments herein disclose a pressure-actuatable sliding valve. In the following description, the term “downhole” refers to a direction along a wellbore towards the end of the wellbore, and may (e.g., in a vertical wellbore) or may not (e.g., in a horizontal wellbore) coincide with a “downward” direction. The term “uphole” refers to a direction along a wellbore towards surface, and may (e.g., in a vertical wellbore) or may not (e.g., in a horizontal wellbore) coincide with an “upward” direction.
In some embodiments, the sliding valve comprises a valve body having a longitudinal bore and one or more fluid ports on the sidewall thereof. A sliding sleeve is received in the bore and is movable between an uphole closed position blocking the fluid ports and a downhole open position opening the fluid ports.
The sliding sleeve comprises a profiled area on the inner surface thereof comprising by circumferential grooves and ridges, forming a sleeve-profile. The profile area comprises a stop shoulder at a downhole end thereof for locking a collet member (also denoted as “a collet” for ease of description) having a matching collet-profile on the outer surface thereof. Herein, the term “matching” refers to the condition that the collet-profile of a collet matches the sleeve-profile of a sliding sleeve such that the profiled area of the collet can be received in the profiled area of the sliding sleeve for locking the collet in the sliding sleeve of the sliding valve.
In some embodiments, the uphole surface of the stop ring is sloped radially inwardly from downhole to uphole forming a stop shoulder 194 having an acute angle α with respect to a longitudinal axis of the stop ring.
In some embodiments, the stop shoulder is formed by a stop ring adjacent the profiled area of the sliding sleeve.
In some embodiments, the stop ring is made of a high-strength material such as tungsten carbide, cobalt-chromium alloys, and/or the like.
In some embodiments, the collet is in the form of a cage and comprises an uphole portion, a downhole portion, and a plurality of longitudinal splines mounted at their longitudinally opposite ends to the uphole and downhole portions. One or more or all of the longitudinal splines are flexible and are profiled to form the collet-profile.
In some embodiments, the uphole portion of the collet comprises a ball seat for receiving therein a ball from uphole to actuate the sliding valve.
In some embodiments, the collet comprises a metal uphole portion that is radially outwardly expandable such that, when the collet is received in a matching sliding valve and a ball seats on the ball seat of the collet, a fluid pressure applied on the ball may force the expandable uphole portion to radially outwardly expand and press against the inner surface of the sliding sleeve, thereby forming a metal-to-metal seal at the interface between the sliding sleeve and the collet.
In some embodiments, the ball seat of the collet comprises a sloped surface.
In some embodiments, the slope angle θ of the sloped ball seat surface is about 55° with respect to a longitudinal reference line. In some embodiments, the slope angle θ is about 35°. In some alternative embodiments, the slope angle θ is between about 50° and about 60°. In some alternative embodiments, the slope angle θ is between about 40° and about 70°. In some alternative embodiments, the slope angle θ is between about 30° and about 80°.
Turning to
As shown in
In these embodiments, the top sub 114 comprises a tapered inner surface 128 tapering from an uphole end towards a downhole end thereof such that the inner diameter (ID) of the top sub 114 gradually reduces from the uphole end toward the downhole end thereof to facilitate the entrance of a collet into the sliding valve 100 (described later).
The valve housing 112 comprises one or more fluid ports 110 on the side wall thereof near an uphole end 132 for discharging high-pressure fracking fluid into a subterranean formation when the sliding sleeve 106 is shifted from the closed position to the opening position under an actuation pressure. The valve housing 112 also comprises one or more pinholes 136 for extending one or more shear pins 108 (see
As shown in
The sleeve body 152 also comprises one or more pinholes or recesses 170 at locations corresponding to those of the pinholes 136 of the valve housing 112 for receiving the shear pins 108 when the sliding sleeve 106 is installed in the bore 104 of the valve housing 112 at the closed position, and one or more ratchet rings 172 about a downhole end 166 thereof for engaging the ratchet threads 138 on the inner surface of the valve housing 112 when the sliding sleeve 106 is at the open position.
On its inner surface, the sleeve body 152 is made of a suitable material such as steel and comprises a downhole-facing stop-ring seat 180 uphole of the threads 156 and accessible from the downhole end 166 of the sleeve body 152 for receiving and supporting a high-strength stop ring 192, and a profiled area 182 uphole of and adjacent the stop-ring seat 180 (correspondingly, other inner-surface area of the sliding sleeve 106 is denoted as a non-profiled area).
The profiled area 182 on sleeve body 152 comprises one and preferably two or more circumferential grooves 184 such as grooves 184A and 184B forming a unique locking profile (also denoted as “a sleeve-profile”). Each groove 184 comprises an uphole wall sloped radially inwardly from downhole to uphole having an obtuse angle with respect to a longitudinal axis of the sleeve body 152. Each groove 184 also comprises and a right-angle or acute-angle downhole wall. That is, the downhole wall of each groove 184 is either perpendicular to the longitudinal axis of the sleeve body 152, or sloped radially inwardly from downhole to uphole. With grooves 184, profiled area 182 can receive a collet 200 with a matched outer-surface profile 212 (herein “matched collet”) and allow collets 200 with unmatched outer-surface profiles (herein “unmatched collets”) to pass therethrough (described later).
Depending on the number of grooves 184, the ID of the profiled area 182 on sliding sleeve 106 may vary at different longitudinal locations thereof due to grooves 184 therein. However, the minimum ID of profiled area 182 including stop ring 192 is typically the minimum ID of sliding sleeve 106. In other words, minimum ID of sliding sleeve 106 occurs in the region of the profiled area 184 and stop ring 192.
The outer diameter of collet profile 212 on collet 200 is larger than the minimum ID of profiled area 182 on sleeve body 152 to allow initial minimum engagement, in the case of a matched collet, of collet profile 212 on such matched collet 200 with profiled area 182 on sleeve body 152, but under applied fluidic pressure applied to collet 200 the OD of profiled area 212 may then substantially exceed the minimum ID of profiled area 182 on sleeve body 152, to allow maximum engagement of profiled area 212 on collet 200 with profiled area 182, in the manner more fully described below.
Notably, the OD of collet 200 in the region of ball seat 214 thereon is initially less than the ID of both bore 151 and profiled area 184 on sleeve body 152. However, collet 200 is radially outwardly expandable in the region of ball seat 214 upon application of uphole fluidic pressure acting on a ball 242 when seated in ball seat 214 in the manner more fully described below to cause radial expansion thereof (i.e., an increase in the OD of collet 200 in the region of ball seat 214) to become very close to or equal to the inner diameter of bore 151 in sleeve body 152, to thereby provide the benefits and advantages more fully explained below.
The stop ring 192 is made of a material having a hardness greater than that of the material of the sliding sleeve 106. For example, the stop ring 192 is made of a high-strength material such as tungsten carbide, cobalt-chromium alloys (e.g., Stellite alloys), nitrided steels, and/or other suitable high-strength alloys, or a combination thereof, for providing enhanced pressure resistance and wear resistance.
In some embodiments, at least a stop shoulder 194 of the stop ring 192 (described in more detail later) is hardened to a hardness greater than that of the material of the sliding sleeve 106 or comprises a material having a hardness greater than the hardness of sliding sleeve 106.
As shown in
Then, the sliding valve 100 may be assembled by inserting the sliding sleeve 106 into the bore 104 of a valve housing 112 from either end thereof to the closed position, locking the sliding sleeve 106 in position by extending a shear pin or shear screw 108 through the pinhole 136 of the valve housing 112 into the pinhole 170 of the sleeve housing 152, and then coupling the valve housing 112 with the top sub 114 and the bottom sub 116. The assembled sliding valve 100 is shown in
As shown in
As described above, the sliding valve 100 comprises a profiled inner surface area 182 having a unique locking profile that can receive and lock a matched collet and allow an unmatched collet to pass therethrough.
As shown, the collet 200 comprises a cylindrical uphole portion 206, a cylindrical downhole portion 208, and a middle portion 210 comprising a profiled area 212 having a unique locking profile.
In these embodiments, the uphole portion 206 comprises a ball seat 214 on an inner surface thereof for receiving a ball dropped from uphole. The uphole portion 206 also comprises a sealing ring 216 on its inner surface for sealing the interface between the ball and the uphole portion 206 of the collet 200.
The middle portion 210 comprises a plurality of circumferentially-distributed longitudinal splines 218 coupled to the uphole and downhole portions 206 and 208. In these embodiments, the collet 200 is made from a metal tubular by cutting, punching or otherwise forming a plurality of longitudinal slots 220 in the middle portion 210 to form the splines 218.
One or more or all of the longitudinal splines 218 are made of a resiliently flexible material with sufficient elasticity and are profiled to each comprise one or more protrusions 222 such as the protrusions 222A and 222B in the profiled area 212 extending radially outwardly from the outer surface thereof, forming a radially flexible locking profile (also denoted as “a collet-profile”). The positions and sizes of the protrusions 216 are selected such that the maximum OD of the collet 200 is greater than the minimum ID of the sliding sleeve 106, and the collet-profile thereof matches the sleeve-profile of a matched sliding sleeve 106. Therefore, when the collet 200 enters a sliding valve 100 having a matched sliding sleeve 106 (such as sliding valve 100 also denoted as “a matched sliding valve 100”), the collet 200 may be locked in the matched sliding sleeve 106. The downhole-most protrusion 222B comprises a shoulder 236 at a downhole side thereof having the same acute angle α with respect to a longitudinal axis of the sliding valve 100 as that of the stop shoulder 194.
As shown in
As shown in
As shown in
As shown in
After the ball 242 engages the ball seat 214 and sealably blocks the bore 202 of the collet 200, a fluid pressure is applied from uphole to the ball 214 and the collet 200. As the collet 200 is downwardly locked to the sliding sleeve 106, the sliding sleeve 106 is then actuated to shear the shear pin 108 and move downhole to the open position to open the fluid ports 110. As shown in
The fracking fluid is generally of high pressure, and any failure in the sliding valve 100 may cause the fracking process to fail. For example, if the engagement between the collet 200 and the sliding sleeve 106 fails, the high-pressure fracking fluid may actuate the collet 200 further downhole, thereby causing the fracking process to fail.
As those skilled in the art will appreciate, the sliding valve 100 in above embodiments comprises a high-strength stop ring 192 for reinforcing the engagement between the collet 200 and the sliding sleeve 106, thereby significantly reducing the risk of failure.
In some embodiments, the OD of the collet 200 at the protrusions 222A and 222B thereof is smaller than the ID of the sliding sleeve 106 at the grooves 184A and 184B thereof. As shown in
In some embodiments, a downhole fracking system comprising a plurality of sliding valves 100 may be used for subterranean formation fracking.
After the casing string 276 is in place, cementing may be conducted by pumping cement fluid downhole through the casing string 276. As described above and referring to
In this example, the formation 274 about a wellbore section 278 is to be fractured and the sliding valves 100B and 100C need to open. Therefore, a first collet (not shown) matching the sliding valve 100C is pumped downhole through the casing string 276. As the first collet does not match the sliding valves 100A and 100B (i.e., the collet-profile of the first collet does not match and cannot be received in the sleeve-profile of the sliding valves 100A and 100B), the first collet passes through sliding sleeves 100A and 100B, and is locked in the sliding valve 100C.
To open the fluid ports of the sliding valve 100C, a ball is dropped and engages the ball seat of the first collet and blocks the bore of the first collet. Then, a fluid pressure is applied to actuate the engaged ball, first collet and sliding sleeve to shear the shear pin of the sliding valve 100C and move the sliding sleeve downhole to the open position to open the fluid portions of sliding sleeve 100C.
After the sliding valve 100C is open, a second collet matching the sliding valve 100B is pumped downhole to lock to the sliding valve 100B. Then, a ball is dropped to engage the second collet, and a fluid pressure is applied to open the sliding valve 100B.
After all sliding valves 100B and 100C in the wellbore section 278 are opened, the balls in these sliding valves, except that in the downhole-most sliding valve, are removed by for example, drilling, dissolving, retrieving to the surface, and/or the like. In the example shown in
In above example, wellbore isolation devices such as packers may be used for isolating the wellbore section to be fractured, which is known in the art and is therefore omitted herein.
As can be seen from above examples, a fracking process can use a plurality of sliding sleeves 100 having generally same size bores 104, thereby ensuring uniform fluid flow throughput. The collet 200 and the balls 242 may also have a same size, thereby simplifies the logistics and reduces the cost of well completion.
In above embodiments as shown in
In above embodiments, the collet 200 is in the form of a cylindrical cage having a plurality of splines mounted on a cylindrical uphole portion 206 and a cylindrical downhole portion 208, thereby omitting the use of external means such as springs to radially actuate or morph the collet 200 to engage the sliding sleeve and lock therein. In a particular further embodiment, the mounting of the flexible splines at the longitudinally opposite ends thereof to the uphole and downhole portions 206 and 208, and further configuring the collet so that said splines upon initial engagement within an interior profile 184 in sliding sleeve 106, upon the application of fluidic pressure uphole to a ball situated in ball seat 214 of collet 200, advantageously allows further radial bowing of the splines on collet 200 which thereby causes further and more extensive engagement of the splines having collet profile 212 within profile 184 of sliding sleeve 184, thereby reducing the risk of non-engagement of collet 200 with selected sleeve or alternatively reduced the risk of possible disengagement of mating profile on collet 200 with mating profile 184 on sliding sleeve 106 upon fracking pressure being applied uphole, which in the instance of failure would prevent the well from having frac fluid injected under high pressure at the opened port 110.
In some alternative embodiments, a downhole fracking system comprising a tubing string having one or more sliding valves 100 may be used for fracking a wellbore section. The wellbore may be a cased wellbore or uncased wellbore.
Although in the example shown in
In above embodiments, the collet 200 may comprise one or more sealing rings 204 on the outer surface thereof for sealing the interface between the collet 200 and the sliding sleeve 106 when the collet 200 enters the sliding valve 100. However, such sealing rings 204 typically during the course of the collet downhole may be worn out and become ineffective when the collet 200 moves in the sliding sleeve 106, thereby causing the sliding valve 100 to fail. Moreover, when pumping a collet through unmatched sliding sleeves, a large fluid pressure is usually required to overcome the friction caused by the sealing rings 204 moving along the inner surface of the sliding sleeve 106.
In some alternative embodiments, the collet 200 need not comprise any sealing rings 204 on its outer surface. In these embodiments, the sliding valve 100 is the same as that shown in
In these embodiments, the sliding sleeve is made of a suitable metal such as steel. As shown in
After the collet 200 is locked in a sliding valve 100, a ball 242 of a suitable size is urged by a downhole fluid pressure onto the ball seat 214. The ball 242, when fluid downhole pressure is applied to the uphole side of the ball 242, then presses against sloped surface 282 of the ball seat 214 to transfer the downhole fluid pressure into a radially outward pressure and radially expand the expandable metal portion 206′ of the collet 200 to sufficiently reduce the clearance between the collet 200 and the sliding sleeve 106 or even forcing the outer surface of the expandable metal portion 206′ to tightly engage the inner surface of the sliding sleeve 106, thereby forming a metal-to-metal seal at the interface between the collet 200 and the sliding sleeve 106.
As shown in
In other embodiments where the collet 200 may be of a stronger or less elastic material (i.e., having a higher modulus of elasticity), and/or of a greater thickness, and/or where there is an initial clearance between the collet diameter 200 and the sliding sleeve diameter 106 of greater than 0.004 to 0.014 inches, and/or where pressure on the ball 242 is less than 1500 psi, the slope angle θ will need to be reduced to about 35° in order for ball seat 214 to then be able to transmit sufficient radial outward force to achieve sufficient radial growth of collet diameter 200 to thereby achieve the desired metal-metal seal with bore.
In some alternative embodiments, the slope angle θ is between about 50° and about 60°. In some alternative embodiments, the slope angle θ is between about 40° and about 70°. In some alternative embodiments, the slope angle θ is between about 30° and about 80°.
Accordingly, therefore, where collet 200 is configured in the manner to permit radial growth, such advantageously permits collet 200 to be reduced in overall outer diameter. Such reduced diameter, not only in the region of the ball seat 214 but also in the collet profile region 212, thereby permits collet 200 and profile-region 212 to more easily pass with less interference with, profile regions 184 of various uphole sliding sleeves 106 which are not desired to be actuated, thereby reducing frictional wear on such profiled area 212 of collet 200 but nevertheless still maintaining the ability of collet 200 to ultimately in the region of ball seat 214 to create a seal when collet 200 has reached and further for collet profile region 212 thereon to engage the intended downhole sleeve 106 and corresponding desired mating profile 184 thereon.
Specifically and importantly, by employing such radially expanding capability for the collet 200 reduced wear on collet profiles 212 thereon occurs, thereby maintaining the integrity of collet profiles 212 and ensuring when collet 200 reaches the desired sliding sleeve 106 desired to be actuated that respective profile 212 thereon is then able to sufficiently and reliably engage while simultaneously creating an initial metal-metal seal to allow pressure to build on the uphole side of ball 242. Increased pressure on the uphole side of ball 242 once collet 200 is lockingly engaged with sliding sleeve 106, then in turn causes a “domino” effect whereby such build-up of pressure causes (further) radial expansion of collet 200 which in turn causes increased metal-metal seal which then allows further build-up of pressure which again causes increased radial expansion and thus further metal-metal seal. Uphole pressure will continue to build in such manner to such an extend so as to cause shear pins 108 retaining sliding sleeve 106 in place to shear and then allow sliding sleeve 106 to move downhole in valve 100 to thereby open ports 110.
In above embodiments, the collet 200 is made from a metal tubular by cutting, punching or otherwise forming a plurality of longitudinal slots 220 in the middle portion 210 to form the splines 218. In some alternative embodiments, the splines 218 may be coupled to the uphole and downhole portions 206 and 208 via other suitable means such as welding, screws, and/or the like.
As noted above,
Specifically, in this example, collet 200, in the region of ball seat 214, is formed of API NP 80 steel, having a modulus of elasticity of 29,000,000 and a Poisson's Ratio of 0.29. The slidable sleeve 106 was also formed of API Grade N80 steel.
In this chosen example, collet 200 was provided with an initial radial clearance at the interface between the outer radial periphery of the collet 200 in the region of the ball seat 214 and the interior bore 151 of sleeve body 152 of 0.002 to 0.007 inches which was determined by applying material tolerances of the collet 200, namely the difference between the maximum and minimum dimensional tolerances between the collet 200 OD and the sliding sleeve 106 interior bore 151 internal diameter [(i.e., (4.567−4.553)/2 and (4.562−4.558)/2)].
The nominal thickness of collet 200 in the region of ball seat 214, namely on the uphole side of ball seat 214 was 0.149 to 0.1515 inches [i.e., (4.553−4.255)/2 to (4.558−4.255)/2], and on the downhole side of ball seat 214 was 0.2305 to 0.233 inches [i.e., (4.553−4.092/2 to (4.558−4.092)/2],
The slope angle θ of the ball seat 214 of the collet 200 was 55°. The ball 242 has a nominal diameter of 4.250 inches.
When fluidic pressure of 1500 psi was applied uphole to ball 242 after ball 242 has become seated in ball seat 214, the aforesaid initial radial clearance of 0.002-0.007 inches is sufficient to initially partially prevent fluid flow through such interface. Upon continued injection of fluid under pressure, fluid pressure accordingly due to such partial initial obstruction is caused to build uphole of ball 242. Radially expandable portion 206′ of collet 200, in response to force applied to ball 242 by the applied fluidic pressure produces due to sloped angle θ of ball seat 214 a radially outward force applied to the tubular collet 200 in the region of the ball seat 214. Such applied radial outward force causes radial outward expansion of metal portion 206′, thereby ultimately eliminating or substantially reducing the aforesaid radial clearance of 0.002 to 0.007 inches and create a metal-metal seal at the interface between the collet 200 and sliding sleeve 106.
Specifically, radially outwardly expandable metal portion 206′ radially expands by at least 0.09% (in the instance where the outer diameter of radially outwardly expandable metal portion 206′ is a maximum 4.558 inches and the bore ID of the sliding sleeve a minimum of 4.558 inches, namely (4.562−4.558/4.558), and nominally radially expands 0.02% (in the instance where the outer diameter of radially outwardly expandable metal portion 206′ is a nominal 4.555 inches and the bore ID of the sliding sleeve a nominal 4.565 inches, namely (4.565−4.555/4.555), and radially expands by at least 0.03% (in the instance where the outer diameter of radially outwardly expandable metal portion 206′ is a minimum 4.553 inches and the bore ID of the sliding sleeve a maximum 4.567 inches, namely (4.567−4.553/4.553), which in all cases thereby results in reduction of the radial clearance to forming a metal-to-metal seal between the collet 200 and the sliding sleeve 106.
Clearly, it will now be apparent to persons of skill in the art that variations may be made in certain of the above parameters to accomplish the desired result of providing a radially expandable collet that advantageously thereby is able to reduce contact with uphole sliding sleeves when passing through them to the desired sliding sleeve 106 and thus maintaining the dimensional tolerances of collet 200, in particular in its profile regions 212 and outer OD in the region of ball seat 214, and further more easily flowing downhole because of the reduced diameters, but upon locking engagement with the desired selected sleeve and application of fluidic pressure, be able to “grow” to maintain an effective seal and allow pressure to build sufficient to shear the shear screws 108.
By way of illustration, in this example, the sliding sleeve 106 and the collet 200 comprised API Grade N80 steel. Those skilled in the art will appreciate that, in various alternative embodiments, the sliding sleeve 106 and the collet 200 may be made of other suitable material such as API Grade P110 steel, having a similar modulus of elasticity to thereby achieve similar radial growth for an applied pressure of 1500 psi.
Alternatively, however, to reduce the magnitude of the pumping pressure but nevertheless achieve a similar amount of radial growth (i.e., nominally 0.02% radial growth) collet 200 may consist of material having a modulus of elasticity an order of magnitude less than API NP 80 steel (i.e., 1/10th that of API NP 80 steel). Such would then result in an applied pressure that need likewise only be 1/10th that of the applied pressure, namely 150 psi, to thereby still achieve the desired nominal radial growth of 0.02%.
Similarly, by reducing or increasing the slope angle θ of ball seat 214 of the collet 200 as seen in
Thus for example, with a consistent fluidic pressure of 1500 psi, reduction of slope angle θ from 55° to 30° would increase the applied force and a reduction of needed fluidic pressure from 1500 psi or use of a material having a proportionally-reduced modulus of elasticity (i.e., using a less stiff material with a greater radial deflection per unit of applied force) would then allow a similar magnitude of radial expansion growth (nominally 0.02%) to be achieved.
Additional permutation and combinations of aforesaid variables to achieve the aforementioned radial growths will now further occur to a person of skill in the art.
For example, if the slope angle θ was increased from 55° to 80° thereby reducing the effective radially outward force applied normally to collet 200, to achieve similar radial expansion of collet 200 (nominally 0.02%) such would require one or more of:
(i) a modification to the material of collet 200 to a material having a lower decrease in modulus of elasticity (i.e., lesser stiffness);
(ii) an increase in the applied fluidic pressure of 1500 psi exerted on ball 242 to achieve the same tangential force as formerly applied using a slope angle θ of 55°; or
(iii) an decrease in the thickness of the collet 200 in the region of the ball seat 214 (provided the applied pressure and resultant radial force does not exceed the yield stress of the collet 200 in the region of the ball seat 214);
Further Description
As show in
In these embodiments, the sliding valve 100 does not need ball 242 to actuate. Rather, to actuate a sliding valve 100, a matching collet 200 is pumped downhole and is locked in the sliding valve 100. A fluid pressure is applied to the closed uphole end 284 of the collet 200 and consequently shears the shear pin 108 and actuates the sliding sleeve 106 of the sliding valve 100 to move downhole to the open position. As described above, the high-strength stop ring 192 provides enhanced pressure resistance and wear resistance.
In above embodiments, the sliding sleeve 106 comprises a high-strength stop ring 192 at a downhole end of the profiled area 182 thereof, forming a stop shoulder 194 for locking a matching collet 200. In some alternative embodiments, the stop ring 192 is made of the same material as that of the sliding sleeve 106, but preferably is of a higher strength and/or hardened material and/or nitrided material, such as but not limited to tungsten carbide. In some embodiments, at least the stop shoulder 194 of the stop ring 192 is hardened to, or comprises, a hardness substantively or approximately equal to that of the downhole portion of the collet-profile of the matching collet 200.
In some alternative embodiments, the sliding sleeve 106 does not comprise any stop ring 192. Rather, the uphole end of the protection sleeve 154 forms a stop shoulder 194 for locking a matching collet.
In yet some alternative embodiments, the sleeve body 152 and the protection sleeve 154 are integrated to form a sliding sleeve 106, and comprises a radially inwardly extended circumferential ridge forming the stop shoulder 194. Therefore, the sliding sleeve 106 in these embodiments does not comprise any stop ring 192.
In some alternative embodiments, the sliding sleeve 106 only comprises the sleeve body 152 and does not comprise any protection sleeve 154. In these embodiments, the stop ring 192 is welded, mounted, or otherwise integrated in the sleeve body 152.
In some embodiments, a plurality of sleeve-profiles and collet-profiles may be obtained, and the plurality of sleeve- and collet-profiles may be used on a same tubular string in a downhole fracking system.
For example,
As shown, each sleeve-profile 106-1 to 106-4 comprises at least two grooves 184A and 184B (also denoted as “sleeve-grooves” hereinafter) and one ridge 232 (also denoted as a “sleeve-ridge” hereinafter) longitudinally between the two grooves 184A and 184B.
Correspondingly, each collet-profile 200-1 to 200-4 comprises at least two ridges 222A and 222B (also denoted as “collet-ridges” hereinafter) and one groove 234 (also denoted as a “collet-groove” hereinafter) between the two ridges 222A and 222B. Moreover, the length of each groove 184A, 184B, 234 is larger than or equal to that of each ridge 222A, 222B, 232 to allow the collet-profile 200-1 to 200-4 to be receivable in the corresponding sleeve-profile 106-1 to 106-4.
By varying the lengths of the grooves 184A and 184B and the ridge 232, a plurality of unique and individual sleeve-profiles (and corresponding unique and individual collet-sleeves) can be obtained. In these embodiments, the length difference between two sleeve-profiles, e.g., the length difference of sleeve-profiles 182-2 and 182-3, is an integer multiplication of a predetermined design parameter Lb, where Lb>0. Moreover, the length difference between respective corresponding grooves or ridges of two sleeve-profiles, e.g., the length difference of the grooves 184A of the sleeve-profiles 182-1 and 182-2, or the length difference of the grooves 184B of the sleeve-profiles 182-1 and 182-2, is also an integer multiplication of the predetermined design parameter Lb, where Lb>0.
Referring to
Ls: the longitudinal length of the sleeve-profile 182;
Sg1: the longitudinal length of the groove 184A of the sleeve-profile 182;
Sr: the longitudinal length of the ridge 232 of the sleeve-profile 182; and
Sg2: the longitudinal length of the groove 184B of the sleeve-profile 182.
The parameters Ls, Sg1, Sr, and Sg2 are measured at the radially innermost points of the sleeve-profile 182.
The following parameters (all greater than zero) are used for the collet-profile 182:
Lc: the longitudinal length of the collet-profile 212;
Cr1: the longitudinal length of the ridge 222A of the collet-profile 212;
Cg: the longitudinal length of the groove 234 of the collet-profile 212; and
Cr2: the longitudinal length of the ridge 222B of the collet-profile 212.
The parameters Lc, Cr1, Cg, and Cr2 are also measured at the radially innermost points of the collet-profile 212.
As described above, in a pair of matching collet-profile and sleeve-profile, the lengths of the grooves, including the lengths Sg1, Sg2, and Cg of the sleeve-grooves 184A and 184B and the collet-groove 234, must be larger than or equal to those of the corresponding ridges, including the lengths Cr1, Cr2, and Sr of the collet-ridges 222A and 222B and the sleeve-ridge 232, i.e., Sg1≥Cr1, Sg2≥Cr2, and Cg≥Sr, to allow the collet-profile 212 be receivable in the matching sleeve-profile 182.
In these embodiments, the uphole surfaces of the sleeve-grooves 184A and 184B and the stop ring 192 are sloped such that they extend radially inwardly towards uphole. The uphole surfaces of the collet-ridges 222A and 222B and the downhole surface of the collet-ridge 222B are sloped such that they extend radially outwardly towards downhole. These slopes affects how the sleeve-ridge 232 and the collet-ridges 222A and 222B can be received in the collet-groove 234 and the sleeve-grooves 184A and 184B.
For ease of description, in these embodiments, the angular chamfers of the uphole surfaces of the sleeve-grooves 184A, 184B, the stop ring 192, collet-ridges 222A, 222B and the downhole surface of the collet-ridge 222B are substantively the same.
As shown in
Referring again to
Sr=δLa+nLb, (1)
where 1≥δ≥0 is a predetermined design parameter, La is a predetermined design parameter and La>0, n is an integer and n≥0, Lb is a predetermined design parameter and Lb>0. Therefore, when n=0, the ridge 232 has a minimum length Sr=δLa.
The lengths Sg1 and Sg1 of the grooves 184A and 184B are defined as:
Sg1=m1Lb+(1−δ)La, (2)
Sg2=m2Lb, (3)
where m1 is an integer and m1≥1, and m2 is an integer and m2>1. Moreover,
m1+m2=K, (4)
where K>2 is a positive integer, such that for sleeve-profiles having a same K, increasing m1 will decrease m2, thereby effectively changing the location of the ridge 232 on the sleeve profile.
The length Ls of the sleeve-profile 182 is then:
Ls=Sr+Sg1+Sg2=La+(n+K)Lb. (5)
As La and Lb are predetermined design parameters, a plurality of sleeve-profile 182 with different lengths Ls may be obtained by choosing different n and K.
On the collet-profile 212, the lengths Cr1, Cr2, Cg of the ridges 222A and 222B and the collet-groove 234 are defined as:
Cr1=Sg1−t1Lb−ε2=(m1−t1)Lb+(1−δ)La−ε2, (6)
Cr2=Sg2−t2Lb=(m2−t2)Lb, (7)
Cg=Sr+Sg2−Cr2+ε2=Sr+t2Lb+ε2=δLa+(n+t2)Lb+ε2. (8)
where t1, t2 and ε2 are predetermined design parameters with 1≥t1≥0, 1≥t2≥0, and ε2≥0. The length Lc of the collet-profile 212 is:
Lc=Cr1+Cr2+Cg=Ls−t2Lb=La+(n+K−t2)Lb. (9)
The parameter ε2 only determines whether or not the downhole surface of the collet-ridge 222A will engage the downhole surface of the sleeve-groove 184A. In some embodiments, ε2=0 such that when the collet 200 engages the sleeve 106 under a pressure applied from uphole, the downhole surface of the collet-ridge 222A engages the downhole surface of the sleeve-groove 184A and the downhole surface of the collet-ridge 222B engages the stop shoulder 194, thereby providing enhanced pressure resistance. In some other embodiments, ε2>0, which, together with other conditions (described later) allows the flexible splines 218 to further radially outwardly expand and bow under fluidic pressure for enhanced engagement between the collet 200 and the sliding sleeve 106.
Referring back to
In some embodiments, the design parameters are predetermined as La=Lb, t1=t2=t, and 1≥t≥0. Then, the parameters of the sleeve-profile 182 become:
Sr=(n+δ)Lb, (10)
Sg1=(m1+1−δ)Lb, (11)
Sg2=m2Lb, (12)
m1+m2=K, (13)
Ls=(n+K+1)Lb. (14)
The parameters of the collet-profile 212 become:
Cr1=Sg1−tLb−ε2, (15)
Cr2=Sg2−tLb, (16)
Cg=(n+t+δ)Lb+ε2, (17)
Lc=(n+K+1−t)Lb. (18)
Given an ε2, the parameter t determines the length difference between the grooves and their corresponding ridges. If t=0, the sleeve-profile 182 and the collet-profile 212 have a same length. If t=1, the sleeve-profile 182 and the collet-profile 212 have the maximum length difference of Lb. In embodiments where ε2=0, if t=0, the grooves and their corresponding ridges have a same length. If t=1, the grooves and their corresponding ridges have the maximum length difference of Lb.
A variety of sleeve-profiles and collet-profiles may be obtained. For ease of description, the sleeve-profiles and collet-profiles are grouped into profile sets, and the profile sets are grouped into profile categories. Hereinafter, a sleeve-profile is denoted in the form of “S({category letter} {set number}-{profile number})”, where “{category letter}” may be A, B, C, . . . , representing the profile category that the sleeve-profile belongs to, “{set number}” may be 1, 2, 3, . . . , representing the profile set that the sleeve-profile belongs to, and “{profile number}” may be 1, 2, 3, . . . , representing the order of the sleeve-profile in the profile set. For example, sleeve-profile “S(A1-1)” represents the first sleeve-profile in set A1.
Similarly, a sleeve-profile is denoted in the form of “C({category letter} {set number}-{profile number})”. For example, collet-profile “C(B2-3)” represents the third collet-profile in set B2.
As can be seen, a plurality of sleeve-profiles 182 and collet-profiles 212 are created by varying the values of n, K and m1. Therefore, for ease of description, a sleeve-profile may also be denoted as S[n, K, m1] and a collet-profile may also be denoted as C[n, K, m1].
In these embodiments, for a given Lb, the sum of (n+K) determines the sleeve-profile's length Ls and the collet-profile's length Lc. In particular, the sleeve-profiles in each profile category (e.g., “A”) have a same length Ls=(n+K+1)Lb, and the collet-profiles in the same profile category have a same length Lc=(n+K+1−t)Lb.
The parameter n determines the length of the sleeve-ridge 232 and the length of the collet-groove 234. Therefore, the sleeve-profiles in each profile set (e.g., “A1”) have a same length of the ridge 232 as Sr=(n+δ)Lb, and the collet-profiles in the same profile set have a same length of the groove 234 as Cg=(n+t+δ)Lb+ε2.
Each profile set comprises (K−2) sleeve-profiles and (K−2) corresponding collet-profiles with a same n and a same K, in which all (K−2) sleeve-profiles have a same length Ls=(n+K+1)Lb, and a same Sr=(n+δ)Lb, and all (K−2) collet-profiles have a same length Lc=(n+K+1−t)Lb, and a same Cg=(n+t+δ)Lb+ε2.
Those skilled in the art will appreciate that, if t is equal to or close to 0, then the collet-profile fully or nearly coincides with the sleeve-profile, and thus there may exist a risk that a collet-profile cannot fit into a matching sleeve-profile due to for example, a large manufacturing tolerance of the collet-profile and/or the sleeve-profile, and/or the collet 200 entering the sliding sleeve 106 at a high speed such that the biased collet-profile does not have sufficient time to return to the unbiased condition before the collet 200 moves out of the sliding sleeve 106.
On the other hand, if t is equal to or close to 1, the grooves and their corresponding ridges have the maximum length difference of Lb, and there may exist a risk that a collet-profile may falsely fit into an unmatched sleeve-profile (described later).
In some embodiments, t may be selected sufficiently larger than zero and sufficiently smaller than one to ensure that:
(i) a collet-profile corresponding to a sleeve-profile in the set can be readily rejected by any other sleeve-profile in the same set; and
(ii) the length difference between a groove and its corresponding ridge (e.g., the length difference between the sleeve-groove 184A and the collet-ridge 222A, the length difference between the collet-groove 234 and the sleeve-ridge 232, or the length difference between the sleeve-groove 184B and the collet-ridge 222B) is sufficient for readily receiving the ridge into the groove.
For example, in one embodiment, t may be selected as 0.9≥t≥0.1. In some alternative embodiments, t may be selected as 0.8≥t≥0.2. In some alternative embodiments, t may be selected as 0.7≥t≥0.3. In some alternative embodiments, t may be selected as 0.6≥t≥0.4. In some alternative embodiments, t may be selected as about 0.5.
Table 1 below summarizes the profile sets shown in
In embodiments where two or more sliding valves 100 having the above sleeve-profiles are used on a tubular string, the order of the sleeve-profiles needs to be arranged as follows:
(a) the sliding valves shall have different sleeve-profiles; in other words, for any two sliding valves, at least one of the n, K, and m1 thereof is different;
(b) sliding valves with shorter length Ls shall be uphole to those with longer length Ls; in other words, the sliding valves with smaller (n+K) are uphole to those with larger (n+K);
(c) for sliding valves with a same length Ls, those with larger Sr shall be uphole to those with smaller Sr; in other words, for sliding valves with a same (n+K), those with larger n are uphole to those with smaller n and
(d) sliding valves of the same profile set, i.e., those having a same n and a same K, but with different m1 can be arranged in any order.
In other words, sliding valves having a “lower” category letter (e.g., “A”), i.e., sliding valves having shorter sleeve-profile length Ls, shall be uphole to those having a “higher” category letter (e.g., “D”), i.e., those having longer sleeve-profile length Ls. For sliding valves having a same category letter, i.e., having a same sleeve-profile length Ls, those having a smaller set number (e.g., “A1”) shall be downhole to those having a larger set number (e.g., “A3”).
In some alternative embodiments where t is equal to or close to 1, and the grooves and their corresponding ridges have the maximum length difference of Lb, and thus two “adjacent” sleeve- and collet-profiles are not mutually exclusive.
That is, a collet-profile may be received not only in the matching sleeve-profile, but also in the sleeve-profile that has the same category letter, the same set number, and an “adjacent” profile number (i.e., greater or smaller by 1). For example, the collet-profile C(A1-2), i.e., C[0, 6, 2], can fit into the previous and the next sleeve-profiles S(A1-1) and S(A1-2), i.e., S[0, 6, 1] and S[0, 6, 3], but cannot fit into other sleeve-profiles in the profile set A1 such as S(A1-4).
In other words, a collet-profile can fit into the previous and the next sleeve-profiles in the same profile set, but cannot fit into other sleeve-profiles in the same profile set. That is, a collet-profile C[n, K, i] can fit into the sleeve-profiles S[n, K, i+1] and S[n, K, i−1], but cannot fit into other sleeve-profiles, i.e., the sleeve profiles S[n, K, j], where j≠i, j≠i+1, and j≠i−1.
Thus, in embodiments where t=1 and two o63r more sliding valves 100 having the sleeve-profiles such as those shown in
(a) the sliding valves shall have different sleeve-profiles; in other words, for any two sliding valves, at least one of the n, K, and m1 thereof is different;
(b) in each profile sets, no two sleeve-profiles S[n, K, j1] and S[n, K, j2] shall be used on the same tubular string if |j1−j2|≤1; in other words, for any two sliding valves with a same n and a same K, the difference between the m1 thereof needs to be greater than 1;
(c) sliding valves with shorter length Ls shall be uphole to those with longer length Ls; in other words, the sliding valves with smaller (n+K) are uphole to those with larger (n+K);
(d) for sliding valves with a same length Ls, those with larger Sr shall be uphole to those with smaller Sr; in other words, for sliding valves with a same (n+K), those with larger n are uphole to those with smaller n and
(e) sliding valves of the same profile set, i.e., those having a same n and a same K, but with different m1 can be arranged in any order.
In some alternative embodiments, the above-described sleeve-profiles and collet-profiles may be concatenated or cascaded with other suitable profiles to obtain extended profiles. For example,
In some embodiments, the profiles in a same set may be concatenated with different profiles to obtain extended profiles. For example,
In above embodiments, the sleeve-profile is on the inner surface of the sleeve body 152 such that the stop shoulder 194 of the stop ring 192 is downhole thereto. In some alternative embodiments such as shown in
Correspondingly, the collet 200 may have a collet-profile extended on both the sleeve body 152 and the protection sleeve 154 for matching the sleeve-profile. To ensure the front or downhole portion of the collet 200 to smoothly pass the stop ring 192, each protrusion 292 on collet 200 that matches the profile on protection sleeve 154 has an obtuse angle on its downhole side.
The profile on the protection sleeve 154 may have any suitable shape and may be combined with a sleeve body 152 of any suitable profile such as any of those shown in
In some embodiments, the groove 294 may have other suitable lengths. For example,
In some embodiments, the profile on the protection sleeve 154 may comprise one or more grooves and/or one or more ridges.
In some embodiments, the profile on the protection sleeve 154 may be a profile selected from those shown in
As shown in
As described above and shown in
Referring to
The depth Hsg1 of the uphole sleeve-groove 184A is measured radially between the outermost surface thereof (i.e., the “bottom” thereof) and the innermost uphole edge thereof (i.e., the uphole “top” edge thereof). The height Hsr of sleeve-ridge 232 is measured radially between the innermost surface thereof (i.e., the “top” thereof) and the outermost edge thereof (i.e., the “bottom” edge thereof). The depth Hsg2 of the downhole sleeve-groove 184B is measured radially between the outermost surface thereof and the innermost downhole edge thereof which is also the innermost edge of the stop shoulder 194.
Similarly, the height Hcr1 of the uphole collet-ridges 222A is measured radially between the outermost surface thereof (i.e., the “top” thereof) and the innermost uphole edge thereof (i.e., the uphole “bottom” edge thereof). The depth Hcg of the collet-groove 234 is measured radially between the innermost surface thereof (i.e., the “bottom” thereof) and the outermost edge thereof (i.e., the “top” edge thereof). The height Hcr2 of the downhole collet-ridges 222B is measured radially between the outermost surface thereof (i.e., the “top” thereof) and the innermost downhole edge thereof (i.e., the downhole “bottom” edge thereof).
In some embodiments as shown in
In some embodiments where Hsg1=Hsg2=Hsr=Hs, and Hcr1=Hcr2=Hcr, and the collet-groove 234 is at a location about the longitudinal center of the collet profile 212, the collet-groove 234 is the most expanded portion when the splines 218 are radially outwardly expanded or flexed (see
As shown in
In some embodiments as shown in
Referring to
In some embodiments where Hsg1=Hsr=Hs, Hsg2>Hs, Hcr1=Hcr2=Hcr, and the collet-groove 234 is at a location about the longitudinal center of the collet profile 212, the collet-groove 234 is the most expanded portion when the splines 218 are radially outwardly expanded (see
In these embodiments, Hcg+Hsg2−Hcf−Hs>0, Hsg2−Hcr>0, and ε2>0. It is preferable that the gap between the collet-groove 232 and the sleeve-ridge 232 is greater than or equal to the gap between the sleeve-groove 184A/184B and the corresponding collet-ridge 222A/222B. In other words, Hcg+Hsg2−Hcr−Hs≥Hsg2−Hcr. Therefore in these embodiments, Hsg2>Hcr, Hcg>Hs, and ε2>0. In some embodiments, it is preferable that Hsg2>Hcr, Hcg=Hs, and ε2>0 such that when the collet-profile 212 is radially outwardly expanded in the sleeve-profile 182, the collet-ridge 234 can fully engage the sleeve-ridge 232 and eliminate the gap therebetween.
Although embodiments have been described above with reference to the accompanying drawings, those of skill in the art will appreciate that variations and modifications may be made without departing from the scope of the invention.
For a complete definition of the invention and its intended scope, reference is to be made to the summary of the invention and the appended claims read together with and considered with the detailed description and drawings herein on a purposive interpretation thereof.
Number | Name | Date | Kind |
---|---|---|---|
4043392 | Gazda | Aug 1977 | A |
4436152 | Fisher, Jr. et al. | Mar 1984 | A |
5305833 | Collins | Apr 1994 | A |
5309988 | Shy et al. | May 1994 | A |
5730224 | Williamson et al. | Mar 1998 | A |
7325617 | Murray | Feb 2008 | B2 |
7552779 | Murray | Jun 2009 | B2 |
9611727 | Campbell et al. | Apr 2017 | B2 |
9739117 | Campbell et al. | Aug 2017 | B2 |
20030173089 | Westgard | Sep 2003 | A1 |
20070221373 | Murray | Sep 2007 | A1 |
20070221384 | Murray | Sep 2007 | A1 |
20130056220 | Sommers et al. | Mar 2013 | A1 |
20130081827 | Etzel | Apr 2013 | A1 |
20140102709 | Arabskyy | Apr 2014 | A1 |
20140209306 | Hughes et al. | Jul 2014 | A1 |
20150218916 | Richards et al. | Aug 2015 | A1 |
20150226034 | Jani | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2412072 | May 2003 | CA |
2927850 | Jul 2016 | CA |
2966123 | Jul 2017 | CA |
2013048810 | Apr 2013 | WO |
2015160342 | Oct 2015 | WO |
2016178004 | Nov 2016 | WO |
2016178005 | Nov 2016 | WO |
WO-2016178005 | Nov 2016 | WO |
Entry |
---|
Canadian Intelectual Property Office—Office Action dated Feb. 8, 2018—CA2,986.352. |
Canadian Intellectual Property Office—Office Action dated Dec. 10, 2018 for Canadian patent application No. 3,023,541. |
ISA/CA-CIPO-PCT International Search Report and Written Opinion dated Apr. 27, 2018 (PCT/CA2017/051390). |
Canadian Intellectual Property Office—Office Action dated Jul. 5, 2018—CA2,999,298. |
Canadian Intellectual Property Office—Office Action dated Apr. 18, 2018—CA2,986,352. |
Number | Date | Country | |
---|---|---|---|
20190153817 A1 | May 2019 | US |