Locking screw system with relatively hard spiked polyaxial bushing

Information

  • Patent Grant
  • 8388666
  • Patent Number
    8,388,666
  • Date Filed
    Thursday, September 27, 2007
    17 years ago
  • Date Issued
    Tuesday, March 5, 2013
    11 years ago
Abstract
A polyaxial locking screw system includes a bone plate defining a plate hole with an inner spherical surface and a relatively harder split polyaxial bushing with a outer spherical surface provided within the plate hole for receiving a bone screw. In one embodiment, the plate is formed from titanium alloy, while the bushing is formed from a cobalt chrome alloy. The outer surface of the polyaxial bushing includes a plurality of spikes. When the screw is inserted into the bushing, since the bushing material is considerably harder than the plate material, the forceful expansion of the bushing during screw insertion causes the spikes to penetrate into the inner spherical surface of the hole, thereby increasing the frictional engagement of the bushing to the plate to lock the screw at a desired angle.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates broadly to orthopedic plates. More particularly, this invention relates to plates that locks a fastener in a desired angular orientation relative to plate to maintain the desired angular orientation.


2. State of the Art


There has been a high level of interest by the orthopedic industry to develop locking fasteners for bone plates. The exact requirements vary for the locking fasteners used with each type of bone plate and the surgical indication. However, orthopedic surgeons generally prefer locking fasteners that are easy to insert and remove, reliably lock to the plate and are atraumatic to surrounding soft tissues. In addition, it is advantageous in certain situations to have a fastener that can be set in a surgeon-defined angle relative to the plate.


One such system meeting all the aforementioned requirements is the POLYAX locking screw system available from DePuy Spine, Inc., which is described in U.S. Pat. No. 5,954,722 to Bono et al. The POLYAX locking screw system allows the surgeon to angle the axis of the bone screw up to 15 degrees in any direction relative to the hole axis, and then to lock the screw head to the plate to maintain that angle. The POLYAX system includes a split bushing having an outer spherical shape that is assembled into a plate hole having a matching spherical contour. The bushing has a conical (6° included angle) threaded hole that receives a matching threaded head of the bone screw. A small pin pressed into a hole located on the perimeter of the plate hole aligns with the split of the bushing to prevent rotation of the bushing as the bone screw head engages the conical threaded hole of the bushing. Tightening of the bone screw expands the bushing against the inside surface of the plate hole and locks the screw to the plate. Both the POLYAX bushing and the bone plate are formed from a titanium alloy (Ti-6Al-4V) of similar hardness and smooth features.


The POLYAX locking plates can be used in various applications. By way of example, vertebral plates and periarticular plates can be assembled as POLYAX systems. With respect to a periarticular plate, bushings are currently provided in plates having a thickness of about 3 mm.


Proposed bone plates such as for elbow fractures have portions with a substantially smaller thickness of about 2 mm, one-third smaller in thickness. Portions of the bushing and screw head of the current POLYAX system, if assembled into a 2 mm thick bone plate and then angled to the maximum extent, would undesirably extend beyond the top and bottom surfaces of the bone plate. This may cause irritation of surrounding soft tissues or prevent the plate from seating properly against the bone. Simply reducing the overall height of the bushing would help to make the portions of the bushing and screw head less “proud” to the plate surfaces. However this also would reduce the area of the interfacing surfaces of the bushing and the plate hole, thereby reducing the frictional engagement and the overall locking force.


SUMMARY OF THE INVENTION

A polyaxial locking screw system for internal fixation of fractured bones according to the invention includes a bone plate defining a plate hole and a spiked relatively harder polyaxial bushing provided within the plate hole for receiving a bone screw.


The plate hole has a spherical inner surface, and preferably an antirotational feature formed on the inside spherical surface of the hole to prevent rotation of the bushing in the hole during insertion of the locking screw. The plate is preferably formed from a material having a hardness of 28-35 HRC, preferably titanium alloy.


The polyaxial bushing is a split ring split having a central threaded conical hole and an outer spherical surface. The outer surface includes a plurality of spikes. The polyaxial bushing is preferably formed from a material harder than that used to construct the bone plate, preferably having a hardness of 36-44 HRC, and most preferably CoCr alloy.


The screw includes a tapered threaded head that engages a conically hole in the bushing. The threads of the screw head and bushing may be configured such that a minor diametral surface of the screw head engages the bushing threads. This creates a substantial radial force on the bushing to aid in the frictional engagement of the bushing to the plate hole, thereby locking the screw at a desired articulation angle with respect to the axis of the plate hole. The hole of the bushing and head of the screw are designed to minimize vertical variability of where the screw head seats within the bushing. Since the bushing material is considerably harder than the plate material, the forceful expansion of the bushing during screw insertion causes the spikes to penetrate into the inner spherical surface of the hole, thereby further increasing the frictional engagement of the bushing to the plate to lock the screw at the desired angle.


Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 a cross-sectional view of a polyaxial locking screw system according to the invention, with the screw fully inserted into the bushing and locked inside the plate hole in a centered position.



FIG. 2 is a perspective view of a locking bone screw for use in the polyaxial screw system of FIG. 1.



FIG. 3 is a perspective view of a portion of the bone plate of FIG. 1.



FIG. 4 is a perspective view of a bushing of the polyaxial locking screw system of FIG. 1.



FIG. 5 is a cross-sectional, detailed view of the bushing shown in FIG. 4.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning now to FIG. 1, a locking screw system 10 for internal fixation of fractured bones according to the invention is shown. The locking screw system 10 includes a bone plate 12 defining a plate hole 14, a polyaxial bushing 16 provided within the plate hole 14, and a locking screw 18 (FIG. 2) receivable within bushing 16.


Referring to FIGS. 1 and 3, the plate 12 may include a plurality of plate holes 14. The plate hole 14 has a spherical inner wall surface 20 in which the bushing 16 is polyaxially articulatable. The plate hole 14 preferably has an antirotational feature 22 formed on the inner spherical surface 20 of the plate hole to limit or control freedom of movement of the bushing 16 in the hole relative to axis A during insertion of the locking screw 18 (which would otherwise inhibit insertion of locking screw therein). The antirotational feature 22 can be sized and oriented in any position around the circumference of surface 20 such that the optimal freedom of movement or lack their of is achieved. That is, if the predicted direction of desired screw angulation is known or a direction that is not desirable is known (e.g., where there is a potential for a screw to enter an articulating surface, exiting the bone, or entering an unintended bone, or for two or more screws interfering with one another), then the size and location of the feature can be modified to achieve the desired degree of freedom. Such modification is described in more detail below. The antirotational feature 22 replaces a pin used in the current POLYAX system. As the plate 12 is thinner (thickness T) than plates used with the prior POLYAX system (e.g., T is preferably less than 3 mm and approximately 2 mm in thickness), forming the antirotational feature 22 integrally with the plate is preferred in comparison to assembling a shorter pin into the plate. Moreover, by integrating the antirotational feature within the plate, the number of discrete components required for the system is reduced relative to the prior system. The plate 12 is preferably formed from a biocompatible metal, for example, a titanium alloy (TI-6Al-4V) having a hardness of 28-35 HRC.


Referring to FIG. 4, the polyaxial bushing 16 is a split ring split at 26. If the bushing 16 is compressed in diameter for insertion into the plate hole 14, the bushing must remain in the elastic region when compressed for installation within the plate hole 14; i.e., it must not plastically deform. This can be achieved with a spring-like feature in one section of the bushing (e.g., opposite split 26) or a simple reduction in cross section along a portion of the bushing. Alternatively, as discussed below, the bushing can be installed without compressing it.


The bushing 16 has a central radially interior conical hole 28 and a radially exterior outer surface 30. The conical hole 28 preferably has an included angle of substantially 12° (i.e., 12°±2°) (compared to the included angle of 6° on the conical hole of the POLYAX bushing). This actually reduces mechanical advantage relative to the POLYAX system, but provides the advantage of reduced vertical variability of where the head 32 of the locking screw 18 seats within the conical hole 28 of the bushing 16 (FIG. 1). The vertical potential variability is approximately inversely proportional to the taper angle, at 10 to 1 for a 6° included angled (i.e., the prior POLYAX system) and 5 to 1 for a 12° included angled. Vertical variability is particularly important for a thin plate, e.g., a 2 mm plate, where structural integrity is compromised with uncontrolled or too much vertical variability. The conical hole 28 is preferably threaded with a triple lead thread 34.


Referring to FIG. 4, the outer surface 30 of the bushing 16 is preferably spherically contoured and dimensioned so that it can fit in and articulate within the plate hole. Alternatively, the outer surface 30 can be other shapes that articulate within in a spherical contour. For example, the outer surface of the bushing could be shaped as a series of steps or facets, or a combination of steps and facets. The outer surface 30 is provided with a plurality of spikes 36. In the embodiment shown in FIG. 4, the bushing has thirty-two (32) spikes 36, but the number of spikes may vary between, by way of example (and not limitation), eight (8) and over thirty-two (32) spikes.


The spikes 36 may be spaced apart or be grouped or uniformly arranged around the outer surface 30. It is preferable that the spikes be both evenly spaced in a both an equatorial and polar configuration. That is, the spikes are preferably evenly distributed radially about the circumference as well as in at least three layers. A center or middle layer 36a is aligned over a plane extending perpendicular to the axis AB of the bushing and halfway thru the length of the bushing, and second and third layers 36b, 36c are provided above and below the center layer 36a, respectively, such that when the bushing 16 is tilted 15° off of the axis AP of the plate hole 14, all spikes 36 (or a substantial majority) are still contained within the spherical hole, yet are as far as possible from the center layer to increase stability within the plate.


Referring to FIG. 5, the spikes 36 are preferably of a frusto-pyramidal shape. As shown in FIG. 5, one embodiment of a spike 36 stands proud of the outer surface 30 by approximately 0.004 inch, has a tip diameter, i.e., a cross-dimension, at truncation 38 of approximately 0.003 inch, and has sides 40 angled at an included angle of 75°. Other shapes, including conical and frustoconical, and other dimensions are possible.


The polyaxial bushing 16 is preferably formed from a material harder than that used to construct the bone plate 12, such as cobalt chrome (CoCr) alloy, and preferably has a hardness of 36-44 HRC. The CoCr alloy, besides having a desired hardness and ability to penetrate the titanium alloy of the plate, provides for a more lubricious interface with the screw 18, described below, and plate 12 since it is a different material than each. In addition, the CoCr alloy does not gall as easily as the titanium alloy.


Referring to FIGS. 1 and 2, the screw 18 includes a threaded shaft 42 that extends through the bushing 16 and into bone, and a tapered threaded head 32 that engages the conical hole 28 in the bushing 16. The included angle of the taper of the screw head 32 is substantially 12° (i.e., 12°±2°) (in comparison to the 6° included angle of the POLYAX screw head) and corresponds to the included angle of the conical hole 28 in the bushing. The threads 44 about the head 32 are tapered, triple lead threads that matches the thread 34 on the head of the locking screw, and is generally shorter in height and number of threads than on the head of the prior POLYAX screw. The screw head 32 preferably includes a hexalobe socket 46 to maximize torque transmission within a shallow design.


Referring particularly to FIG. 1, the threads 34, 44 of the bushing 16 and screw head 32 may be configured such that a minor diametral surface 48 of the screw head 18 engages the bushing threads 34. This thread configuration causes a larger portion of the screw insertion force to be directed in the radial direction (for expanding the bushing) rather than in the axial direction (for advancing the screw) as compared to conventional screw thread systems. As such, a substantial radial force is provided to the bushing 16 to aid in the frictional engagement of the bushing 16 to the plate 12 at the plate hole 14, thereby locking the screw 18 at a desired angle with respect to the axis AP of the plate hole. The increased force of this design mitigates the loss in mechanical advantage by the larger taper angle of the screw head and conical hole of the bushing.


Since the material of the bushing 16 is considerably harder than the material of the plate 12, the forceful expansion of the bushing 16 during insertion of the screw 18 causes the spikes 36 to penetrate into the inner spherical surface 20 of the plate hole 14, thereby further increasing the frictional engagement of the bushing 16 to the plate 12 to lock the screw at the desired angle. The number and size of the spikes 36 are designed to achieve about 0.002 inch depth of penetration into the surface 20 of the plate hole. The optimal number of spikes 36 and their shape is determined by the contact area between the spikes 36 on the outer surface 30 of the bushing 16 and the spherical wall surface 20 of the plate hole 14 on the plate 12, and the capacity of the screw 18 to exert an expansion force onto the bushing 16, such that the spikes 36 will deform (dig into) the wall surface 20 of the plate. If the cross-sectional area of interference (between spikes and plate) is too large, the spikes will not displace plate material around them. If the cross-sectional interference is too small, the system will not withstand the desired bending loads to the screw.


In the preferred embodiment, the maximum angle that may be achieved is approximately 15° in any direction with respect to the hole axis for a size 4.00 mm screw. The maximum angle is greater than 15° for smaller screws. However, the angle in any direction can be limited or controlled. The antirotational feature 22 is preferably provided at a location on the hole that limits movement of the bushing in a non-desired orientation (i.e., where otherwise a screw inserted through the bushing could extend through a bone articulation surface, could extend outside the bone on which the plate is implanted, or could interfere with another bone, or where two or more screws could potentially interfere with each other). It is also appreciated that the bushing 16 and antirotational feature 22 can be structured to allow greater relative movement. For example, the bushing may be split such that the material of the bushing extends about more than 181° but less, 320±30°. In such range, the bushing has a large freedom of articulation relative to the bushing, but will be prevented from rotation within a maximum of 180° of rotation relative to the plate hole. Increased freedom of movement in all directions is provided at the expense of reduced gripping strength.


Several tests were conducted to compare the locking force of the present screw locking system to the prior POLYAX screw system. In one test, the results of which are shown in Table 1, the locking force of a 3.5 mm POLYAX bone screw inserted into Ti-6Al-4V alloy bushing provided in a 2 mm Ti-6Al-4V alloy test plate was compared to the locking force of 3.5 mm bone screws inserted into spiked CoCr alloy bushings provided in a 2 mm Ti-6Al-4V alloy test plates according to the invention. The locking force (or force to bend or move the respective screws inserted into the plate at a particular insertion torque) was measured by determining what force (bending moment) applied perpendicularly to the end of the screws at a distance of 25.4 mm from the bottom of the test plate caused the screws to move relative to the plate.









TABLE 1







Measured Locking Force of Screw Relative to Plate



















Bending
Bending
Bending
Bending
Avg.




Screw
Input
Moment
Moment
Moment
Moment
Bending



# of
Diam.
Torque
Test 1
Test 2
Test 3
Test 4
Moment


Locking System
Spikes
(mm)
(in-lbs)
(in-lbs)
(in-lbs)
(in-lbs)
(in-lbs)
(in-lbs)


















Ti alloy plate/
0
3.5
20




14.15


Ti alloy bushing


Ti alloy plate/
24
3.5
20
17.1
14.9
17.2
16.2
16.4


CoCr bushing


Ti alloy plate/
24
3.5
25
16
18.8
19.3
20.9
18.8


CoCr bushing


Ti alloy plate/
32
3.5
20
19.7
19.6
19.7
21.4
20.1


CoCr bushing


Ti alloy plate/
32
3.5
25
22
19.7
19.3
22.5
20.9


CoCr bushing









The average locking force for the prior POLYAX system inserted with 20 in-lbs of torque was found to be 14.15 in-lbs, whereas the average locking force for the locking screw system of the invention with twenty-four (24) spikes and inserted with 20 in-lbs was found to be 16.4 in-lbs; the average locking force for the locking screw system of the invention with twenty-four (24) spikes and inserted with 25 in-lbs was found to be 18.8 in-lbs; the average locking force for the locking screw system of the invention with thirty-two (32) spikes and inserted with 20 in-lbs was found to be 20.1 in-lbs; and the average locking force for the locking screw system of the invention with thirty-two (32) spikes and inserted with 25 in-lbs was found to be 20.9 in-lbs.


Referring to FIGS. 3 and 4, a preferred method of installing the bushing 16 into the plate hole 14 is now described. The diameter of the bushing 16 from surface spike to surface spike is generally sufficiently large to prevent the bushing from releasing from the plate hole 14. However, the diameter D1 of the bushing from the split 26 to the opposite side 50 of the bushing is appropriately sized such that the bushing may be inserted orthogonally to the plate hole and into the hole. It may be necessary to remove one or more spikes lying substantially along D1 and near opposite side 50 (i.e., within 5°) to reduce the effective bushing diameter and facilitate insertion. Once inserted into the plate hole, the bushing is orientated to align the split 26 with the antirotational feature 22 of the plate hole 14. In another embodiment, preferably two spikes (although possibly more spikes) lying substantially along a diameter D2 (i.e., within 5°) orientated orthogonal to a diameter D1 are removed to reduce diameter D2, and the bushing is inserted with such reduced diameter D2 so as to be received within the plate hole 14. Once inserted into the plate hole 14, the bushing 16 is orientated to align the split 26 with the antirotational feature 22. The bushing 16 can alternatively be elastically compressed and inserted into the plate hole 14.


There have been described and illustrated herein embodiments of a screw locking system. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials have been disclosed, it will be appreciated that other materials can be used as well. In addition, while particular shapes of spikes, and numbers thereof, have been disclosed, it will be understood other shapes and numbers of spikes or other protuberances (collectively referred to herein as ‘spikes’) can be used. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Claims
  • 1. A locking plate system for engagement with a bone, the system comprising: a) a plate including a plate hole with an inner wall;b) a split bushing including a radially exterior surface and a radially interior hole, said exterior surface including a plurality of frusto-pyramidal spikes, each of said spikes having four sides of substantially common shape and size, each of said four sides of a spike extends up from said exterior surface of said bushing by approximately 0.004 inch, said four sides are angled at an included angle of 75°, and a cross-dimension of a frustum of a tip of said spike is approximately 0.003 inch, and multiple spikes are provided about a line defining a circumference, said exterior surface of said bushing is sized to be in contact with said inner wall and said bushing is polyaxially articulatable within said plate hole; andc) a bone screw including a leading portion sized for extension through said hole in said bushing and into the bone and an opposite head portion sized to expand said bushing against the inner wall of said plate to cause said spikes to penetrate said inner wall and lock said bushing and said plate in a selected polyaxial position.
  • 2. A locking plate system according to claim 1, wherein: said plate hole is provided with an antirotational feature formed on said inner wall to prevent rotation of said bushing in the plate hole about the central axis during insertion of said locking screw, said antirotational feature includes a groove extending only partially circumferentially about said inner wall, said groove sized to receive an entirety of said exterior surface of said bushing.
  • 3. A locking plate system according to claim 1, wherein: said plate is less than 3 mm in thickness.
  • 4. A locking plate system according to claim 1, wherein: said exterior surface of said bushing has a circumference defining a plane perpendicular to a central axis through said bushing,said plurality of spikes are evenly radially distributed about said circumference, andall of said plurality of spikes being divided into one of first, second and third subsets about said circumference, each of said subsets having a substantially equal number of at least two of said spikes,said first subset is distributed in said plane perpendicular,said second subset is distributed above said plane perpendicular, andsaid third subset is distributed below said plane perpendicular.
  • 5. A locking plate system according to claim 1, wherein: said radial interior hole of said bushing and said head portion of said screw each having an included angle of substantially 12°.
  • 6. A locking plate system according to claim 1, wherein: said plate is 2 mm thick and includes a bone contacting surface, and when said locking screw is inserted into said bushing with a torque of 20 in-lbs to expand said bushing and lock said locking screw relative to said plate, a force in excess of 16 lbs applied perpendicularly to said locking screw at a distance of 25.4 mm from said bone contacting surface of said plate is required to move said locking screw relative to said plate.
  • 7. A locking plate system according to claim 1, wherein: said spikes each have a substantially square base.
  • 8. A locking plate system according to claim 1, wherein: said plate is 2 mm thick and includes a bone contacting surface, and once said locking screw has been inserted into said bushing with a torque of 20 in-lbs such that said bushing is expanded and said locking screw is locked relative to said plate, a force in excess of 16 lbs applied perpendicularly to said locking screw at a distance of 25.4 mm from said bone contacting surface of said plate is required to move said locking screw relative to said plate.
  • 9. A locking plate system according to claim 1, wherein: said bushing includes split ends about which said bushing is expandable, andsaid plate hole is provided with an antirotational feature formed on said inner wall to prevent rotation of said bushing in the plate hole about the central axis during insertion of said locking screw, said antirotational feature includes a structure that extends from said inner wall to between said split ends.
  • 10. A locking plate system for engagement with a bone, the system comprising: a) a plate including a plate hole with an inner wall and a central longitudinal axis extending through said plate hole, said plate made of a first material having a first hardness;b) a split bushing including a radially exterior surface and a radially interior hole and defining a central axis, said exterior surface including a plurality of spikes radially and longitudinally offset from each other, a plurality of said spikes being distributed within each of at least three planes, one of said planes being a middle plane between the other two planes, each of said planes being axially displaced along and perpendicular to said central axis of said bushing, said bushing polyaxially articulatable within said plate hole, and said bushing made of a second material having a second hardness; andc) a bone screw including a leading portion sized for extension through said hole in said bushing and into the bone and an opposite head portion sized to expand said bushing against the inner wall of said plate to locking said bushing and said plate in a selected polyaxial position, wherein said second hardness is sufficiently greater than said first hardness such that said spikes penetrate said inner surface of said plate hole upon expansion of said bushing, said plate hole is provided with an antirotational feature formed on said inner wall to prevent rotation of said bushing in said plate hole about said central longitudinal axis during insertion of said bone screw, said antirotational feature includes a groove extending only partially circumferentially about said inner wall, said groove sized to receive an entirety of said exterior surface of said bushing, andsaid bushing includes split ends about which said bushing is expandable, and said antirotational feature includes a structure that extends from said inner wall to between said split ends.
  • 11. A locking plate system according to claim 10, wherein: said plate is less than 3 mm in thickness.
  • 12. A locking plate system according to claim 10, wherein: said spikes are frusto-pyramidal in shape, and have four sides of substantially common shape and size.
  • 13. A locking plate system according to claim 10, wherein: said plurality of spikes are evenly radially distributed about said circumference, andall of said plurality of spikes being divided into one of first, second and third subsets about said circumference, each of said subsets having a substantially equal number of at least two of said spikes,said first subset is distributed in said middle plane,said second subset is distributed above said middle plane, andsaid third subset is distributed below said middle plane.
  • 14. A locking plate system according to claim 10, wherein: said radial interior hole of said bushing and said head portion of said screw each having an included angle of substantially 12°.
  • 15. A locking plate system for engagement with a bone, the system comprising: a) a plate including a plate hole with an inner wall and a central longitudinal axis extending through said plate hole, said plate made of a first material having a hardness of 28-35 HRC;b) a split bushing including a radially exterior surface and a radially interior hole and defining a central axis, said exterior surface including a plurality of frusto-pyramidal spikes with a substantially square shaped base, said spikes radially and longitudinally offset from each other, a plurality of said spikes being distributed within each of at least three planes, one of said planes being a middle plane between the other two planes, said planes being axially displaced along and perpendicular to said central axis of said bushing, said bushing polyaxially articulatable within said plate hole, and said bushing made of a material having a hardness of 36-44 HRC; andc) a bone screw including a leading portion sized for extension through said hole in said bushing and into the bone and an opposite head portion sized to expand said bushing against the inner wall of said plate to cause said spikes to penetrate said inner wall and thereby lock said bushing and said plate in a selected polyaxial position, said plate hole is provided with an antirotational feature formed on said inner wall to prevent rotation of said bushing in said plate hole about said central longitudinal axis during insertion of said bone screw, said antirotational feature includes a groove extending only partially circumferentially about said inner wall, said groove sized to receive an entirety of said exterior surface of said bushing, andsaid bushing includes split ends about which said bushing is expandable, and said antirotational feature includes a structure that extends from said inner wall to between said split ends.
  • 16. A locking plate system according to claim 15, wherein: said plate is less than 3 mm in thickness.
  • 17. A locking plate system according to claim 15, wherein: said spikes each have four sides of substantially common shape and size.
  • 18. A locking plate system according to claim 15, wherein: said bushing is insertable into said plate hole without using compression.
  • 19. A locking plate system according to claim 15, wherein: said radial interior hole of said bushing and said head portion of said screw each having an included angle of substantially 12°.
  • 20. A locking plate system for engagement with a bone, the system comprising: a) a plate including a plate hole with an inner wall and a central longitudinal axis extending through said plate hole, said plate made of a titanium alloy;b) a split bushing including a radially exterior surface and a radially interior conical hole and defining a central axis, said exterior surface including a plurality of spikes radially and longitudinally offset from each other, a plurality of said spikes being distributed within each of at least three planes, one of said planes being a middle plane between the other two planes, said planes being axially displaced along and perpendicular to said central axis of said bushing, said bushing polyaxially articulatable within said plate hole, and said bushing made of a cobalt chrome alloy; andc) a locking screw including a leading portion sized for extension through said conical hole in said bushing and into the bone and an opposite threaded head portion sized to expand said bushing against said inner wall of said plate hole to cause said cobalt chrome alloy spikes to penetrate said titanium alloy inner wall and thereby lock said bushing and said locking screw relative to said plate in a selected polyaxial position, said plate hole is provided with an antirotational feature formed on said inner wall to prevent rotation of said bushing in said plate hole about said central longitudinal axis during insertion of said locking screw, said antirotational feature includes a groove extending only partially circumferentially about said inner wall, said groove sized to receive an entirety of said exterior surface of said bushing, andsaid bushing includes split ends about which said bushing is expandable, and said antirotational feature includes a structure that extends from said inner wall to between said split ends.
  • 21. A locking plate system according to claim 20, wherein: said plate is less than 3 mm in thickness.
  • 22. A locking plate system according to claim 20, wherein: said spikes are frusto-pyramidal in shape, and have four sides of substantially common shape and size.
  • 23. A locking plate system according to claim 22, wherein: each of said four sides extends up from said outer surface of said bushing by approximately 0.004 inch and is angled at an included angle of 75°.
  • 24. A locking plate system according to claim 23, wherein: a cross-dimension of a frustum of a tip of at least one of said spikes is approximately 0.003 inch.
  • 25. A locking plate system according to claim 20, wherein: said plurality of spikes are evenly radially distributed about said exterior surface, andsaid plurality of spikes being divided into one of first, second and third subsets about said exterior surface, each of said subsets having a substantially equal number of at least two of said spikes,said first subset is distributed in said middle plane,said second subset is distributed above said middle plane, andsaid third subset is distributed below said middle plane.
  • 26. A locking plate system according to claim 20, wherein: said radial interior hole of said bushing and said head portion of said screw each have an included angle of substantially 12°.
US Referenced Citations (93)
Number Name Date Kind
1798604 Hoke Mar 1931 A
1828856 Bridges Oct 1931 A
2091788 McManus Aug 1937 A
2965205 Winchell Dec 1960 A
3596656 Kaute Aug 1971 A
3741205 Markolf et al. Jun 1973 A
4029091 Von Bezold et al. Jun 1977 A
4794918 Wolter Jan 1989 A
5057111 Park Oct 1991 A
5151103 Tepic et al. Sep 1992 A
5176678 Tsou Jan 1993 A
5269784 Mast Dec 1993 A
5275601 Gogolewski et al. Jan 1994 A
5364399 Lowery et al. Nov 1994 A
5520690 Errico et al. May 1996 A
5531746 Errico et al. Jul 1996 A
5549608 Errico et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5601553 Trebing et al. Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5607428 Lin Mar 1997 A
5643265 Errico et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5709686 Talos et al. Jan 1998 A
5735853 Olerud Apr 1998 A
5797912 Runciman et al. Aug 1998 A
5807396 Raveh Sep 1998 A
5810823 Klaue et al. Sep 1998 A
5954722 Bono Sep 1999 A
5976141 Haag et al. Nov 1999 A
5997541 Schenk Dec 1999 A
6048344 Schenk Apr 2000 A
6206881 Frigg et al. Mar 2001 B1
6235033 Brace et al. May 2001 B1
6280445 Morrison et al. Aug 2001 B1
6322562 Wolter Nov 2001 B1
6454769 Wagner et al. Sep 2002 B2
6485491 Farris et al. Nov 2002 B1
6572622 Schafer et al. Jun 2003 B1
6575975 Brace et al. Jun 2003 B2
6663632 Frigg Dec 2003 B1
6730091 Pfefferle et al. May 2004 B1
6755831 Putnam et al. Jun 2004 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7276070 Muckter Oct 2007 B2
7311712 Dalton Dec 2007 B2
7682379 Mathieu et al. Mar 2010 B2
7785327 Navarro et al. Aug 2010 B1
7846163 Fourcault et al. Dec 2010 B2
8216283 Mathieu et al. Jul 2012 B2
8226692 Mathieu et al. Jul 2012 B2
8287575 Murner et al. Oct 2012 B2
20020022843 Michelson Feb 2002 A1
20030083660 Orbay May 2003 A1
20030187440 Richelsoph et al. Oct 2003 A1
20030199876 Brace et al. Oct 2003 A1
20030225409 Freid et al. Dec 2003 A1
20040073218 Dahners Apr 2004 A1
20040092938 Carli May 2004 A1
20040127900 Konieczynski et al. Jul 2004 A1
20040204712 Kolb et al. Oct 2004 A1
20040220570 Frigg Nov 2004 A1
20040254579 Buhren et al. Dec 2004 A1
20040260295 Orbay et al. Dec 2004 A1
20040260298 Kaiser et al. Dec 2004 A1
20040267261 Derouet Dec 2004 A1
20050004574 Muckter Jan 2005 A1
20050033298 Hawkes et al. Feb 2005 A1
20050043736 Mathieu et al. Feb 2005 A1
20050049594 Wack et al. Mar 2005 A1
20050154392 Medoff et al. Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050182404 Lauryssen et al. Aug 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20050192580 Dalton Sep 2005 A1
20050228386 Ziolo et al. Oct 2005 A1
20050240186 Orbay Oct 2005 A1
20050251137 Ball Nov 2005 A1
20050261690 Binder et al. Nov 2005 A1
20050277937 Leung et al. Dec 2005 A1
20060122602 Konieczynski et al. Jun 2006 A1
20060149256 Wagner et al. Jul 2006 A1
20060235399 Carls Oct 2006 A1
20070118125 Orbay et al. May 2007 A1
20080172094 Mathieu et al. Jul 2008 A1
20080221569 Moore et al. Sep 2008 A1
20090192553 Maguire et al. Jul 2009 A1
20100137867 Mathieu et al. Jun 2010 A1
20100256686 Fisher et al. Oct 2010 A1
20110196423 Ziolo et al. Aug 2011 A1
Foreign Referenced Citations (24)
Number Date Country
4341980 Jun 1995 DE
4343117 Jun 1995 DE
0486762 May 1992 EP
0530585 Mar 1993 EP
1364623 Nov 2003 EP
2667913 Apr 1992 FR
WO 9625892 Aug 1996 WO
WO 9632071 Oct 1996 WO
WO 9702786 Jan 1997 WO
WO 9709000 Mar 1997 WO
WO 9812976 Apr 1998 WO
WO 0103593 Jan 2001 WO
WO 0178615 Oct 2001 WO
WO 0245568 Jun 2002 WO
WO 03043513 May 2003 WO
WO 03055401 Jul 2003 WO
WO 03071965 Sep 2003 WO
WO 03101321 Dec 2003 WO
WO 2004032751 Apr 2004 WO
WO 2004043276 May 2004 WO
WO 2004052219 Jun 2004 WO
WO 2004066855 Aug 2004 WO
WO 2004069066 Aug 2004 WO
WO 2004096067 Nov 2004 WO
Related Publications (1)
Number Date Country
20090088807 A1 Apr 2009 US