This invention relates generally to a locking spacer assembly, in particular, a locking spacer assembly configured to fill a final spacer slot in a disk groove between platforms of adjacent blades of a blade assembly in an industrial gas turbine engine.
An industrial gas turbine engine typically includes a compressor for compressing air, a combustor for mixing the compressed air with fuel and igniting the mixture, a turbine section for producing mechanical power, and a generator for converting the mechanical power to an electrical power. The compressor and the turbine section include a plurality of blades that are attached on a rotor. The blades are arranged in rows axially spaced apart along the rotor and circumferentially attached to a periphery of a rotor disk.
A conventional locking spacer assembly typically includes a plurality of pieces, such as side pieces, middle piece, bolt and nut. The conventional locking spacer assembly may experience uncertainties during assembly. For example, positive clamping may be needed to reduce dynamic loads transferred to the bolted joint. However, maintaining positive clamping may result in higher bearing stresses and limits available operating temperature range for joint material. Additionally, manufacture cost of the conventional locking spacer assembly may be high. There is a need to provide a simple, reliable and low cost locking spacer assembly.
Briefly described, aspects of the present invention relate to a locking spacer assembly, in particular, a locking spacer assembly configured to fill a final spacer slot in a disk groove between platforms of adjacent blades of a blade assembly in an industrial gas turbine engine.
According to an aspect, a locking spacer assembly configured to fill a final spacer slot in a disk groove between platforms of adjacent blades of a blade assembly is presented. The locking spacer assembly comprises a first side piece comprising a top surface, an inner surface and an outer surface. The locking spacer assembly comprises a second side piece comprising a top surface, an inner surface and an outer surface. The locking spacer assembly comprises a bolt configured to be inserted between the inner surface of the first side piece and the inner surface of the second side piece. The locking spacer assembly comprises a mid piece configured to be disposed onto the bolt and inserted between the inner surface of the first side piece and the inner surface of the second side piece. The top surface of the first side piece comprises a L-shape formed by a tab and a recess. The top surface of the second side piece comprises a L-shape formed by a tab and a recess. The mid piece comprises a hollow cylindrical body to receive the bolt. The mid piece comprises a top platform disposed around a top of the hollow cylindrical body and a middle platform disposed around a bottom of the hollow cylindrical body. The top platform comprises two L-shaped axial side surfaces adapted to flush with the L-shaped top surface of the first side piece and the L-shaped top surface of the second side piece. The first side piece comprises an aperture disposed through the tab of the first side piece. The second side piece comprises an aperture disposed through the tab of the second side piece. A first pin and a second pin are radially disposed through the aperture of the first side piece and the aperture of the second side piece extending toward to the middle platform of the mid piece.
According to an aspect, a blade assembly is presented. The blade assembly comprises a rotor disk comprising a disk groove. The blade assembly comprises a plurality of blades inserted in the disk groove. Each of the blades comprises a platform. A final spacer slot is formed in the disk groove between platforms of adjacent blades. The blade assembly comprises a locking spacer assembly configured to fill the final spacer slot. The locking spacer assembly comprises a first side piece comprising a top surface, an inner surface and an outer surface. The locking spacer assembly comprises a second side piece comprising a top surface, an inner surface and an outer surface. The locking spacer assembly comprises a bolt configured to be inserted between the inner surface of the first side piece and the inner surface of the second side piece. The locking spacer assembly comprises a mid piece configured to be disposed onto the bolt and inserted between the inner surface of the first side piece and the inner surface of the second side piece. The top surface of the first side piece comprises a L-shape formed by a tab and a recess. The top surface of the second side piece comprises a L-shape formed by a tab and a recess. The mid piece comprises a hollow cylindrical body to receive the bolt. The mid piece comprises a top platform disposed around a top of the hollow cylindrical body and a middle platform disposed around a bottom of the hollow cylindrical body. The top platform comprises two L-shaped axial side surfaces adapted to flush with the L-shaped top surface of the first side piece and the L-shaped top surface of the second side piece. The first side piece comprises an aperture disposed through the tab of the first side piece. The second side piece comprises an aperture disposed through the tab of the second side piece. A first pin and a second pin are radially disposed through the aperture of the first side piece and the aperture of the second side piece extending toward to the middle platform of the mid piece.
According to an aspect, a method for installing a locking spacer assembly into a final spacer slot in a disk groove between platforms of adjacent blades of a blade assembly is presented. The locking spacer assembly comprises a first side piece, a second side piece, a bolt and a mid piece. The method comprises inserting the first side piece and the second side piece into the final spacer slot. The first side piece comprises a top surface, an inner surface and an outer surface. The second side piece comprises a top surface, an inner surface and an outer surface. The method comprises inserting the bolt between the inner surface of the first side piece and the inner surface of the second side piece. The method comprises disposing the mid piece onto the bolt and inserted between the inner surface of the first side piece and the inner surface of the second side piece. The top surface of the first side piece comprises a L-shape formed by a tab and a recess. The top surface of the second side piece comprises a L-shape formed by a tab and a recess. The first side piece comprises an aperture disposed through the tab of the first side piece. The second side piece comprises an aperture disposed through the tab of the second side piece. The mid piece comprises a hollow cylindrical body to receive the bolt. The mid piece comprises a top platform disposed around a top of the hollow cylindrical body and a middle platform disposed around a bottom of the hollow cylindrical body. The top platform of the mid piece comprises two L-shaped axial side surfaces. The method comprises rotating the mid piece such that the L-shaped axial side surfaces align with the L-shaped top surface of the first side piece and the L-shaped top surface of the second side piece respectively. The method comprises dropping down the mid piece such that the L-shaped axial sides flush with the L-shaped top surface of the first side piece and the L-shaped top surface of the second side piece. The method comprises radially disposing a first pin and a second pin through the aperture of the first side piece and the aperture of the second side piece toward to the middle platform of the mid piece.
Various aspects and embodiments of the application as described above and hereinafter may not only be used in the combinations explicitly described, but also in other combinations. Modifications will occur to the skilled person upon reading and understanding of the description.
Exemplary embodiments of the application are explained in further detail with respect to the accompanying drawings. In the drawings.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
A detailed description related to aspects of the present invention is described hereafter with respect to the accompanying figures.
The top surface 221 of the first side piece 220 may have a L-shape formed by a tab 224 and a recess 225. The tab 224 extends axially outwardly from the inner surface 223 at one axial side of the first side piece 220. The recess 225 extends radially downwardly from the top surface 221 on the inner surface 223. A first flange surface 226 extends axially outwardly from the inner surface 223 and locates at the radially downward end of the recess 225. A circular groove 227 extends radially downwardly from the first flange surface 226 on the inner surface 223. A second flange surface 228 is disposed at bottom of the circular groove 227 on the inner surface 223. Two side tabs 229 extends axially outwardly from the inner surface 223 at two axial sides of the first side piece 220, respectively. The two side tabs 229 may extend radially upwardly from the first flange surface 226. The two side tabs 229 may prevent a circumferential movement of the mid piece 260 in assembly. According to an exemplary embodiment as illustrated in
The second side piece 240 may have a mirror configuration with respect to the first side piece 220. For illustration purpose, a different perspective view of the second side piece 240 is also shown in
The mid piece 260 may include a hollow cylindrical body 261 extending radially downwardly to receive the bolt 280 in assembly. A top platform 262 may be disposed around the top of the cylindrical body 261 and extends outwardly from outer side of the hollow cylindrical body 261. Two axial side surfaces 263 of the top platform 262 have a mating L-shape that aligns with the L-shaped top surface 221 of the first side piece 220 and the L-shaped top surface 241 of the second side piece 240 respectively. A middle platform 264 may be disposed around the bottom of the hollow cylindrical body 261. The middle platform 264 may rest on the first flange surface 226 of the first side piece 220 and the first flange surface 246 of the second side piece 240 in assembly. The mid piece 260 may include two flaps 265 extending radially downwardly from the bottom of the hollow cylindrical body 261. Bolt 280 may extend through the two flaps 265 and protrude through the hollow cylindrical body 261. Upper portion 266 of each flap 265 may have a circular shape so that it may slide into the circular groove 227 of the first side piece 220 and the circular groove 247 of the second side piece 240 and rotate in the circular groove 227 of the first side piece 220 and the circular groove 247 of the second side piece 240 during assembly. Bottoms of the upper portions 266 of flaps 265 may partially rest on the second flange surface 228 of the first side piece 220 and the second flange surface 248 of the second side piece 240 in assembly such that a distance for disposing the mid-piece 260 onto the bolt 280 is limited. The flaps 265 may include cutout 267 for reducing weight of the mid piece 260. Each flap 265 may have a flat outer surface. Each flap 265 may have a circular upper inner surface and a flat bottom inner surface. The mid piece 260 may be disposed onto the bolt 280 from top of the bolt 280 in assembly so that the bolt 280 extends radially upwardly through the flaps 265 and into the hollow cylindrical body 261.
The bolt 280 may have a shaft body 281. Threads 282 are disposed at upper portion of the shaft body 281. Bottom of the shaft body 281 may have a cam shape having two radially downwardly flat axial surfaces 283 and two convex side surfaces 284. The bolt 280 may be disposed into the mid piece 260 in assembly such that the two convex side surfaces 284 may axially extend out from the two flaps 265 of the mid piece 260 and is disposed into the concave cavity 231 of the first side piece 220 and the concave cavity 251 of the second side piece 240 respectively. The upper circular portion of the inner surfaces of the flaps 265 of the mid piece 260 receive the shaft body 281. The bottom flat portion of the inner surfaces of the flaps 265 of the mid piece 260 may align with the two flat axial surfaces 283 of the cam shaped bottom portion of the bolt 280 respectively. The bolt 280 extends through the two flaps 265 and protrude through the hollow cylindrical body 261 of the mid piece 260. A recess 285 may be disposed on the top surface of the shaft body 281. The recess 285 may be engaged with a tool (not shown) for rotating the bolt 280 during assembly.
The locking spacer assembly 200 may include a fastener 290. The fastener 290 may be a nut having threads inside. The fastener 290 may be disposed into the hollow cylindrical body 261 of the mid piece 260 and threaded with the threads 282 of the bolt 280 during assembly so that the first side piece 220, the second side piece 240, the mid piece 260 and the bolt 280 are locked in position in the disk groove 142 of the rotor disk 140 in assembly. The fastener 290 may have recesses 291 to be engaged with a tool (not shown) for threading the fastener 290 to the bolt 280.
An aperture 232 may be disposed on the top surface 221 of the first side piece 220. The aperture 232 may be drilled radially through the tab 224 of the first side piece 220. Mirror likely, an aperture 252 may be disposed on the top surface 241 of the second side piece 240. The aperture 252 may be drilled radially through the tab 244 of the second side piece 240. During assembly, a first pin 233 and a second pin 253 may be radially inserted through the aperture 232 of the first side piece 220 and the aperture 253 of the second side piece 240. The pins 233 and 253 radially extend toward the middle platform 264 of the mid piece 260 in assembly to avoid a radial movement of the mid piece 260. Such arrangement may maintain the mid piece 260 within the assembly in an event of failure in threads between the bolt 290 and the fastener 290 due to continuous operation so that the mid piece 260 is fail safe without liberating into a flow path during operation. The apertures 232 and 252 may be small holes. The apertures 232 and 252 may have threads inside. The pins 233 and 253 may have threads outside to be engaged with threaded apertures 232 and 252 respectively.
With reference to
With reference to
With reference to
With reference to
According to an aspect, the proposed locking spacer assembly 200 includes a first side piece 220 having a recess 225 and a circular groove 227 and a second side piece 240 having a recess 245 and a circular groove 247. The proposed locking spacer assembly 200 includes a mid piece 260 having a hollow cylindrical body 261 and a circular shape 266 of flaps 265. The recess 225 and the circular groove 227 of the first side piece 220 and the recess 245 and the circular groove 247 of the second side piece 240 provide enough clearance for the mid piece 260 to rotate and to drop during assembly which enables an ease of assembly and disassembly.
According to an aspect, the proposed locking spacer assembly 200 includes a first side piece 220 having an aperture 232 and a second side piece 240 having an aperture 252. The proposed locking spacer assembly 200 includes a mid piece 260 having a top platform 262 flushing with top surfaces 221 and 241. The mid piece 260 includes a middle platform 264 disposed radially between the first side piece 220 and the second side piece 240. A first pin 233 and a second pin 253 may be radially inserted through the apertures 232 and 252 toward to the middle platform 264 to avoid a radial movement of the mid piece 260. The proposed locking spacer assembly 200 maintains the mid piece 260 within the assembly without liberating into a flow path in an event of broken or loosen threads between the bolt 280 and the fastener 290. The proposed locking spacer assembly 200 provides a safe design for locking blade spacer.
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings. The invention is not limited in its application to the exemplary embodiment details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/024765 | 3/28/2018 | WO | 00 |