Deadbolts are operated by a user (e.g., with a key on an outside of the door or a thumbturn on the inside of the door) to secure the door against unwanted intrusions. Motorized deadbolts are also available, but these can display disadvantages. For example, it can often be difficult to determine whether the door is actually locked without attempting to open the door. This can cause the door to be breached if the user believes it to be locked when that is, in fact, not so.
In one aspect, the technology relates to an apparatus having: a housing; a motor having a motor shaft having a motor shaft axis, wherein the motor is disposed in the housing; a lead screw having a lead screw axis, wherein the lead screw is rotatably mounted in the housing; a deadbolt configured to be linearly extended from the housing based on a rotation of the lead screw; a gear set having a plurality of gears, wherein each of the plurality of gears includes a gear axis, and wherein the gear set is disposed in the housing and operably connecting the motor and the lead screw; and a circuit board having a plurality of portions communicatively connected by a ribbon, wherein the circuit board is disposed within the housing, and wherein the plurality of portions are each disposed substantially orthogonal to the motor shaft axis, the lead screw axis, and the plurality of gear axes. In an embodiment, the apparatus further includes a power source disposed within the housing. In another embodiment, the power source includes a battery having a first pole disposed at a first end of the battery and a second pole disposed at a second end of the battery, wherein the poles define a battery axis substantially orthogonal to the plurality of circuit board portions. In yet another embodiment, the apparatus further includes a motor contact connected to at least one of the circuit board portions with a motor contact ribbon; and a battery contact connected to at least one of the circuit board portions with a battery contact ribbon. In still another embodiment, the motor contact lead is connected to a first circuit board portion, and wherein the battery contact lead is connected to a second circuit board of the circuit.
In another embodiment of the above aspect, the motor contact lead is connected to the first circuit board portion with a motor ribbon and the battery contact lead is connected to the second circuit board portion with a battery ribbon. In an embodiment, the apparatus further includes a communication module disposed between the plurality of circuit board portions and connected to at least one of the plurality of circuit board portions. In another embodiment, the battery includes a plurality of batteries, wherein each battery axis of the plurality of batteries is disposed parallel to each other. In yet another embodiment, the apparatus further includes a sensor disposed on at least one of the plurality of circuit board portions and configured to detect a rotation of the lead screw.
In another aspect, the technology relates to an apparatus having: a substantially cylindrical housing having a housing axis and defining a motor chamber, a deadbolt chamber, and a battery chamber, wherein each of the motor chamber, the deadbolt chamber, and the battery chamber each includes a largest linear dimension substantially aligned with the housing axis, and wherein the motor chamber and the deadbolt chamber are separated from the battery chamber by at least a portion of a circuit board. In an embodiment, the portion of the circuit board system includes a pair of parallel portions connected by a ribbon. In another embodiment, the circuit board further includes a motor contact disposed in the motor chamber and a battery contact disposed in the battery chamber. In yet another embodiment, the apparatus further includes a motor contact lead connecting the motor contact to a first one of the pair of parallel portions disposed proximate the motor chamber and deadbolt chamber, and a battery contact flexible connecting the battery contact to a second one of parallel portions disposed proximate the battery chamber. In still another embodiment, the apparatus further includes a leadscrew and a deadbolt at least partially disposed in the deadbolt chamber and operably connected to the lead screw such that a rotation of the lead screw extends the deadbolt away from the first one of the pair of parallel portions.
In another embodiment of the above aspect, the apparatus further includes a sensor disposed on the first one of the pair of parallel portions, wherein the sensor is configured to detect a rotation of the lead screw. In an embodiment, the apparatus further includes a motor disposed in the motor chamber. In another embodiment, the apparatus further includes a gear set operably connecting the motor and the lead screw.
In another aspect, the technology relates to a method of manufacturing a lock having a substantially cylindrical housing defining a plurality of chambers, an open end, and an elongate circuit board, the method including: inserting a first contact of the elongate circuit board into a first one of the plurality of chambers; bending the elongate circuit board at a first location and inserting the elongate circuit board within the housing so as to separate the first chamber of the plurality of chambers from a second chamber of the plurality of chambers; and bending the elongate circuit board at a second location so as to form the elongate circuit board into two substantially parallel portions. In an embodiment, the method further includes installing a deadbolt in the first chamber of the plurality of chambers and installing a motor in a third chamber of the plurality of chambers. In another embodiment, the method further includes bending the elongate circuit board in a third location.
There are shown in the drawings, examples which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.
The circuit board 112 includes a number of portions that allow it to be fitted into the housing 102 so as to conserve internal space thereof. For example, the circuit board 112 includes a first portion 130 and a second portion 132 connected by a flexible substrate portion or live hinge 134. These first 130 and second portions 132 are disposed between the battery chamber 110 and the motor and deadbolt chambers 106, 108. The circuit board 112 further includes a motor contact 136 and a battery contact 138, each of which are connected to one of the first and second portions 130, 132 via a lead ribbon 140, 142 of board substrate which may be flexible or rigid. The lead ribbons 140, 142 allow the motor and battery contacts 136, 138 to extend to the opposite ends of their respective chambers 106, 110. The battery chamber 110 includes a number of discrete battery contacts in the form of springs 144 and contact plates 146, as known in the art. In the depicted example, springs 144 and contact plates 146 for three “AA” batteries are depicted, although other battery types, arrangements, and power sources may be utilized. A contact plate 148 is disposed at an end of the battery chamber 110 and is configured to contact the battery contact 138 so as to form a complete power circuit therebetween.
An end plate 150 may be secured to the end of the housing 102 with one or more screws 152 to secure the battery chamber 110. Although not depicted, one or more electrical wires may exit the housing 102, e.g., proximate the end plate 150, so as to allow the deadbolt system 100 to be powered, alternatively or additionally, by a remote power source, such as building power, a remote battery, or other source. Control wiring to a remote controller may also be present. These wires may be connected at or near the battery contact 138. At an opposite end of the housing 102, the faceplate 104 may be secured with one or more screws 152. The faceplate 104 defines a deadbolt opening 154 for allowing passage of the deadbolt 128 and an LED opening 156 to allow a user to view an LED 158 disposed on the end of the motor 114, which may be indicative of status condition, lock condition, battery power condition, or other conditions. Further, the faceplate 104 may define one or more openings 160 configured to receive screws 152 to secure the deadbolt system 100 to a door panel.
The deadbolt system 100 depicted in
Overall size of the deadbolt system 100 is further reduced by disposing the first and second portions 130, 132 of the circuit board 112 parallel to each other, and between the battery chamber 110 and the combined location of the motor chamber 106 and the deadbolt chamber 108. This configuration provides for a significant available area on the circuit board 112 to be located within the housing 102. Additionally, the location of the circuit board 112, substantially orthogonal to the axes A-H, prevents end-user access to the motor chamber 106 and the deadbolt chamber 108. Instead, the end-user would only have access to the battery chamber 110, e.g., via the end cap 150, to replace the batteries therein. This prevents potential end-user tampering with movable components of the deadbolt system 100, which might void the warranty, cause damage, or allow for debris infiltration into those internal volumes. Further space within the housing 102 is saved by disposing the ribbons 140, 142 so as to be substantially parallel to the axes A-H.
In examples, the housing 102 may be cylindrical with a maximum diameter of about one inch, one and one-quarter inch, or one and one-half inch or more. Such small diameters are possible because the largest linear dimension of each of chambers 106, 108, 110 are substantially aligned with the housing axis H. Such diameters allow the use of readily-available drill bits to drill a door panel so as to install the deadbolt system 100. Thus, this simplifies installation, even by inexperienced end-users. As such, the deadbolt system 100 (and one or more of the keepers described below) may be sold as a kit containing a deadbolt and keeper, as required or desired for a particular application, to be installed by an end-user (e.g., a homeowner).
The deadbolt system 100 may be utilized with standard keepers (typically disposed in the door frame opposite the door panel when closed), or may be used with an electronic keeper that may detect the extension of the deadbolt 128. These electronic keepers may be one of the keepers described in the following figures. Alternatively, one of the following keepers may be used with a particular type of deadbolt system that need not necessarily be electronic. That is, an electronic keeper may be utilized with a manual deadbolt. Various examples of electronic keepers are described below.
A circuit board 226 is disposed within the interior chamber 208. The circuit board includes two sections or portions 228, 230 that are secured, e.g., to first 203 and second 205 sidewalls, respectively, of the housing 202. The first section 228 provides a mounting location for operational modules and components. For example, a battery holder 232 having a cradle 234 and cover 236 may be secured to the first portion 228. Thus, once installed, the battery holder 232 may be accessed by removing the cover plate 220 and removing/installing a battery, as required. The second section 230 provides a mounting location for other operational modules and components. For example, an RFID sensor 238 may be present, as may a communication module 240. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 224. The RFID sensor 238 may be used to detect an RFID chip, for example, the chip installed in or on the deadbolt depicted in
The two sections or portions 228, 230 of the circuit board 226 are communicatively coupled via a flexible ribbon 242. The flexible ribbon 242 may be formed as described above for the circuit board 226 utilized in the electronic deadbolt of
The configuration of the decorative plate 322 enables the keeper 300 to be utilized with the above-identified P3000 door lock. The opening 324 is, of course, aligned with the deadbolt-receiver opening 318. However, the decorative plate 322 also defines a latch opening 325 that allows for passage of the latch. This enables the door to be held shut without completely locking the door. Of course, decorative plates having different opening configurations may be utilized, depending on the type of lock utilized. As such, the keeper 300 may be utilized with the other locks, simply by changing the decorative plate size and/or configuration.
A circuit board 326 is disposed within the interior chamber 308. As above, the circuit board includes two sections or portions 328, 330. However, these are both secured to a second sidewall 205 of the housing 302. The first section 328 provides a mounting location for operational modules and components. For example, a battery holder 332 having a cradle 334 and cover 336 may be secured to the first portion 328. The second section 330 provides a mounting location for other operational modules and components, such as an RFID sensor 338 and a communication module 340. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 324. A representative deadbolt 390 is depicted in
The two sections or portions 328, 330 of the circuit board are communicatively coupled via a flexible ribbon 342 that may be formed as described above. In this depicted example of the electronic keeper 300, the first section 328 and second section 330 are both is disposed on a single side of the housing axis HA, but in the battery chamber 312 and in the deadbolt-receiving chamber 314, respectively.
A circuit board 426 is disposed within the interior chamber 408. As above, the circuit board includes two sections or portions 428, 430 that are secured to a single sidewall 403 of the housing 402. The first section 428 provides a mounting location for operational modules and components. For example, a battery holder 432 having a cradle 434 and cover 436 may be secured to the first portion 428. The second section 430 provides a mounting location for other operational modules and components, such as, for example, an RFID sensor 438 and a communication module 440. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 424. A representative deadbolt 490 is depicted in
The two sections or portions 428, 430 of the circuit board are communicatively coupled via a flexible ribbon 442 that may be formed as described above. In this depicted example of the electronic keeper 400, the first section 428 and second section 430 are disposed on a single side of the housing axis HA, and in the battery chamber but in different chambers 412, 414.
Mechanical multi-point door lock systems are available in various configurations. Almost invariably, the mechanical multi-point lock systems include a main lock housing having more than one lock point extending therefrom, or a main lock housing connected via a linkage to one or more remote locking elements. Typically, in examples where a main lock housing has multiple lock points extending therefrom, the housing is often very bulky. In examples where a main lock housing is connected to remote locks via a linkage, the linkage must typically be installed in a so-called “Euro-groove” or elongate routed channel in an edge of the door. This linkage is then covered by a cover plate. Regardless of configuration, installation of a multi-point lock system is typically a complicated process, performed at a door manufacturing facility, or by a trained contractor. The electronic deadbolt and keeper systems described herein, however, can be positioned at various locations about a door panel so as to create a multi-point lock system, but without requiring complex installation procedures.
The electronic deadbolts and keepers described herein can be utilized in entry doors, sliding doors, pivoting patio doors, and other doors so as to create customized multi-point lock systems that are easy to install.
In one configuration, once the deadbolt 708 is manually, the electronic keeper 706 detects a position of the deadbolt 708 therein. A signal may be sent to the remotely located electronic deadbolts 702, thus causing actuation thereof. At this point, the door 701 is now locked at multiple points. Unlocking of the manual deadbolt 708 is detected by the electronic keeper 706 (that is, the keeper 706 no longer detects the presence of the deadbolt 708 therein) and a signal is sent to the remote electronic deadbolts 702 causing retraction thereof, thus allowing the door to be opened. Thus, with minimal complexity, the electronic deadbolts and electronic keepers described herein may be utilized to create a robust multi-point locking system for a door, thus improving the security thereof.
In another example, the system 700 may include a controller/monitoring system, which may be a remote panel 710, which may be used to extend or retract the electronic deadbolts 702, or which may be used for communication between the various electronic keepers 704 and deadbolts 702. Alternatively or additionally, an application on a remote computer or smartphone 712 may take the place of, or supplement the remote panel 710. By utilizing a remote panel 710 and/or a smartphone 712, the electronic deadbolts 702 may be locked or unlocked remotely, thus providing multi-point locking ability without the requirement for manual actuation of a deadbolt. Additionally, any or all of the components (electronic deadbolt 702, keeper 706, panel 710, and smartphone 712) may communicate either directly or indirectly with a home monitoring or security system 714. The communication between components may be wireless, as depicted, or may be via wired systems.
The materials utilized in the manufacture of the lock and keepers described herein may be those typically utilized for lock manufacture, e.g., zinc, steel, aluminum, brass, stainless steel, etc. Molded plastics, such as PVC, polyethylene, etc., may be utilized for the various components. Material selection for most of the components may be based on the proposed use of the locking system. Appropriate materials may be selected for mounting systems used on particularly heavy panels, as well as on hinges subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.).
While there have been described herein what are to be considered exemplary and preferred examples of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.
Number | Name | Date | Kind |
---|---|---|---|
333093 | Wright | Dec 1885 | A |
419384 | Towne | Jan 1890 | A |
651947 | Johnson | Jun 1900 | A |
738280 | Bell et al. | Sep 1903 | A |
932330 | Rotchford | Aug 1909 | A |
958880 | Lawson | May 1910 | A |
966208 | Hoes | Aug 1910 | A |
972769 | Lark | Oct 1910 | A |
980131 | Shean | Dec 1910 | A |
998642 | Shean | Jul 1911 | A |
1075914 | Hoes | Oct 1913 | A |
1094143 | Hagstrom | Apr 1914 | A |
1142463 | Shepherd | Jun 1915 | A |
1174652 | Banks | Mar 1916 | A |
1247052 | Wilson | Nov 1917 | A |
1251467 | Blixt et al. | Jan 1918 | A |
1277174 | Bakst | Aug 1918 | A |
1359347 | Fleisher | Nov 1920 | A |
1366909 | Frommer | Feb 1921 | A |
1368141 | Hagstrom | Feb 1921 | A |
1529085 | Preble | Mar 1925 | A |
1574023 | Crompton et al. | Feb 1926 | A |
1596992 | Ognowicz | Aug 1926 | A |
1646674 | Angelillo | Oct 1927 | A |
1666654 | Hiering | Apr 1928 | A |
1716113 | Carlson | Jun 1929 | A |
1974253 | Sandor | Sep 1934 | A |
2535947 | Newell | Dec 1950 | A |
2729089 | Pelcin | Jan 1956 | A |
2739002 | Johnson | Mar 1956 | A |
2862750 | Minke | Dec 1958 | A |
2887336 | Meyer | May 1959 | A |
2905493 | Tocchetto | Sep 1959 | A |
3064462 | Ng et al. | Nov 1962 | A |
3083560 | Scott | Apr 1963 | A |
3124378 | Jackson | Mar 1964 | A |
3162472 | Rust | Dec 1964 | A |
3214947 | Wikkerink | Nov 1965 | A |
3250100 | Cornaro | May 1966 | A |
3332182 | Mark | Jul 1967 | A |
3378290 | Sekulich | Apr 1968 | A |
3413025 | Sperry | Nov 1968 | A |
3437364 | Walters | Apr 1969 | A |
RE26677 | Russell et al. | Oct 1969 | E |
3498657 | Fontana | Mar 1970 | A |
3578368 | Dupuis | May 1971 | A |
3586360 | Perrotta | Jun 1971 | A |
3617080 | Miller | Nov 1971 | A |
3670537 | Horgan, Jr. | Jun 1972 | A |
3792884 | Tutikawa | Feb 1974 | A |
3806171 | Fernandez | Apr 1974 | A |
3899201 | Paioletti | Aug 1975 | A |
3904229 | Waldo | Sep 1975 | A |
3919808 | Simmons | Nov 1975 | A |
3940886 | Ellingson, Jr. | Mar 1976 | A |
3953061 | Hansen et al. | Apr 1976 | A |
4076289 | Fellows et al. | Feb 1978 | A |
4116479 | Poe | Sep 1978 | A |
4130306 | Brkic | Dec 1978 | A |
4132438 | Guymer | Jan 1979 | A |
4135377 | Kleefeldt | Jan 1979 | A |
4146994 | Williams | Apr 1979 | A |
4236396 | Surko et al. | Dec 1980 | A |
4273368 | Tanaka | Jun 1981 | A |
4283882 | Hubbard | Aug 1981 | A |
4288944 | Donovan | Sep 1981 | A |
4362328 | Tacheny | Dec 1982 | A |
4365490 | Manzoni | Dec 1982 | A |
4372594 | Gater | Feb 1983 | A |
4476700 | King | Oct 1984 | A |
4500122 | Douglas | Feb 1985 | A |
4547006 | Castanier | Oct 1985 | A |
4548432 | Bengtsson | Oct 1985 | A |
4593542 | Rotondi et al. | Jun 1986 | A |
4595220 | Hanchett, Jr. | Jun 1986 | A |
4602490 | Glass | Jul 1986 | A |
4602812 | Bourne | Jul 1986 | A |
4607510 | Shanaan et al. | Aug 1986 | A |
4633688 | Beudat | Jan 1987 | A |
4639025 | Fann | Jan 1987 | A |
4643005 | Logas | Feb 1987 | A |
4691543 | Watts | Sep 1987 | A |
4704880 | Schlindwein | Nov 1987 | A |
4717909 | Davis | Jan 1988 | A |
4754624 | Fleming et al. | Jul 1988 | A |
4768817 | Fann | Sep 1988 | A |
4893849 | Schlack | Jan 1990 | A |
4913475 | Bushnell et al. | Apr 1990 | A |
4949563 | Gerard et al. | Aug 1990 | A |
4961602 | Pettersson | Oct 1990 | A |
4962653 | Kaup | Oct 1990 | A |
4962800 | Owiriwo | Oct 1990 | A |
4964660 | Prevot et al. | Oct 1990 | A |
4973091 | Paulson | Nov 1990 | A |
5077992 | Su | Jan 1992 | A |
5092144 | Fleming et al. | Mar 1992 | A |
5114192 | Toledo | May 1992 | A |
5118151 | Nicholas, Jr. et al. | Jun 1992 | A |
5125703 | Clancy et al. | Jun 1992 | A |
5148691 | Wallden | Sep 1992 | A |
5171050 | Mascotte | Dec 1992 | A |
5172944 | Munich et al. | Dec 1992 | A |
5184852 | O'Brien | Feb 1993 | A |
5193861 | Juga | Mar 1993 | A |
5197771 | Kaup et al. | Mar 1993 | A |
5257841 | Geringer | Nov 1993 | A |
5265452 | Dawson et al. | Nov 1993 | A |
5290077 | Fleming | Mar 1994 | A |
5364138 | Dietrich | Nov 1994 | A |
5373716 | MacNeil et al. | Dec 1994 | A |
5382060 | O'Toole et al. | Jan 1995 | A |
5388875 | Fleming | Feb 1995 | A |
5394718 | Hotzi | Mar 1995 | A |
5404737 | Hotzl | Apr 1995 | A |
5441315 | Kleefeldt | Aug 1995 | A |
5456503 | Russell et al. | Oct 1995 | A |
5482334 | Hotzl | Jan 1996 | A |
5495731 | Riznik | Mar 1996 | A |
5496082 | Zuckerman | Mar 1996 | A |
5498038 | Simon | Mar 1996 | A |
5513505 | Danes | May 1996 | A |
5516160 | Kajuch | May 1996 | A |
5524941 | Fleming | Jun 1996 | A |
5524942 | Fleming | Jun 1996 | A |
5544924 | Paster | Aug 1996 | A |
5603534 | Fuller | Feb 1997 | A |
5609372 | Ponelle | Mar 1997 | A |
5620216 | Fuller | Apr 1997 | A |
5707090 | Sedley | Jan 1998 | A |
5716154 | Miller et al. | Feb 1998 | A |
5722704 | Chaput et al. | Mar 1998 | A |
5728108 | Griffiths et al. | Mar 1998 | A |
5735559 | Frolov | Apr 1998 | A |
5757269 | Roth | May 1998 | A |
5782114 | Zeus et al. | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5820170 | Clancy | Oct 1998 | A |
5820173 | Fuller | Oct 1998 | A |
5825288 | Wojdan | Oct 1998 | A |
5865479 | Viney | Feb 1999 | A |
5878606 | Chaput et al. | Mar 1999 | A |
5890753 | Fuller | Apr 1999 | A |
5896763 | Dinkelborg et al. | Apr 1999 | A |
5901989 | Becken et al. | May 1999 | A |
5906403 | Bestler et al. | May 1999 | A |
5911763 | Quesada | Jun 1999 | A |
5915764 | MacDonald | Jun 1999 | A |
5918916 | Kajuch | Jul 1999 | A |
5946956 | Hotzl | Sep 1999 | A |
5951068 | Strong et al. | Sep 1999 | A |
5979199 | Elpern | Nov 1999 | A |
6050115 | Schroter et al. | Apr 2000 | A |
6079585 | Lentini | Jun 2000 | A |
6089058 | Elpern | Jul 2000 | A |
6094869 | Magoon et al. | Aug 2000 | A |
6098433 | Maniaci | Aug 2000 | A |
6112563 | Ramos | Sep 2000 | A |
6116067 | Myers | Sep 2000 | A |
6120071 | Picard | Sep 2000 | A |
D433916 | Frey | Nov 2000 | S |
6148650 | Kibble | Nov 2000 | A |
6174004 | Picard et al. | Jan 2001 | B1 |
6196599 | D'Hooge | Mar 2001 | B1 |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6250842 | Kruger | Jun 2001 | B1 |
6257030 | Davis, III et al. | Jul 2001 | B1 |
6264252 | Clancy | Jul 2001 | B1 |
6266981 | von Resch et al. | Jul 2001 | B1 |
6282929 | Eller et al. | Sep 2001 | B1 |
6283516 | Viney | Sep 2001 | B1 |
6293598 | Rusiana | Sep 2001 | B1 |
6318769 | Kang | Nov 2001 | B1 |
6327881 | Grundler et al. | Dec 2001 | B1 |
6389855 | Renz et al. | May 2002 | B2 |
6441735 | Marko | Aug 2002 | B1 |
6443506 | Su | Sep 2002 | B1 |
6453616 | Wright | Sep 2002 | B1 |
6454322 | Su | Sep 2002 | B1 |
6457751 | Hartman | Oct 2002 | B1 |
6490895 | Weinerman | Dec 2002 | B1 |
6502435 | Watts et al. | Jan 2003 | B2 |
6516641 | Segawa | Feb 2003 | B1 |
6540268 | Pauser | Apr 2003 | B2 |
6564596 | Huang | May 2003 | B2 |
6568726 | Caspi | May 2003 | B1 |
6580355 | Milo | Jun 2003 | B1 |
6619085 | Hsieh | Sep 2003 | B1 |
6637784 | Hauber | Oct 2003 | B1 |
6672632 | Speed et al. | Jan 2004 | B1 |
6688656 | Becken | Feb 2004 | B1 |
6733051 | Cowper | May 2004 | B1 |
6776441 | Liu | Aug 2004 | B2 |
6810699 | Nagy | Nov 2004 | B2 |
6813916 | Chang | Nov 2004 | B2 |
6871451 | Harger et al. | Mar 2005 | B2 |
6905152 | Hudson | Jun 2005 | B1 |
6929293 | Tonges | Aug 2005 | B2 |
6935662 | Hauber et al. | Aug 2005 | B1 |
6962377 | Tonges | Nov 2005 | B2 |
6971686 | Becken | Dec 2005 | B2 |
6994383 | Morris | Feb 2006 | B2 |
7000959 | Sanders | Feb 2006 | B2 |
7010945 | Yu | Mar 2006 | B2 |
7010947 | Milo | Mar 2006 | B2 |
7025394 | Hunt | Apr 2006 | B1 |
7032418 | Martin | Apr 2006 | B2 |
7052054 | Luker | May 2006 | B2 |
7083206 | Johnson | Aug 2006 | B1 |
7128350 | Eckerdt | Oct 2006 | B2 |
7152441 | Friar | Dec 2006 | B2 |
7155946 | Lee et al. | Jan 2007 | B2 |
7203445 | Uchida | Apr 2007 | B2 |
7207199 | Smith et al. | Apr 2007 | B2 |
7249791 | Johnson | Jul 2007 | B2 |
7261330 | Hauber | Aug 2007 | B1 |
7353637 | Harger et al. | Apr 2008 | B2 |
7404306 | Walls et al. | Jul 2008 | B2 |
7410194 | Chen | Aug 2008 | B2 |
7418845 | Timothy | Sep 2008 | B2 |
7513540 | Hagemeyer et al. | Apr 2009 | B2 |
7526933 | Meekma | May 2009 | B2 |
7634928 | Hunt | Dec 2009 | B2 |
7637540 | Chiang | Dec 2009 | B2 |
7677067 | Riznik et al. | Mar 2010 | B2 |
7686207 | Jeffs | Mar 2010 | B1 |
7707862 | Walls et al. | May 2010 | B2 |
7726705 | Kim | Jun 2010 | B2 |
7735882 | Abdollahzadeh et al. | Jun 2010 | B2 |
7748759 | Chen | Jul 2010 | B2 |
7856856 | Shvartz | Dec 2010 | B2 |
7878034 | Alber et al. | Feb 2011 | B2 |
7946080 | Ellerton | May 2011 | B2 |
7963573 | Blomqvist | Jun 2011 | B2 |
8161780 | Huml | Apr 2012 | B1 |
8182002 | Fleming | May 2012 | B2 |
8325039 | Picard | Dec 2012 | B2 |
8348308 | Hagemeyer et al. | Jan 2013 | B2 |
8376414 | Nakanishi et al. | Feb 2013 | B2 |
8376415 | Uyeda | Feb 2013 | B2 |
8382166 | Hagemeyer et al. | Feb 2013 | B2 |
8382168 | Carabalona | Feb 2013 | B2 |
8398126 | Nakanishi et al. | Mar 2013 | B2 |
8403376 | Greiner | Mar 2013 | B2 |
8494680 | Sparenberg et al. | Jul 2013 | B2 |
8550506 | Nakanishi | Oct 2013 | B2 |
8567631 | Brunner | Oct 2013 | B2 |
8628126 | Hagemeyer et al. | Jan 2014 | B2 |
8646816 | Dziurdzia | Feb 2014 | B2 |
8839562 | Madrid | Sep 2014 | B2 |
8840153 | Juha | Sep 2014 | B2 |
8850744 | Bauman et al. | Oct 2014 | B2 |
8851532 | Geringer | Oct 2014 | B2 |
8876172 | Denison | Nov 2014 | B2 |
8899635 | Nakanishi | Dec 2014 | B2 |
8922370 | Picard | Dec 2014 | B2 |
8939474 | Hagemeyer et al. | Jan 2015 | B2 |
9428937 | Tagtow et al. | Aug 2016 | B2 |
9482035 | Wolf | Nov 2016 | B2 |
9512654 | Armari et al. | Dec 2016 | B2 |
9605444 | Rickenbaugh | Mar 2017 | B2 |
9637957 | Hagemeyer et al. | May 2017 | B2 |
9758997 | Hagemeyer et al. | Sep 2017 | B2 |
9765550 | Hemmingsen et al. | Sep 2017 | B2 |
9790716 | Hagemeyer et al. | Oct 2017 | B2 |
9822552 | Eller et al. | Nov 2017 | B2 |
10174522 | Denison | Jan 2019 | B2 |
10240366 | Sotes Delgado | Mar 2019 | B2 |
10246914 | Sieglaar | Apr 2019 | B2 |
10822836 | Nakasone | Nov 2020 | B2 |
20020104339 | Saner | Aug 2002 | A1 |
20030024288 | Gokcebay | Feb 2003 | A1 |
20030159478 | Nagy | Aug 2003 | A1 |
20040004360 | Huang | Jan 2004 | A1 |
20040011094 | Hsieh | Jan 2004 | A1 |
20040066046 | Becken | Apr 2004 | A1 |
20040089037 | Chang | May 2004 | A1 |
20040107746 | Chang | Jun 2004 | A1 |
20040107747 | Chang | Jun 2004 | A1 |
20040112100 | Martin | Jun 2004 | A1 |
20040145189 | Liu | Jul 2004 | A1 |
20040227349 | Denys | Nov 2004 | A1 |
20040239121 | Morris | Dec 2004 | A1 |
20050029345 | Waterhouse | Feb 2005 | A1 |
20050044908 | Min | Mar 2005 | A1 |
20050050928 | Frolov | Mar 2005 | A1 |
20050103066 | Botha et al. | May 2005 | A1 |
20050144848 | Harger et al. | Jul 2005 | A1 |
20050166647 | Walls | Aug 2005 | A1 |
20050180562 | Chiang | Aug 2005 | A1 |
20050229657 | Johansson et al. | Oct 2005 | A1 |
20060043742 | Huang | Mar 2006 | A1 |
20060071478 | Denys | Apr 2006 | A1 |
20060076783 | Tsai | Apr 2006 | A1 |
20060150516 | Hagemeyer | Jul 2006 | A1 |
20060208509 | Bodily | Sep 2006 | A1 |
20070068205 | Timothy | Mar 2007 | A1 |
20070080541 | Fleming | Apr 2007 | A1 |
20070113603 | Polster | May 2007 | A1 |
20070170725 | Speyer et al. | Jul 2007 | A1 |
20070259551 | Rebel | Nov 2007 | A1 |
20080000276 | Huang | Jan 2008 | A1 |
20080001413 | Lake | Jan 2008 | A1 |
20080087052 | Abdollahzadeh et al. | Apr 2008 | A1 |
20080092606 | Meekma | Apr 2008 | A1 |
20080093110 | Bagung | Apr 2008 | A1 |
20080141740 | Shvartz | Jun 2008 | A1 |
20080150300 | Harger et al. | Jun 2008 | A1 |
20080156048 | Topfer | Jul 2008 | A1 |
20080156049 | Topfer | Jul 2008 | A1 |
20080157544 | Phipps | Jul 2008 | A1 |
20080178530 | Ellerton et al. | Jul 2008 | A1 |
20080179893 | Johnson | Jul 2008 | A1 |
20080184749 | Alber et al. | Aug 2008 | A1 |
20080191499 | Stein | Aug 2008 | A1 |
20090064737 | Fan | Mar 2009 | A1 |
20090078011 | Avni | Mar 2009 | A1 |
20090218832 | Mackle | Sep 2009 | A1 |
20090314042 | Fan | Dec 2009 | A1 |
20090315669 | Lang | Dec 2009 | A1 |
20100107707 | Viviano | May 2010 | A1 |
20100154490 | Hagemeyer et al. | Jun 2010 | A1 |
20100213724 | Uyeda | Aug 2010 | A1 |
20100236302 | Uyeda | Sep 2010 | A1 |
20100313612 | Eichenstein | Dec 2010 | A1 |
20100327610 | Nakanishi et al. | Dec 2010 | A1 |
20110056254 | Tsai | Mar 2011 | A1 |
20110198867 | Hagemeyer et al. | Aug 2011 | A1 |
20110289987 | Chiou et al. | Dec 2011 | A1 |
20110314877 | Fang | Dec 2011 | A1 |
20120001443 | Mitchell | Jan 2012 | A1 |
20120146346 | Hagemeyer et al. | Jun 2012 | A1 |
20120235428 | Blacklaws | Sep 2012 | A1 |
20120306220 | Hagemeyer et al. | Dec 2012 | A1 |
20130019643 | Tagtow et al. | Jan 2013 | A1 |
20130081251 | Hultberg | Apr 2013 | A1 |
20130140833 | Hagemeyer et al. | Jun 2013 | A1 |
20130152647 | Terei et al. | Jun 2013 | A1 |
20130200636 | Hagemeyer et al. | Aug 2013 | A1 |
20130234449 | Dery et al. | Sep 2013 | A1 |
20130276488 | Haber | Oct 2013 | A1 |
20140060127 | Hemmingsen et al. | Mar 2014 | A1 |
20140125068 | Hagemeyer et al. | May 2014 | A1 |
20140159387 | Hagemeyer et al. | Jun 2014 | A1 |
20140182343 | Talpe | Jul 2014 | A1 |
20140367978 | Geringer | Dec 2014 | A1 |
20150075233 | Pluta | Mar 2015 | A1 |
20150089804 | Picard | Apr 2015 | A1 |
20150114176 | Bisang | Apr 2015 | A1 |
20150170449 | Chandler, Jr. | Jun 2015 | A1 |
20150176311 | Picard | Jun 2015 | A1 |
20150252595 | Hagemeyer et al. | Sep 2015 | A1 |
20160083976 | Rickenbaugh | Mar 2016 | A1 |
20160108650 | Hagemeyer et al. | Apr 2016 | A1 |
20160369525 | Tagtow et al. | Dec 2016 | A1 |
20180023320 | McKibben | Jan 2018 | A1 |
20180051478 | Tagtow | Feb 2018 | A1 |
20180119462 | Hagemeyer | May 2018 | A1 |
20180155962 | Mitchell et al. | Jun 2018 | A1 |
20180298642 | Tagtow | Oct 2018 | A1 |
20180313116 | Criddle | Nov 2018 | A1 |
20190024437 | Tagtow | Jan 2019 | A1 |
20190032368 | Welbig et al. | Jan 2019 | A1 |
20190277062 | Tagtow | Sep 2019 | A1 |
20200354990 | Tagtow | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
84928 | Dec 2000 | AU |
2631521 | Nov 2009 | CA |
1243908 | Feb 2000 | CN |
2554288 | Jun 2003 | CN |
2595957 | Dec 2003 | CN |
2660061 | Dec 2004 | CN |
201031548 | Mar 2008 | CN |
202047652 | Nov 2011 | CN |
1002656 | Feb 1957 | DE |
1584112 | Sep 1969 | DE |
2639065 | Mar 1977 | DE |
3032086 | Mar 1982 | DE |
3836693 | May 1990 | DE |
9011216 | Oct 1990 | DE |
4224909 | Feb 1993 | DE |
29807860 | Aug 1998 | DE |
20115378 | Nov 2001 | DE |
10253240 | May 2004 | DE |
202012002743 | Apr 2012 | DE |
202013000920 | Apr 2013 | DE |
202013000921 | Apr 2013 | DE |
202013001328 | May 2013 | DE |
0007397 | Feb 1980 | EP |
0231042 | Aug 1987 | EP |
0268750 | Jun 1988 | EP |
341173 | Nov 1989 | EP |
359284 | Mar 1990 | EP |
661409 | Jul 1995 | EP |
792987 | Sep 1997 | EP |
1106761 | Jun 2001 | EP |
1283318 | Feb 2003 | EP |
1449994 | Aug 2004 | EP |
1574642 | Sep 2005 | EP |
1867817 | Dec 2007 | EP |
2128362 | Dec 2009 | EP |
2273046 | Jan 2011 | EP |
2339099 | Jun 2011 | EP |
2450509 | May 2012 | EP |
2581531 | Apr 2013 | EP |
2584123 | Apr 2013 | EP |
2584124 | Apr 2013 | EP |
2998483 | Mar 2016 | EP |
3091152 | Nov 2016 | EP |
363424 | Jul 1906 | FR |
370890 | Feb 1907 | FR |
21883 | Apr 1921 | FR |
1142316 | Mar 1957 | FR |
1162406 | Sep 1958 | FR |
1201087 | Dec 1959 | FR |
2339723 | Sep 1977 | FR |
2342390 | Sep 1977 | FR |
2344695 | Oct 1977 | FR |
2502673 | Oct 1982 | FR |
2848593 | Feb 2005 | FR |
3017641 | Aug 2015 | FR |
226170 | Apr 1925 | GB |
264373 | Jan 1927 | GB |
583655 | Dec 1946 | GB |
612094 | Nov 1948 | GB |
1498849 | Jan 1978 | GB |
1575900 | Oct 1980 | GB |
2051214 | Jan 1981 | GB |
2076879 | Dec 1981 | GB |
2115055 | Sep 1983 | GB |
2122244 | Jan 1984 | GB |
2126644 | Mar 1984 | GB |
2134170 | Aug 1984 | GB |
2136045 | Sep 1984 | GB |
2168747 | Jun 1986 | GB |
2196375 | Apr 1988 | GB |
2212849 | Aug 1989 | GB |
2225052 | May 1990 | GB |
2230294 | Oct 1990 | GB |
2242702 | Oct 1991 | GB |
2244512 | Dec 1991 | GB |
2265935 | Oct 1993 | GB |
2270343 | Mar 1994 | GB |
2280474 | Feb 1995 | GB |
2318382 | Apr 1998 | GB |
2364545 | Jan 2002 | GB |
2496911 | May 2013 | GB |
614960 | Jan 1961 | IT |
64-083777 | Mar 1989 | JP |
2003343141 | Dec 2003 | JP |
2006112042 | Apr 2006 | JP |
2008002203 | Jan 2008 | JP |
2011094706 | Aug 2011 | KR |
8105627 | Jul 1983 | NL |
309372 | Mar 1969 | SE |
0233202 | Apr 2002 | WO |
2007104499 | Sep 2007 | WO |
2010071886 | Jun 2010 | WO |
2015079290 | Jun 2015 | WO |
WO-2015079290 | Jun 2015 | WO |
Entry |
---|
Computer Generated Translation for EP2998483, Generated on Feb. 21, 2020, https://worldwide.espacenet.com/ (Year: 2020). |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco_multipoint_lock_2_cams_2_shootbolt_attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc_Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs. |
“UPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs. |
PCT Invitation to Pay Additional Fees in PCT Application PCT/US2017/047348, dated Nov. 15, 2017, 12 pages. |
Doorking.com—Electric Locks—Strikes and Deadbolts; printed from https://www.doorking.com/access-control/electric-locks-strikes-deadbolts, 2 pages, Feb. 2016. |
Magneticlocks.net—Electric Strikes and Deadbolts; printed from https://www.magneticlocks.net/electric-strikes-and-deadbolts/electric-strikes.html, 8 pages, Feb. 2016. |
Sdcsecurity.com—Latch and Deadbolt Monitoring Strikes; printed from http://www.sdcsecurity.com/monitor-strike-kits2.htm, 2 pages, Feb. 2016. |
PCT International Search Report and Written Opinion in International Application PCT/US2017/047348, dated Jan. 15, 2018, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20180051480 A1 | Feb 2018 | US |