Locking system having an electronic deadbolt

Information

  • Patent Grant
  • 10968661
  • Patent Number
    10,968,661
  • Date Filed
    Wednesday, August 17, 2016
    8 years ago
  • Date Issued
    Tuesday, April 6, 2021
    3 years ago
Abstract
A motor with a shaft and a shaft axis is disposed within a housing. A lead screw has an axis and is rotatably mounted in the housing. A deadbolt linearly extends from the housing based on rotation of the lead screw. A gear set with a plurality of gears, each having an axis, is disposed in the housing and operably connects the motor and the lead screw. A circuit board is disposed within the housing and has a plurality of portions communicatively connected by a ribbon. Each portion is disposed substantially orthogonal to the motor shaft axis, the lead screw axis, and the plurality of gear axes.
Description
INTRODUCTION

Deadbolts are operated by a user (e.g., with a key on an outside of the door or a thumbturn on the inside of the door) to secure the door against unwanted intrusions. Motorized deadbolts are also available, but these can display disadvantages. For example, it can often be difficult to determine whether the door is actually locked without attempting to open the door. This can cause the door to be breached if the user believes it to be locked when that is, in fact, not so.


SUMMARY

In one aspect, the technology relates to an apparatus having: a housing; a motor having a motor shaft having a motor shaft axis, wherein the motor is disposed in the housing; a lead screw having a lead screw axis, wherein the lead screw is rotatably mounted in the housing; a deadbolt configured to be linearly extended from the housing based on a rotation of the lead screw; a gear set having a plurality of gears, wherein each of the plurality of gears includes a gear axis, and wherein the gear set is disposed in the housing and operably connecting the motor and the lead screw; and a circuit board having a plurality of portions communicatively connected by a ribbon, wherein the circuit board is disposed within the housing, and wherein the plurality of portions are each disposed substantially orthogonal to the motor shaft axis, the lead screw axis, and the plurality of gear axes. In an embodiment, the apparatus further includes a power source disposed within the housing. In another embodiment, the power source includes a battery having a first pole disposed at a first end of the battery and a second pole disposed at a second end of the battery, wherein the poles define a battery axis substantially orthogonal to the plurality of circuit board portions. In yet another embodiment, the apparatus further includes a motor contact connected to at least one of the circuit board portions with a motor contact ribbon; and a battery contact connected to at least one of the circuit board portions with a battery contact ribbon. In still another embodiment, the motor contact lead is connected to a first circuit board portion, and wherein the battery contact lead is connected to a second circuit board of the circuit.


In another embodiment of the above aspect, the motor contact lead is connected to the first circuit board portion with a motor ribbon and the battery contact lead is connected to the second circuit board portion with a battery ribbon. In an embodiment, the apparatus further includes a communication module disposed between the plurality of circuit board portions and connected to at least one of the plurality of circuit board portions. In another embodiment, the battery includes a plurality of batteries, wherein each battery axis of the plurality of batteries is disposed parallel to each other. In yet another embodiment, the apparatus further includes a sensor disposed on at least one of the plurality of circuit board portions and configured to detect a rotation of the lead screw.


In another aspect, the technology relates to an apparatus having: a substantially cylindrical housing having a housing axis and defining a motor chamber, a deadbolt chamber, and a battery chamber, wherein each of the motor chamber, the deadbolt chamber, and the battery chamber each includes a largest linear dimension substantially aligned with the housing axis, and wherein the motor chamber and the deadbolt chamber are separated from the battery chamber by at least a portion of a circuit board. In an embodiment, the portion of the circuit board system includes a pair of parallel portions connected by a ribbon. In another embodiment, the circuit board further includes a motor contact disposed in the motor chamber and a battery contact disposed in the battery chamber. In yet another embodiment, the apparatus further includes a motor contact lead connecting the motor contact to a first one of the pair of parallel portions disposed proximate the motor chamber and deadbolt chamber, and a battery contact flexible connecting the battery contact to a second one of parallel portions disposed proximate the battery chamber. In still another embodiment, the apparatus further includes a leadscrew and a deadbolt at least partially disposed in the deadbolt chamber and operably connected to the lead screw such that a rotation of the lead screw extends the deadbolt away from the first one of the pair of parallel portions.


In another embodiment of the above aspect, the apparatus further includes a sensor disposed on the first one of the pair of parallel portions, wherein the sensor is configured to detect a rotation of the lead screw. In an embodiment, the apparatus further includes a motor disposed in the motor chamber. In another embodiment, the apparatus further includes a gear set operably connecting the motor and the lead screw.


In another aspect, the technology relates to a method of manufacturing a lock having a substantially cylindrical housing defining a plurality of chambers, an open end, and an elongate circuit board, the method including: inserting a first contact of the elongate circuit board into a first one of the plurality of chambers; bending the elongate circuit board at a first location and inserting the elongate circuit board within the housing so as to separate the first chamber of the plurality of chambers from a second chamber of the plurality of chambers; and bending the elongate circuit board at a second location so as to form the elongate circuit board into two substantially parallel portions. In an embodiment, the method further includes installing a deadbolt in the first chamber of the plurality of chambers and installing a motor in a third chamber of the plurality of chambers. In another embodiment, the method further includes bending the elongate circuit board in a third location.





BRIEF DESCRIPTION OF THE DRAWINGS

There are shown in the drawings, examples which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.



FIGS. 1A and 1B are exploded perspective and partial perspective views, respectively, of an electronic deadbolt system.



FIG. 1C is a perspective view of a circuit board for an electronic deadbolt system.



FIGS. 2A and 2B are exploded perspective and partial perspective views, respectively, of an electronic keeper in accordance with one example of the technology.



FIG. 2C is a perspective view of a circuit board for the electronic keeper of FIGS. 2A and 2B.



FIGS. 3A and 3B are exploded perspective and partial perspective views, respectively, of an electronic keeper in accordance with another example of the technology.



FIG. 3C is a perspective view of a circuit board for the electronic keeper of FIGS. 3A and 3B.



FIGS. 4A and 4B are exploded perspective and partial perspective views, respectively, of an electronic keeper in accordance with another example of the technology.



FIG. 4C is a perspective view of a circuit board for the electronic keeper of FIGS. 4A and 4B.



FIG. 5 depicts a method of manufacturing an electronic deadbolt.



FIGS. 5A-5F depict schematic side views of components of the electronic deadbolt system at various stages of manufacture.



FIG. 6 depicts a method of manufacturing an electronic keeper.



FIG. 7 depicts a schematic view of an electronic door lock system.





DETAILED DESCRIPTION


FIGS. 1A and 1B are exploded perspective and partial perspective views, respectively, of an electronic deadbolt system 100 and are described concurrently. In FIG. 1B, certain components, e.g., a housing 102 and a face plate 104, are depicted in dashed lines to depict more clearly the assembled components contained within the deadbolt system 100. The housing 102 defines a motor chamber 106, a deadbolt chamber 108, and a battery chamber 110. The motor chamber 106 and the deadbolt chamber 108 may be combined into a single chamber, if required or desired. Internal structures within the housing 102 that separate the motor chamber 106 from the deadbolt chamber 108 are not depicted in FIG. 1B. The motor chamber 106 and the deadbolt chamber 108 are separated from the battery chamber 110 by portions of a circuit board 112, as described in more detail below. The motor chamber 106 is configured to receive a motor 114 that includes a motor shaft having an axis that is coaxial with drive system axis A. The motor 114 may be an off-the-shelf unit that includes an integral gear set 116. This gear set 116 may have a drive axis 118 that drives an additional transfer gear set 120, which includes a lead screw drive gear 122 that is disposed in the deadbolt chamber 108. As such, the transfer gear set 120 spans from the motor chamber 106 to the deadbolt chamber 108. In another example, the integral gear set 116 need not be utilized, and the motor shaft may directly drive a gear set such as transfer gear set 120. The lead screw drive gear 122 drives a lead screw 124 that includes a nut 126 that connects the lead screw 124 to a deadbolt 128, such that rotation of the lead screw 124 translates into linear movement of the deadbolt 128. Thus, rotation of the lead screw 124 can extend and retract the deadbolt 128 from the housing 102. The deadbolt 128 may include, on an outer surface thereof, or embedded therein, an RFID chip 129, the function of which is described in further detail below.


The circuit board 112 includes a number of portions that allow it to be fitted into the housing 102 so as to conserve internal space thereof. For example, the circuit board 112 includes a first portion 130 and a second portion 132 connected by a flexible substrate portion or live hinge 134. These first 130 and second portions 132 are disposed between the battery chamber 110 and the motor and deadbolt chambers 106, 108. The circuit board 112 further includes a motor contact 136 and a battery contact 138, each of which are connected to one of the first and second portions 130, 132 via a lead ribbon 140, 142 of board substrate which may be flexible or rigid. The lead ribbons 140, 142 allow the motor and battery contacts 136, 138 to extend to the opposite ends of their respective chambers 106, 110. The battery chamber 110 includes a number of discrete battery contacts in the form of springs 144 and contact plates 146, as known in the art. In the depicted example, springs 144 and contact plates 146 for three “AA” batteries are depicted, although other battery types, arrangements, and power sources may be utilized. A contact plate 148 is disposed at an end of the battery chamber 110 and is configured to contact the battery contact 138 so as to form a complete power circuit therebetween.


An end plate 150 may be secured to the end of the housing 102 with one or more screws 152 to secure the battery chamber 110. Although not depicted, one or more electrical wires may exit the housing 102, e.g., proximate the end plate 150, so as to allow the deadbolt system 100 to be powered, alternatively or additionally, by a remote power source, such as building power, a remote battery, or other source. Control wiring to a remote controller may also be present. These wires may be connected at or near the battery contact 138. At an opposite end of the housing 102, the faceplate 104 may be secured with one or more screws 152. The faceplate 104 defines a deadbolt opening 154 for allowing passage of the deadbolt 128 and an LED opening 156 to allow a user to view an LED 158 disposed on the end of the motor 114, which may be indicative of status condition, lock condition, battery power condition, or other conditions. Further, the faceplate 104 may define one or more openings 160 configured to receive screws 152 to secure the deadbolt system 100 to a door panel.


The deadbolt system 100 depicted in FIGS. 1A and 1B is constructed and configured in a manner that reduces overall space, eases installation (even by untrained purchasers), and limits end-user access to critical internal components. With regard to reducing space, the elongate elements of the deadbolt are configured so as to have parallel axes (e.g., rotational axes). For example, drive system axis A is parallel to the axes of each battery (depicted as axes B, C, D in FIG. 1A). The batteries are not depicted, but their axes are defined by the positive and negative poles disposed along the identified lines B, C, and D. These axes are also parallel to the axes of each gear of the transfer gear set 120. A single axis E is depicted in FIG. 1A, although each gear of the gear set 120 has its own axis. Other parallel axes include axes F and G, which are associated with the lead screw 124 and the deadbolt 128, respectively, and are also coaxial. All of the above-identified axes are also parallel to the axis H of the housing 102. By arranging these elongate elements such that the axes A-H are parallel, circumference of the housing 102 may be reduced, which reduces overall size of the deadbolt system 100 and the space that it occupies.


Overall size of the deadbolt system 100 is further reduced by disposing the first and second portions 130, 132 of the circuit board 112 parallel to each other, and between the battery chamber 110 and the combined location of the motor chamber 106 and the deadbolt chamber 108. This configuration provides for a significant available area on the circuit board 112 to be located within the housing 102. Additionally, the location of the circuit board 112, substantially orthogonal to the axes A-H, prevents end-user access to the motor chamber 106 and the deadbolt chamber 108. Instead, the end-user would only have access to the battery chamber 110, e.g., via the end cap 150, to replace the batteries therein. This prevents potential end-user tampering with movable components of the deadbolt system 100, which might void the warranty, cause damage, or allow for debris infiltration into those internal volumes. Further space within the housing 102 is saved by disposing the ribbons 140, 142 so as to be substantially parallel to the axes A-H.


In examples, the housing 102 may be cylindrical with a maximum diameter of about one inch, one and one-quarter inch, or one and one-half inch or more. Such small diameters are possible because the largest linear dimension of each of chambers 106, 108, 110 are substantially aligned with the housing axis H. Such diameters allow the use of readily-available drill bits to drill a door panel so as to install the deadbolt system 100. Thus, this simplifies installation, even by inexperienced end-users. As such, the deadbolt system 100 (and one or more of the keepers described below) may be sold as a kit containing a deadbolt and keeper, as required or desired for a particular application, to be installed by an end-user (e.g., a homeowner).



FIG. 1B depicts the deadbolt system 100 with the housing 102 depicted transparent for clarity. This figure is used to describe further aspects of the circuit board 112 and other internal components related thereto. The circuit board 112 is a substrate on which is mounted a number of components utilized to control the deadbolt system 100. For example, the circuit board 112 may include a communication module 162, e.g., disposed on the second portion 132 thereof. By locating the communication module 162 or other components in a void 164 defined by the two parallel first and second portions 130, 132 of the circuit board 112, these modules and elements may be protected from damage or tampering. On the first portion 130, a sensor 166 is disposed so as to detect a rotational condition or position of the lead screw drive gear 122 (and therefore, ultimately, a position of the deadbolt 128). As the lead screw drive gear 122 rotates, the sensor 166 detects this rotation and sends a signal to a processor (not shown). This signal may be used in a number of ways, for example, to confirm that the deadbolt is extended, detect an operational condition in the deadbolt system 100, such as a failure of complete deadbolt 128 extension, or other purposes as required or desired for a particular application.



FIG. 1C is a perspective view of a circuit board 112 for an electronic deadbolt system, such as that depicted in FIGS. 1A and 1B. Certain components are described above with regard to FIGS. 1A and 1B and are not necessarily described further. The circuit board 112 may be a substantially rigid substrate on which conductive tracks or leads are formed by known processes (e.g., etching). In other examples, the circuit board 112 may be manufactured from a flexible substrate. If a rigid substrate is used, the thickness of the substrate may be reduced in areas 168 bounded by dotted lines. By reducing the thickness of these areas 168, the substrate may be bent, folded, or otherwise manipulated so as to be formed into the configuration depicted in FIGS. 1A and 1B. In another example, these areas 168 may be manufactured of a flexible ribbon such as that described below, and connected to contacts 136, 138, and portions 130, 132. The leads formed on the substrate for signal transmission may be formed on the portions of the substrate that are not removed. After the thicknesses of areas 168 are reduced, the circuit board 112 may be inserted into the housing 102 in a specific operation and orientation, for example, the operation depicted in FIGS. 5-5F. In sum, this operation includes folding portions W and X into the configuration depicted in FIGS. 1A and 1B. The motor 144, the transfer gear set 120, the lead screw 124, the deadbolt 128, and related components are disposed between the motor contact 136 and first portion 130. This combination of elements is then inserted axially into the housing 102 and secured therein as required or desired. Prior to insertion, portions Y and Z may also be folded so as to be easily inserted along with the above combination of elements. This simplifies the manufacturing process.


The deadbolt system 100 may be utilized with standard keepers (typically disposed in the door frame opposite the door panel when closed), or may be used with an electronic keeper that may detect the extension of the deadbolt 128. These electronic keepers may be one of the keepers described in the following figures. Alternatively, one of the following keepers may be used with a particular type of deadbolt system that need not necessarily be electronic. That is, an electronic keeper may be utilized with a manual deadbolt. Various examples of electronic keepers are described below.



FIGS. 2A and 2B are exploded perspective and partial perspective views, respectively, of an electronic keeper 200 in accordance with one example of the technology, and are described concurrently. In FIG. 2B, an outer housing of the keeper is depicted in dashed lines so as to show the internal components thereof. This example of an electronic keeper 200 may be utilized on an entry door, for example, with the electronic deadbolt system 100 depicted in FIG. 1A-1B, or with a manually-operated deadbolt, as known in the art. The keeper 200 includes a housing 202 and a rear wall 204 that may be snap-fit or press-fit onto the housing 202 with tabs 201. In another example, the rear wall 204 may be secured to the housing 202 with mechanical fasteners or adhesives, or may be integral with the housing 202. A face plate 206 is connected to a side of the housing 202 opposite the rear wall 204 spanning from first 203 to second 205 sidewalls thereof. Thus, combined, the housing 202, rear wall 204, and faceplate 206 define an interior chamber 208 in which a number of other components are disposed, as described below. A post 210 or other support strut may span the interior chamber 208 from the rear wall 204 to the faceplate 206 and may act as a guide for a screw or other fastener (not shown) to secure the faceplate 206 and rear wall 204 to the housing 202. In the depicted keeper 200, the post 210 separates the interior chamber 208 into a battery chamber 212 above and a deadbolt-receiver chamber 214 below, although the post 210 need not completely isolate the chambers 212, 214 from each other. Additionally, the post 210 need not be utilized. The housing 202 also defines an elongate housing axis HA extending vertically through the interior chamber 208. The faceplate 206 defines a plurality of openings, specifically, a battery opening 216 disposed proximate the battery chamber 212 and a deadbolt-receiver opening 218 disposed proximate the deadbolt-receiver chamber 214. A cover plate 220 or battery door may be disposed so as to cover the battery opening 216, while a decorative plate 222 defining an opening 224 may frame the deadbolt-receiver opening 218.


A circuit board 226 is disposed within the interior chamber 208. The circuit board includes two sections or portions 228, 230 that are secured, e.g., to first 203 and second 205 sidewalls, respectively, of the housing 202. The first section 228 provides a mounting location for operational modules and components. For example, a battery holder 232 having a cradle 234 and cover 236 may be secured to the first portion 228. Thus, once installed, the battery holder 232 may be accessed by removing the cover plate 220 and removing/installing a battery, as required. The second section 230 provides a mounting location for other operational modules and components. For example, an RFID sensor 238 may be present, as may a communication module 240. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 224. The RFID sensor 238 may be used to detect an RFID chip, for example, the chip installed in or on the deadbolt depicted in FIGS. 1A and 1B, when that deadbolt is disposed in the interior chamber 208. As such, when the RFID sensor 238 detects the RFID chip, the electronic keeper 200 may communicate this condition to the electronic deadbolt or to a remote application or system, e.g., via the communication module 240 or even a wired connection. Although an RFID sensor is depicted, other types of sensors, such as proximity sensors, magnetic sensors, or mechanical sensors such as pressure or contact sensors, may be utilized. Contact sensors may project into the path of travel PT.


The two sections or portions 228, 230 of the circuit board 226 are communicatively coupled via a flexible ribbon 242. The flexible ribbon 242 may be formed as described above for the circuit board 226 utilized in the electronic deadbolt of FIGS. 1A and 1B. That is, the substrate forming the circuit board 226 may be manufactured thinner in portions that will be bent or folded, or those portions may be reduced in thickness subsequent to manufacture. In another example, the flexible ribbon 242 may be manufactured of a material different than the first and second sections 228, 230, for example, flexible plastic substrates such as polyimide, PEEK, or transparent conductive polyester film. Additionally or alternatively, the flexible ribbon may be screen printed silver circuits on polyester. In another example, the entire circuit board 226 may be manufactured of a flexible substrate. In this depicted example of the electronic keeper 200, the first section 228 is disposed on a first side of the housing axis HA and in the battery chamber 212, while the second section 230 is disposed on an opposite side of the housing axis HA and in the deadbolt-receiving chamber 214. Moreover, FIG. 2B depicts that at least one of the tabs 201 may include an elongate portion 244 to help retain the flexible ribbon 242 against the housing 202, so as to prevent damage thereto, e.g., by contact with a deadbolt.



FIG. 2C is a perspective view of the circuit board 226 for the electronic keeper of FIGS. 2A and 2B. The particular configuration allows the circuit board 226 to be used across a wide variety of keeper configurations, thereby reducing manufacturing costs and factory storage requirements for components prior to manufacture. For example, the circuit board 226 is formed such that the modules and other components are disposed on a single side of the circuit board 226 when that circuit board 226 is in a flat configuration. That is, such components may be installed on a component face 244 of the first section 228 and a component face 246 of the second section 230, such that, when the flexible ribbon 242 is deformed (e.g., folded or bent) into the U-shaped configuration depicted in FIG. 2C, the component faces 244, 246 are facing towards the housing axis HA, and generally towards each other. In another example, the flexible ribbon 242 may be folded such that the section 230a is positioned substantially orthogonal to the elongate axis HA. In such a configuration, the ribbon 242 has an L-shape.



FIGS. 3A and 3B are exploded perspective and partial perspective views, respectively, of an electronic keeper 300 in accordance with another example of the technology. In FIG. 3B, an outer housing of the keeper is depicted in dashed lines so as to show the internal components thereof. This example of an electronic keeper 300 may be utilized with, for example, on a swinging patio door. Locks utilized on such a door include the P3000 lock from Amesbury Truth of Sioux Falls, S. Dak. The P3000 includes a manually-operated deadbolt as well as a spring-loaded latch. The keeper 300 includes a housing 302 and a rear wall 304 that may be snap-fit or press-fit onto the housing 302 with tabs 301. In another example, the rear wall 304 may be secured to the housing 302 with mechanical fasteners or adhesives, or may be integral with the housing 302. A face plate 306 is connected to a side of the housing 302 opposite the rear wall 304 spanning from first 303 to second 305 sidewalls thereof. Thus, combined, the housing 302, rear wall 304, and faceplate 306 define an interior chamber 308 in which a number of other components are disposed, as described below. A post 310 or other support strut may span the interior chamber 308 from the rear wall 304 to the faceplate 306 and may act as a guide for a screw or other fastener (not shown) to secure the faceplate 306 and rear wall 304 to the housing 302. In the depicted keeper 300, the post 310 separates the interior chamber 308 into a battery chamber 312 above and a deadbolt-receiver chamber 314 below, although the post 310 need not completely isolate the chambers 312, 314 from each other. The housing 302 also defines an elongate housing axis HA extending vertically through the interior chamber 308. The faceplate 306 defines a plurality of openings, specifically a battery opening 316 disposed proximate the battery chamber 312 and a deadbolt-receiver opening 318 disposed proximate the deadbolt-receiver chamber 314. A cover plate 320 or battery door may be disposed so as to cover the battery opening 316, while a decorative plate 322 defining an opening 324 may frame the deadbolt-receiver opening 318.


The configuration of the decorative plate 322 enables the keeper 300 to be utilized with the above-identified P3000 door lock. The opening 324 is, of course, aligned with the deadbolt-receiver opening 318. However, the decorative plate 322 also defines a latch opening 325 that allows for passage of the latch. This enables the door to be held shut without completely locking the door. Of course, decorative plates having different opening configurations may be utilized, depending on the type of lock utilized. As such, the keeper 300 may be utilized with the other locks, simply by changing the decorative plate size and/or configuration.


A circuit board 326 is disposed within the interior chamber 308. As above, the circuit board includes two sections or portions 328, 330. However, these are both secured to a second sidewall 205 of the housing 302. The first section 328 provides a mounting location for operational modules and components. For example, a battery holder 332 having a cradle 334 and cover 336 may be secured to the first portion 328. The second section 330 provides a mounting location for other operational modules and components, such as an RFID sensor 338 and a communication module 340. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 324. A representative deadbolt 390 is depicted in FIGS. 3A and 3B. In 3B, notably, the position of the deadbolt 390 relative to the second section 330 is depicted. The RFID sensor 338 may be used to detect an RFID chip that may be installed in or on the deadbolt 390 when that deadbolt 390 is disposed in the interior chamber 308. Other types of sensors, such as proximity sensors, magnetic sensors, or mechanical sensors such as a pressure or contact sensor, may be utilized. Contact sensors may project into the path of travel PT.


The two sections or portions 328, 330 of the circuit board are communicatively coupled via a flexible ribbon 342 that may be formed as described above. In this depicted example of the electronic keeper 300, the first section 328 and second section 330 are both is disposed on a single side of the housing axis HA, but in the battery chamber 312 and in the deadbolt-receiving chamber 314, respectively.



FIG. 3C is a perspective view of a circuit board for the electronic keeper of FIGS. 3A and 3B. The particular configuration allows the circuit board 326 to be used across a wide variety of keeper configurations, thereby reducing manufacturing costs and factory storage requirements for components prior to keeper manufacture. For example, the circuit board 326 is formed such that the modules, leads, and other components are disposed on a single side of the circuit board 326 when that circuit board 326 is in a flat configuration. That is, such components may be installed on a component face 344 of the first section 328 and a component face 346 of the second section 330. As such, when the flexible ribbon 342 is formed (e.g., folded or bent) into the configuration depicted in FIG. 3C, the component faces 344, 346 are facing towards the housing axis HA. A portion of 342a of the flexible ribbon 342 is folded behind the first section 328 so as to prevent damage thereto when installed. In another example, the flexible ribbon 342 may be folded into an L-shaped configuration such that the section 330a is positioned substantially orthogonal to the elongate axis HA, as described above.



FIGS. 4A and 4B are exploded perspective and partial perspective views, respectively, of an electronic keeper 400 in accordance with another example of the technology. In FIG. 4B, an outer housing of the keeper is depicted in dashed lines so as to show the internal components thereof. This example of an electronic keeper 400 may be utilized with, for example, a swinging patio door and lock, such as the P2000 lock from Amesbury Truth. The P2000 includes a manually-operated deadbolt with a discrete spring-loaded latch. The keeper 400 includes a housing 402 and a rear wall 404 that may be snap-fit or press-fit onto the housing 402 with tabs 401. In another example, the rear wall 404 may be secured to the housing 402 with mechanical fasteners or adhesives, or may be integral with the housing 402. A face plate 406 is connected to a side of the housing 402 opposite the rear wall 404 spanning from first 403 to second 405 sidewalls thereof. Thus, combined, the housing 402, rear wall 404, and faceplate 406 define an interior chamber 408 in which a number of other components are disposed, as described below. A post 410 or other support strut may span the interior chamber 408 from the rear wall 404 to the faceplate 406 and may act as a guide for a screw or other fastener (not shown) to secure the faceplate 406 and rear wall 404 to the housing 402. In the depicted keeper 400, the post 410 separates the interior chamber 408 into a battery chamber 412 above and a deadbolt-receiver chamber 414 below, although the post 410 need not completely isolate the chambers 412, 414 from each other. The housing 402 also defines an elongate housing axis HA extending vertically through the interior chamber 408. The faceplate 406 defines a plurality of openings, specifically a battery opening 416 disposed proximate the battery chamber 412 and a deadbolt-receiver opening 418 disposed proximate the deadbolt-receiver chamber 414. A cover plate 420 or battery door may be disposed so as to cover the battery opening 416, while a decorative plate 422 defining an opening 424 may frame the deadbolt-receiver opening 418. As described above, altering a configuration of the decorative plate 422 allows this keeper 400 to be used with a variety of differently-configured locks, e.g., depending on location of the latch opening 425.


A circuit board 426 is disposed within the interior chamber 408. As above, the circuit board includes two sections or portions 428, 430 that are secured to a single sidewall 403 of the housing 402. The first section 428 provides a mounting location for operational modules and components. For example, a battery holder 432 having a cradle 434 and cover 436 may be secured to the first portion 428. The second section 430 provides a mounting location for other operational modules and components, such as, for example, an RFID sensor 438 and a communication module 440. Both components may be located so as to be substantially parallel to a path of travel PT of a deadbolt as it enters the opening 424. A representative deadbolt 490 is depicted in FIGS. 4A and 4B. In 4B, notably, the position of the deadbolt 490 relative to the second section 430 is depicted. The RFID sensor 438 may be used to detect an RFID chip on the deadbolt 490. Other types of sensors, such as proximity sensors, magnetic sensors, or mechanical sensors such as a pressure or contact sensor, may be utilized. Contact sensors may project into the path of travel PT.


The two sections or portions 428, 430 of the circuit board are communicatively coupled via a flexible ribbon 442 that may be formed as described above. In this depicted example of the electronic keeper 400, the first section 428 and second section 430 are disposed on a single side of the housing axis HA, and in the battery chamber but in different chambers 412, 414.



FIG. 4C is a perspective view of a circuit board for the electronic keeper of FIGS. 4A and 4B. The particular configuration allows the circuit board 426 to be used across a wide variety of keeper configurations, thereby reducing manufacturing costs and factory storage requirements for components prior to keeper manufacture. The ribbon 442 is folded as described above, such that a portion 442a is disposed behind the first portion 428.



FIG. 5 depicts a method 500 of manufacturing an electronic deadbolt system. FIGS. 5A-5F depict schematic side views of components of the electronic deadbolt system at various stages of manufacture. FIGS. 5-5F are described concurrently. The electronic deadbolt system may include components as described herein, such as a substantially cylindrical housing on elongate and a circuit board, etc. The housing may include a number of chambers defined by internal walls or other structures. The method 500 begins with providing an elongate circuit board 550, operation 502, depicted schematically in FIG. 5A. In operation 504, the circuit board 550 may be deformed or bent at a first location 1 as shown in FIG. 5B. This deformation can at least partially form the motor contact at the end of the ribbon, as described above in FIGS. 1A-1C. In another example, this first deformation need not be formed, if the motor contact is connected to, e.g., a bottom surface of a motor. A motor M and a deadbolt 552 (as well as the required or desired gears 554) are disposed proximate the circuit board 550 as shown in FIG. 5C, operation 506. In operations 508-512, the elongate circuit board 550 is deformed via folding or bending at second 2, third 3, and fourth 4 locations as depicted in FIG. 5D. The bending at the second 2 location is generally performed so as to provide clearance for the motor M, the deadbolt 552, and the gears 554. The bending at the second 2 and third 3 locations forms two parallel portions of the elongate circuit board 550. The elongate circuit board 550, motor M, deadbolt 552, and gears 554 are inserted I into a substantially cylindrical housing 556, e.g., via an open end, in operation 514. This is depicted in FIG. 5E. Once inserted, in operation 516, the motor M, deadbolt 552, and gears 554 are disposed generally in one chamber C1 of the housing 556, separated from another chamber C2 by the two parallel portions of the elongate circuit board 550. This is shown in FIG. 5F. Further, the motor M and deadbolt 552 may be further separated from each other into individual chambers by an internal structure or wall W.



FIG. 6 depicts a method 600 of manufacturing an electronic keeper. The keeper may be selected from any number of keeper housings having different lengths or configurations, as in operation 602. A circuit board is provided in operation 604. The circuit board may be the type depicted above; that is, the circuit board may have two portions connected by a flexible ribbon. Regardless of the housing selected, the length of the ribbon of the circuit board provided is the same. As described above, this enables a single circuit board configuration to be used across a wide range of keeper lengths and configurations. In operation 606, a bend or fold is formed in the circuit board, for example, in the ribbon thereof. Thereafter, the circuit board is inserted into the housing, operation 608, into discrete locations as required or desired for the particular housing.


Mechanical multi-point door lock systems are available in various configurations. Almost invariably, the mechanical multi-point lock systems include a main lock housing having more than one lock point extending therefrom, or a main lock housing connected via a linkage to one or more remote locking elements. Typically, in examples where a main lock housing has multiple lock points extending therefrom, the housing is often very bulky. In examples where a main lock housing is connected to remote locks via a linkage, the linkage must typically be installed in a so-called “Euro-groove” or elongate routed channel in an edge of the door. This linkage is then covered by a cover plate. Regardless of configuration, installation of a multi-point lock system is typically a complicated process, performed at a door manufacturing facility, or by a trained contractor. The electronic deadbolt and keeper systems described herein, however, can be positioned at various locations about a door panel so as to create a multi-point lock system, but without requiring complex installation procedures.


The electronic deadbolts and keepers described herein can be utilized in entry doors, sliding doors, pivoting patio doors, and other doors so as to create customized multi-point lock systems that are easy to install. FIG. 7 depicts a schematic view of one example of a multi-point electric door lock system 700 on a pivoting door. The system 700 includes two electronic deadbolt systems 702 installed in a door panel 701, for example, so as to extend into the head 703 and the sill S thereof. Alternatively, the electronic deadbolt 702 may be installed in the frame 705 so as to extend into the door 701. The placement and number of electronic deadbolt systems 702 may be altered as required or desired for a particular application. For example, in pivoting doors, the electronic deadbolts may be disposed so as to extend from the head 703, sill, S, or locking edge 707 of the door 701. In sliding patio doors, electronic deadbolts having linearly extending locking elements (as described herein) may extend from the head or sill of the sliding door. If utilized on the locking edge of a sliding door, the electronic deadbolt would require a hook-shaped locking element that would hook about a keeper so as to prevent retraction of the door. Each electronic deadbolt system 702 may be configured to as to extend into a keeper 704. Such keepers 704 may be standard keepers or the electronic keepers as described herein. The system 700 also includes an electronic keeper 706 configured to receive a standard (e.g., manually-actuated) deadbolt 708, as typically available on an entry or patio door.


In one configuration, once the deadbolt 708 is manually, the electronic keeper 706 detects a position of the deadbolt 708 therein. A signal may be sent to the remotely located electronic deadbolts 702, thus causing actuation thereof. At this point, the door 701 is now locked at multiple points. Unlocking of the manual deadbolt 708 is detected by the electronic keeper 706 (that is, the keeper 706 no longer detects the presence of the deadbolt 708 therein) and a signal is sent to the remote electronic deadbolts 702 causing retraction thereof, thus allowing the door to be opened. Thus, with minimal complexity, the electronic deadbolts and electronic keepers described herein may be utilized to create a robust multi-point locking system for a door, thus improving the security thereof.


In another example, the system 700 may include a controller/monitoring system, which may be a remote panel 710, which may be used to extend or retract the electronic deadbolts 702, or which may be used for communication between the various electronic keepers 704 and deadbolts 702. Alternatively or additionally, an application on a remote computer or smartphone 712 may take the place of, or supplement the remote panel 710. By utilizing a remote panel 710 and/or a smartphone 712, the electronic deadbolts 702 may be locked or unlocked remotely, thus providing multi-point locking ability without the requirement for manual actuation of a deadbolt. Additionally, any or all of the components (electronic deadbolt 702, keeper 706, panel 710, and smartphone 712) may communicate either directly or indirectly with a home monitoring or security system 714. The communication between components may be wireless, as depicted, or may be via wired systems.


The materials utilized in the manufacture of the lock and keepers described herein may be those typically utilized for lock manufacture, e.g., zinc, steel, aluminum, brass, stainless steel, etc. Molded plastics, such as PVC, polyethylene, etc., may be utilized for the various components. Material selection for most of the components may be based on the proposed use of the locking system. Appropriate materials may be selected for mounting systems used on particularly heavy panels, as well as on hinges subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.).


While there have been described herein what are to be considered exemplary and preferred examples of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.

Claims
  • 1. An apparatus comprising: a housing comprising a first end and an opposite second end, wherein the first end and the second end define a housing axis;a face plate coupled to the first end of the housing so as to be substantially orthogonal to the housing axis;an end plate removeably coupled to the second end of the housing;a motor comprising a motor shaft comprising a motor shaft axis, wherein the motor is disposed in the housing;a lead screw comprising a lead screw axis, wherein the lead screw is rotatably mounted in the housing;a deadbolt configured to be linearly extended from the first end of the housing based on a rotation of the lead screw;a gear set comprising a plurality of gears, wherein each of the plurality of gears comprises a gear axis, and wherein the gear set is disposed in the housing and operably connecting the motor and the lead screw such that the motor controls the rotation of the lead screw;a circuit board comprising a plurality of portions communicatively connected by a ribbon, wherein the circuit board is disposed within the housing such that the motor, the lead screw, the deadbolt, and the gear set are positioned towards the first end of the housing and separated by the circuit board from the second end of the housing, wherein the plurality of portions of the circuit board prevents access to the motor, the lead screw, the deadbolt, and the gear set from the second end of the housing when the end plate is removed, and wherein the plurality of portions of the circuit board are each disposed substantially parallel to the face plate such that the housing axis, the motor shaft axis, the lead screw axis, and the plurality of gear axes are substantially orthogonal to the plurality of portions of the circuit board and the face plate; anda motor contact connected to at least one of the plurality of portions of the circuit board with a motor contact ribbon, wherein the motor contact is disposed within the housing and adjacent the first end, and the motor is disposed between the motor contact and the plurality of portions of the circuit board within the housing while being parallel to and offset from the motor contact ribbon.
  • 2. The apparatus of claim 1, further comprising a power source disposed within the housing.
  • 3. The apparatus of claim 2, wherein the power source comprises at least one battery comprising a first pole disposed at a first end of the at least one battery and a second pole disposed at a second end of the at least one battery, wherein the poles define a battery axis substantially orthogonal to the plurality of portions of the circuit board.
  • 4. The apparatus of claim 3, wherein the at least one battery comprises a plurality of batteries, wherein the battery axes of the plurality of batteries are disposed parallel to each other.
  • 5. The apparatus of claim 3, further comprising a battery contact connected to at least one of the plurality of portions of the circuit board with a battery contact ribbon.
  • 6. The apparatus of claim 5, wherein the plurality of portions of the circuit board comprises a first circuit board portion and a second circuit board portion, wherein the motor contact is connected to the first circuit board portion, and wherein the battery contact is connected to the second circuit board portion.
  • 7. The apparatus of claim 6, wherein the motor contact is connected to the first circuit board portion with the motor contact ribbon and the battery contact is connected to the second circuit board portion with the battery contact ribbon.
  • 8. The apparatus of claim 1, further comprising a communication module disposed between the plurality of portions of the circuit board and connected to at least one of the plurality of portions of the circuit board.
  • 9. The apparatus of claim 1, further comprising a sensor disposed on at least one of the plurality of portions of the circuit board and configured to detect the rotation of the lead screw.
  • 10. An apparatus comprising: a face plate;a substantially cylindrical housing having a first end and an opposite second end defining a housing axis, wherein the face plate is coupled to the first end and the housing defines a motor chamber, a deadbolt chamber, and a battery chamber,an end plate removeably coupled to the second end;a motor disposed in the motor chamber;a deadbolt at least partially disposed in the deadbolt chamber;one or more batteries replaceably disposed within the battery chamber;a circuit board disposed within the housing, wherein the circuit board comprises a pair of parallel portions connected by a ribbon and the pair of parallel portions are substantially orthogonal to the housing axis, wherein the motor chamber and the deadbolt chamber are separated from the battery chamber along the housing axis by the pair of parallel portions of the circuit board connected by the ribbon, and wherein access between both the motor chamber and the deadbolt chamber and the battery chamber along the housing axis and within the substantially cylindrical housing is prevented via the pair of parallel portions of the circuit board connected by the ribbon; anda battery contact disposed in the battery chamber adjacent the second end of the housing and connected to a first one of the pair of parallel portions disposed proximate the battery chamber by a flexible battery contact lead, wherein the one or more batteries are disposed between the battery contact and the first one of the pair of parallel portions while being parallel to and offset from the flexible battery contact lead.
  • 11. The apparatus of claim 10, wherein the circuit board further comprises a motor contact disposed in the motor chamber.
  • 12. The apparatus of claim 11, further comprising: a motor contact lead connecting the motor contact to a second one of the pair of parallel portions disposed proximate the motor chamber and the deadbolt chamber.
  • 13. The apparatus of claim 12, further comprising a lead screw at least partially disposed in the deadbolt chamber, wherein the deadbolt is operably connected to the lead screw such that a rotation of the lead screw via the motor extends the deadbolt away from the first second one of the pair of parallel portions.
  • 14. The apparatus of claim 13, further comprising a sensor disposed on the first second one of the pair of parallel portions, wherein the sensor is configured to detect the rotation of the lead screw.
  • 15. The apparatus of claim 13, further comprising a gear set operably connecting the motor and the lead screw.
US Referenced Citations (365)
Number Name Date Kind
333093 Wright Dec 1885 A
419384 Towne Jan 1890 A
651947 Johnson Jun 1900 A
738280 Bell et al. Sep 1903 A
932330 Rotchford Aug 1909 A
958880 Lawson May 1910 A
966208 Hoes Aug 1910 A
972769 Lark Oct 1910 A
980131 Shean Dec 1910 A
998642 Shean Jul 1911 A
1075914 Hoes Oct 1913 A
1094143 Hagstrom Apr 1914 A
1142463 Shepherd Jun 1915 A
1174652 Banks Mar 1916 A
1247052 Wilson Nov 1917 A
1251467 Blixt et al. Jan 1918 A
1277174 Bakst Aug 1918 A
1359347 Fleisher Nov 1920 A
1366909 Frommer Feb 1921 A
1368141 Hagstrom Feb 1921 A
1529085 Preble Mar 1925 A
1574023 Crompton et al. Feb 1926 A
1596992 Ognowicz Aug 1926 A
1646674 Angelillo Oct 1927 A
1666654 Hiering Apr 1928 A
1716113 Carlson Jun 1929 A
1974253 Sandor Sep 1934 A
2535947 Newell Dec 1950 A
2729089 Pelcin Jan 1956 A
2739002 Johnson Mar 1956 A
2862750 Minke Dec 1958 A
2887336 Meyer May 1959 A
2905493 Tocchetto Sep 1959 A
3064462 Ng et al. Nov 1962 A
3083560 Scott Apr 1963 A
3124378 Jackson Mar 1964 A
3162472 Rust Dec 1964 A
3214947 Wikkerink Nov 1965 A
3250100 Cornaro May 1966 A
3332182 Mark Jul 1967 A
3378290 Sekulich Apr 1968 A
3413025 Sperry Nov 1968 A
3437364 Walters Apr 1969 A
RE26677 Russell et al. Oct 1969 E
3498657 Fontana Mar 1970 A
3578368 Dupuis May 1971 A
3586360 Perrotta Jun 1971 A
3617080 Miller Nov 1971 A
3670537 Horgan, Jr. Jun 1972 A
3792884 Tutikawa Feb 1974 A
3806171 Fernandez Apr 1974 A
3899201 Paioletti Aug 1975 A
3904229 Waldo Sep 1975 A
3919808 Simmons Nov 1975 A
3940886 Ellingson, Jr. Mar 1976 A
3953061 Hansen et al. Apr 1976 A
4076289 Fellows et al. Feb 1978 A
4116479 Poe Sep 1978 A
4130306 Brkic Dec 1978 A
4132438 Guymer Jan 1979 A
4135377 Kleefeldt Jan 1979 A
4146994 Williams Apr 1979 A
4236396 Surko et al. Dec 1980 A
4273368 Tanaka Jun 1981 A
4283882 Hubbard Aug 1981 A
4288944 Donovan Sep 1981 A
4362328 Tacheny Dec 1982 A
4365490 Manzoni Dec 1982 A
4372594 Gater Feb 1983 A
4476700 King Oct 1984 A
4500122 Douglas Feb 1985 A
4547006 Castanier Oct 1985 A
4548432 Bengtsson Oct 1985 A
4593542 Rotondi et al. Jun 1986 A
4595220 Hanchett, Jr. Jun 1986 A
4602490 Glass Jul 1986 A
4602812 Bourne Jul 1986 A
4607510 Shanaan et al. Aug 1986 A
4633688 Beudat Jan 1987 A
4639025 Fann Jan 1987 A
4643005 Logas Feb 1987 A
4691543 Watts Sep 1987 A
4704880 Schlindwein Nov 1987 A
4717909 Davis Jan 1988 A
4754624 Fleming et al. Jul 1988 A
4768817 Fann Sep 1988 A
4893849 Schlack Jan 1990 A
4913475 Bushnell et al. Apr 1990 A
4949563 Gerard et al. Aug 1990 A
4961602 Pettersson Oct 1990 A
4962653 Kaup Oct 1990 A
4962800 Owiriwo Oct 1990 A
4964660 Prevot et al. Oct 1990 A
4973091 Paulson Nov 1990 A
5077992 Su Jan 1992 A
5092144 Fleming et al. Mar 1992 A
5114192 Toledo May 1992 A
5118151 Nicholas, Jr. et al. Jun 1992 A
5125703 Clancy et al. Jun 1992 A
5148691 Wallden Sep 1992 A
5171050 Mascotte Dec 1992 A
5172944 Munich et al. Dec 1992 A
5184852 O'Brien Feb 1993 A
5193861 Juga Mar 1993 A
5197771 Kaup et al. Mar 1993 A
5257841 Geringer Nov 1993 A
5265452 Dawson et al. Nov 1993 A
5290077 Fleming Mar 1994 A
5364138 Dietrich Nov 1994 A
5373716 MacNeil et al. Dec 1994 A
5382060 O'Toole et al. Jan 1995 A
5388875 Fleming Feb 1995 A
5394718 Hotzi Mar 1995 A
5404737 Hotzl Apr 1995 A
5441315 Kleefeldt Aug 1995 A
5456503 Russell et al. Oct 1995 A
5482334 Hotzl Jan 1996 A
5495731 Riznik Mar 1996 A
5496082 Zuckerman Mar 1996 A
5498038 Simon Mar 1996 A
5513505 Danes May 1996 A
5516160 Kajuch May 1996 A
5524941 Fleming Jun 1996 A
5524942 Fleming Jun 1996 A
5544924 Paster Aug 1996 A
5603534 Fuller Feb 1997 A
5609372 Ponelle Mar 1997 A
5620216 Fuller Apr 1997 A
5707090 Sedley Jan 1998 A
5716154 Miller et al. Feb 1998 A
5722704 Chaput et al. Mar 1998 A
5728108 Griffiths et al. Mar 1998 A
5735559 Frolov Apr 1998 A
5757269 Roth May 1998 A
5782114 Zeus et al. Jul 1998 A
5791700 Biro Aug 1998 A
5820170 Clancy Oct 1998 A
5820173 Fuller Oct 1998 A
5825288 Wojdan Oct 1998 A
5865479 Viney Feb 1999 A
5878606 Chaput et al. Mar 1999 A
5890753 Fuller Apr 1999 A
5896763 Dinkelborg et al. Apr 1999 A
5901989 Becken et al. May 1999 A
5906403 Bestler et al. May 1999 A
5911763 Quesada Jun 1999 A
5915764 MacDonald Jun 1999 A
5918916 Kajuch Jul 1999 A
5946956 Hotzl Sep 1999 A
5951068 Strong et al. Sep 1999 A
5979199 Elpern Nov 1999 A
6050115 Schroter et al. Apr 2000 A
6079585 Lentini Jun 2000 A
6089058 Elpern Jul 2000 A
6094869 Magoon et al. Aug 2000 A
6098433 Maniaci Aug 2000 A
6112563 Ramos Sep 2000 A
6116067 Myers Sep 2000 A
6120071 Picard Sep 2000 A
D433916 Frey Nov 2000 S
6148650 Kibble Nov 2000 A
6174004 Picard et al. Jan 2001 B1
6196599 D'Hooge Mar 2001 B1
6209931 Von Stoutenborough et al. Apr 2001 B1
6217087 Fuller Apr 2001 B1
6250842 Kruger Jun 2001 B1
6257030 Davis, III et al. Jul 2001 B1
6264252 Clancy Jul 2001 B1
6266981 von Resch et al. Jul 2001 B1
6282929 Eller et al. Sep 2001 B1
6283516 Viney Sep 2001 B1
6293598 Rusiana Sep 2001 B1
6318769 Kang Nov 2001 B1
6327881 Grundler et al. Dec 2001 B1
6389855 Renz et al. May 2002 B2
6441735 Marko Aug 2002 B1
6443506 Su Sep 2002 B1
6453616 Wright Sep 2002 B1
6454322 Su Sep 2002 B1
6457751 Hartman Oct 2002 B1
6490895 Weinerman Dec 2002 B1
6502435 Watts et al. Jan 2003 B2
6516641 Segawa Feb 2003 B1
6540268 Pauser Apr 2003 B2
6564596 Huang May 2003 B2
6568726 Caspi May 2003 B1
6580355 Milo Jun 2003 B1
6619085 Hsieh Sep 2003 B1
6637784 Hauber Oct 2003 B1
6672632 Speed et al. Jan 2004 B1
6688656 Becken Feb 2004 B1
6733051 Cowper May 2004 B1
6776441 Liu Aug 2004 B2
6810699 Nagy Nov 2004 B2
6813916 Chang Nov 2004 B2
6871451 Harger et al. Mar 2005 B2
6905152 Hudson Jun 2005 B1
6929293 Tonges Aug 2005 B2
6935662 Hauber et al. Aug 2005 B1
6962377 Tonges Nov 2005 B2
6971686 Becken Dec 2005 B2
6994383 Morris Feb 2006 B2
7000959 Sanders Feb 2006 B2
7010945 Yu Mar 2006 B2
7010947 Milo Mar 2006 B2
7025394 Hunt Apr 2006 B1
7032418 Martin Apr 2006 B2
7052054 Luker May 2006 B2
7083206 Johnson Aug 2006 B1
7128350 Eckerdt Oct 2006 B2
7152441 Friar Dec 2006 B2
7155946 Lee et al. Jan 2007 B2
7203445 Uchida Apr 2007 B2
7207199 Smith et al. Apr 2007 B2
7249791 Johnson Jul 2007 B2
7261330 Hauber Aug 2007 B1
7353637 Harger et al. Apr 2008 B2
7404306 Walls et al. Jul 2008 B2
7410194 Chen Aug 2008 B2
7418845 Timothy Sep 2008 B2
7513540 Hagemeyer et al. Apr 2009 B2
7526933 Meekma May 2009 B2
7634928 Hunt Dec 2009 B2
7637540 Chiang Dec 2009 B2
7677067 Riznik et al. Mar 2010 B2
7686207 Jeffs Mar 2010 B1
7707862 Walls et al. May 2010 B2
7726705 Kim Jun 2010 B2
7735882 Abdollahzadeh et al. Jun 2010 B2
7748759 Chen Jul 2010 B2
7856856 Shvartz Dec 2010 B2
7878034 Alber et al. Feb 2011 B2
7946080 Ellerton May 2011 B2
7963573 Blomqvist Jun 2011 B2
8161780 Huml Apr 2012 B1
8182002 Fleming May 2012 B2
8325039 Picard Dec 2012 B2
8348308 Hagemeyer et al. Jan 2013 B2
8376414 Nakanishi et al. Feb 2013 B2
8376415 Uyeda Feb 2013 B2
8382166 Hagemeyer et al. Feb 2013 B2
8382168 Carabalona Feb 2013 B2
8398126 Nakanishi et al. Mar 2013 B2
8403376 Greiner Mar 2013 B2
8494680 Sparenberg et al. Jul 2013 B2
8550506 Nakanishi Oct 2013 B2
8567631 Brunner Oct 2013 B2
8628126 Hagemeyer et al. Jan 2014 B2
8646816 Dziurdzia Feb 2014 B2
8839562 Madrid Sep 2014 B2
8840153 Juha Sep 2014 B2
8850744 Bauman et al. Oct 2014 B2
8851532 Geringer Oct 2014 B2
8876172 Denison Nov 2014 B2
8899635 Nakanishi Dec 2014 B2
8922370 Picard Dec 2014 B2
8939474 Hagemeyer et al. Jan 2015 B2
9428937 Tagtow et al. Aug 2016 B2
9482035 Wolf Nov 2016 B2
9512654 Armari et al. Dec 2016 B2
9605444 Rickenbaugh Mar 2017 B2
9637957 Hagemeyer et al. May 2017 B2
9758997 Hagemeyer et al. Sep 2017 B2
9765550 Hemmingsen et al. Sep 2017 B2
9790716 Hagemeyer et al. Oct 2017 B2
9822552 Eller et al. Nov 2017 B2
10174522 Denison Jan 2019 B2
10240366 Sotes Delgado Mar 2019 B2
10246914 Sieglaar Apr 2019 B2
10822836 Nakasone Nov 2020 B2
20020104339 Saner Aug 2002 A1
20030024288 Gokcebay Feb 2003 A1
20030159478 Nagy Aug 2003 A1
20040004360 Huang Jan 2004 A1
20040011094 Hsieh Jan 2004 A1
20040066046 Becken Apr 2004 A1
20040089037 Chang May 2004 A1
20040107746 Chang Jun 2004 A1
20040107747 Chang Jun 2004 A1
20040112100 Martin Jun 2004 A1
20040145189 Liu Jul 2004 A1
20040227349 Denys Nov 2004 A1
20040239121 Morris Dec 2004 A1
20050029345 Waterhouse Feb 2005 A1
20050044908 Min Mar 2005 A1
20050050928 Frolov Mar 2005 A1
20050103066 Botha et al. May 2005 A1
20050144848 Harger et al. Jul 2005 A1
20050166647 Walls Aug 2005 A1
20050180562 Chiang Aug 2005 A1
20050229657 Johansson et al. Oct 2005 A1
20060043742 Huang Mar 2006 A1
20060071478 Denys Apr 2006 A1
20060076783 Tsai Apr 2006 A1
20060150516 Hagemeyer Jul 2006 A1
20060208509 Bodily Sep 2006 A1
20070068205 Timothy Mar 2007 A1
20070080541 Fleming Apr 2007 A1
20070113603 Polster May 2007 A1
20070170725 Speyer et al. Jul 2007 A1
20070259551 Rebel Nov 2007 A1
20080000276 Huang Jan 2008 A1
20080001413 Lake Jan 2008 A1
20080087052 Abdollahzadeh et al. Apr 2008 A1
20080092606 Meekma Apr 2008 A1
20080093110 Bagung Apr 2008 A1
20080141740 Shvartz Jun 2008 A1
20080150300 Harger et al. Jun 2008 A1
20080156048 Topfer Jul 2008 A1
20080156049 Topfer Jul 2008 A1
20080157544 Phipps Jul 2008 A1
20080178530 Ellerton et al. Jul 2008 A1
20080179893 Johnson Jul 2008 A1
20080184749 Alber et al. Aug 2008 A1
20080191499 Stein Aug 2008 A1
20090064737 Fan Mar 2009 A1
20090078011 Avni Mar 2009 A1
20090218832 Mackle Sep 2009 A1
20090314042 Fan Dec 2009 A1
20090315669 Lang Dec 2009 A1
20100107707 Viviano May 2010 A1
20100154490 Hagemeyer et al. Jun 2010 A1
20100213724 Uyeda Aug 2010 A1
20100236302 Uyeda Sep 2010 A1
20100313612 Eichenstein Dec 2010 A1
20100327610 Nakanishi et al. Dec 2010 A1
20110056254 Tsai Mar 2011 A1
20110198867 Hagemeyer et al. Aug 2011 A1
20110289987 Chiou et al. Dec 2011 A1
20110314877 Fang Dec 2011 A1
20120001443 Mitchell Jan 2012 A1
20120146346 Hagemeyer et al. Jun 2012 A1
20120235428 Blacklaws Sep 2012 A1
20120306220 Hagemeyer et al. Dec 2012 A1
20130019643 Tagtow et al. Jan 2013 A1
20130081251 Hultberg Apr 2013 A1
20130140833 Hagemeyer et al. Jun 2013 A1
20130152647 Terei et al. Jun 2013 A1
20130200636 Hagemeyer et al. Aug 2013 A1
20130234449 Dery et al. Sep 2013 A1
20130276488 Haber Oct 2013 A1
20140060127 Hemmingsen et al. Mar 2014 A1
20140125068 Hagemeyer et al. May 2014 A1
20140159387 Hagemeyer et al. Jun 2014 A1
20140182343 Talpe Jul 2014 A1
20140367978 Geringer Dec 2014 A1
20150075233 Pluta Mar 2015 A1
20150089804 Picard Apr 2015 A1
20150114176 Bisang Apr 2015 A1
20150170449 Chandler, Jr. Jun 2015 A1
20150176311 Picard Jun 2015 A1
20150252595 Hagemeyer et al. Sep 2015 A1
20160083976 Rickenbaugh Mar 2016 A1
20160108650 Hagemeyer et al. Apr 2016 A1
20160369525 Tagtow et al. Dec 2016 A1
20180023320 McKibben Jan 2018 A1
20180051478 Tagtow Feb 2018 A1
20180119462 Hagemeyer May 2018 A1
20180155962 Mitchell et al. Jun 2018 A1
20180298642 Tagtow Oct 2018 A1
20180313116 Criddle Nov 2018 A1
20190024437 Tagtow Jan 2019 A1
20190032368 Welbig et al. Jan 2019 A1
20190277062 Tagtow Sep 2019 A1
20200354990 Tagtow Nov 2020 A1
Foreign Referenced Citations (94)
Number Date Country
84928 Dec 2000 AU
2631521 Nov 2009 CA
1243908 Feb 2000 CN
2554288 Jun 2003 CN
2595957 Dec 2003 CN
2660061 Dec 2004 CN
201031548 Mar 2008 CN
202047652 Nov 2011 CN
1002656 Feb 1957 DE
1584112 Sep 1969 DE
2639065 Mar 1977 DE
3032086 Mar 1982 DE
3836693 May 1990 DE
9011216 Oct 1990 DE
4224909 Feb 1993 DE
29807860 Aug 1998 DE
20115378 Nov 2001 DE
10253240 May 2004 DE
202012002743 Apr 2012 DE
202013000920 Apr 2013 DE
202013000921 Apr 2013 DE
202013001328 May 2013 DE
0007397 Feb 1980 EP
0231042 Aug 1987 EP
0268750 Jun 1988 EP
341173 Nov 1989 EP
359284 Mar 1990 EP
661409 Jul 1995 EP
792987 Sep 1997 EP
1106761 Jun 2001 EP
1283318 Feb 2003 EP
1449994 Aug 2004 EP
1574642 Sep 2005 EP
1867817 Dec 2007 EP
2128362 Dec 2009 EP
2273046 Jan 2011 EP
2339099 Jun 2011 EP
2450509 May 2012 EP
2581531 Apr 2013 EP
2584123 Apr 2013 EP
2584124 Apr 2013 EP
2998483 Mar 2016 EP
3091152 Nov 2016 EP
363424 Jul 1906 FR
370890 Feb 1907 FR
21883 Apr 1921 FR
1142316 Mar 1957 FR
1162406 Sep 1958 FR
1201087 Dec 1959 FR
2339723 Sep 1977 FR
2342390 Sep 1977 FR
2344695 Oct 1977 FR
2502673 Oct 1982 FR
2848593 Feb 2005 FR
3017641 Aug 2015 FR
226170 Apr 1925 GB
264373 Jan 1927 GB
583655 Dec 1946 GB
612094 Nov 1948 GB
1498849 Jan 1978 GB
1575900 Oct 1980 GB
2051214 Jan 1981 GB
2076879 Dec 1981 GB
2115055 Sep 1983 GB
2122244 Jan 1984 GB
2126644 Mar 1984 GB
2134170 Aug 1984 GB
2136045 Sep 1984 GB
2168747 Jun 1986 GB
2196375 Apr 1988 GB
2212849 Aug 1989 GB
2225052 May 1990 GB
2230294 Oct 1990 GB
2242702 Oct 1991 GB
2244512 Dec 1991 GB
2265935 Oct 1993 GB
2270343 Mar 1994 GB
2280474 Feb 1995 GB
2318382 Apr 1998 GB
2364545 Jan 2002 GB
2496911 May 2013 GB
614960 Jan 1961 IT
64-083777 Mar 1989 JP
2003343141 Dec 2003 JP
2006112042 Apr 2006 JP
2008002203 Jan 2008 JP
2011094706 Aug 2011 KR
8105627 Jul 1983 NL
309372 Mar 1969 SE
0233202 Apr 2002 WO
2007104499 Sep 2007 WO
2010071886 Jun 2010 WO
2015079290 Jun 2015 WO
WO-2015079290 Jun 2015 WO
Non-Patent Literature Citations (12)
Entry
Computer Generated Translation for EP2998483, Generated on Feb. 21, 2020, https://worldwide.espacenet.com/ (Year: 2020).
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco_multipoint_lock_2_cams_2_shootbolt_attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc_Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs.
“UPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs.
PCT Invitation to Pay Additional Fees in PCT Application PCT/US2017/047348, dated Nov. 15, 2017, 12 pages.
Doorking.com—Electric Locks—Strikes and Deadbolts; printed from https://www.doorking.com/access-control/electric-locks-strikes-deadbolts, 2 pages, Feb. 2016.
Magneticlocks.net—Electric Strikes and Deadbolts; printed from https://www.magneticlocks.net/electric-strikes-and-deadbolts/electric-strikes.html, 8 pages, Feb. 2016.
Sdcsecurity.com—Latch and Deadbolt Monitoring Strikes; printed from http://www.sdcsecurity.com/monitor-strike-kits2.htm, 2 pages, Feb. 2016.
PCT International Search Report and Written Opinion in International Application PCT/US2017/047348, dated Jan. 15, 2018, 19 pages.
Related Publications (1)
Number Date Country
20180051480 A1 Feb 2018 US