The invention relates to a locking tongue for a seat belt system, having a base part, a webbing slot in the base part through which the belt webbing can extend, and a locking cam associated to the webbing slot and supported in the base part, the locking cam being movable between a rest position and a clamping position.
A locking tongue after this type is known from U.S. Pat. No. 5,806,148. The locking cam of U.S. Pat. No. 5,806,148 is arranged such that the belt webbing can pass freely through the webbing slot when the locking cam assumes its rest position. When the seat belt is being used by a vehicle occupant, he or she inserts the locking tongue into a seat belt buckle associated with the respective seat. Under the assumption that the seat belt is part of a conventional three point safety belt system, the locking tongue divides the seat belt into a torso portion and a lap portion. In a case in which the seat belt restrains the vehicle occupant, the load acting in the belt webbing acts on the locking cam so as to pivot the locking cam towards the clamping position. In the clamping position, the locking cam prevents or at least significantly reduces any slipping of the belt webbing through the webbing slot. This reduces the forward movement of the pelvis region of the vehicle occupant.
The object of the invention is to improve the known locking tongue with respect to the handling of the locking tongue in a non-buckled condition. The present invention provides a locking tongue, in which a biasing means is provided which biases the locking cam towards the rest position. The biasing means ensures that the locking cam cannot unintentionally clamp the belt webbing in the webbing slot, for example when the vehicle occupant unfastens the seat belt.
According to one embodiment of the invention, the biasing means is a spring. This results in a very compact configuration.
Preferably, the biasing means is formed by a torsion spring. The torsion spring can be arranged in close proximity to the locking cam and imparts a rotational biasing force.
According to an alternative embodiment, the biasing means is an elastomeric spring. An elastomeric spring is advantageous as it can be mounted in a very simple manner.
Preferably, the elastomeric spring is formed with at least two distinct compression segments. This allows different clamping positions which are assumed by the locking cam depending on the particular level of load which acts in the belt webbing.
According to an embodiment of the invention, a shear pin is provided which can be sheared off by the locking cam. The shear pin defines a locking position of the locking cam which is not assumed during normal operation. If the force acting in the belt webbing is high enough for shearing off the shear pin, the locking cam moves into a locking position.
According to an embodiment, the locking cam is mounted pivotably on a pivot stud, the pivot stud being connected to the base part by means of a plastics overmould fixed to the base part. This embodiment allows integrating the mounting portions for pivotably supporting the locking cam into the plastics overmould which is typically provided on the base part.
According to an alternative embodiment, the locking cam is mounted pivotably on a pivot stud, the pivot stud being held in bearing portions formed integrally with the base part. In this embodiment, the clamping loads acting on the locking cam are directly transferred into the base part so that the plastics overmould must not be designed in view of the clamping forces.
The invention also provides a combination of a locking tongue as described above and a seat belt, the seat belt extending through the webbing slot, an edge of the webbing slot acting as a clamping edge against which the belt webbing can be pressed by the locking cam. The dimensions of the webbing slot, the locking cam and the belt webbing are adjusted such that the locking cam can assume at least three positions. The locking cam has a rest position in which the belt webbing can pass freely through the webbing slot. The locking cam has at least one clamping position in which the locking cam presses the belt webbing against the clamping edge of the webbing slot such that the belt webbing is tightly clamped. The biasing means is able to return the locking cam from the clamping position into the rest position. The locking cam has a locking position in which the locking cam locks the belt webbing in the webbing slot. The biasing means is not able to return the locking cam from the locking position towards the rest position. The locking position is assumed by the locking cam in case of very high loads acting on the belt webbing. Once such high loads have occurred, the components of the seat belt system should be replaced. The locking cam remaining in the locking position provides a clear indication to the vehicle occupant that a repair is now necessary as the locking tongue is now held stationary on the belt webbing, preventing a belt retractor from taking up the belt webbing of the unfastened seat belt.
A shear pin may define the clamping position. The shear pin ensures that the locking cam is held in the clamping position up to a certain level of load. If the loads acting in the belt webbing exceed a certain threshold, the shear pin will be sheared off or give way, and the locking cam can reach the locking position.
The invention will now be described with reference to different embodiments which are shown in the drawings. In the drawings:
In
Locking tongue 10 comprises a base 11 having a base part 12 typically made from metal, with base part 12 having an insert portion 14 which can be locked in the seat belt buckle. Base part 12 further comprises a webbing slot 16 through which the belt webbing 44 (please see
A cover 18 is provided on base part 12, the cover 18 being formed as a plastic part directly molded onto and partially over base part 12. As it can be seen in particular in
A locking cam 20 is mounted pivotably on cover 18 of locking tongue 10, with the pivot axis of locking cam 20 being parallel to the longitudinal direction of webbing slot 16. Locking cam 20 is held by two pivot studs 22 which engage into bearing openings 24 formed in cover 18 close to the outer ends of webbing slot 16. A biasing means formed as a spring 26 is provided, which with one end leg 28 engages into a support opening 30 in cover 18 and with its other end leg 32 engages into locking cam 20. With reference to
As can be seen in greater detail in
Locking cam 20 further is provided with a pressing portion 46 which is arranged approximately opposite locking portion 40 when taking the pivot axis defined by the centre line of pivot studs 22 of locking cam 20 as a reference. The maximum distance of pressing portion 46 from the pivot axis of locking cam 20 is larger than the maximum distance of locking portion 40 therefrom.
When the seat belt is fastened and the locking tongue 10 is engaged into a seat belt buckle, belt webbing 44 extends in a U-shape along cover 18 through webbing slot 16 and back along the cover. The locking tongue then divides the seat belt into two portions, namely a first portion 441 and a second portion 442, with the first portion typically being a torso portion and the second portion typically being a lap portion.
When the belt webbing extends around locking cam 20, it contacts pressing portion 46 (please see
When the locking tongue is disengaged from the belt buckle such that the belt retractor can roll up the belt webbing, spring 26 returns locking cam 20 into the rest position shown in
In
In order to increase the stiffness of the locking tongue, flanges 54 are formed on the opposing longer edges of the cut-out forming webbing slot 16. This in particular increases the stiffness in the region against which the belt webbing is pressed when locking cam 20 is in the clamping position.
For pivotably supporting locking cam 20 in bearing portions 50, short studs 56 are used which each feature a slot 58 at the end where spring 26 is arranged. The end of stud 56 which engages into locking cam 20 is provided with a flattened portion 60, which allows to transmit the torque from the spring towards the locking cam and which further guarantees that slot 58 is maintained in the same orientation on both sides of the locking cam, so that the end leg of the spring engaging into slot 58 are maintained in the same angular position.
A third embodiment of locking tongue 10 is shown in
Spring 70 is here formed from three segments 72, 74 and 76 which are arranged in a row between a concave support portion 78 formed on cover 18 and a likewise concave abutment portion 80 formed on pressing portion 46 of locking cam 20. The biasing force provided by spring segment 76 is lower than the biasing force provided by spring segment 74, with the segment 76 being the one which abuts on locking cam 20. The spring segment 72 engages the concave support portion 78 on the cover 18.
Furthermore, a shear pin 82 is provided such that it can cooperate with abutment portion 80 of locking cam 20. As can be seen in
When the seat belt is fastened such that the belt webbing runs in a U-shape through webbing slot 16 and around locking cam 20, a certain level of load acting in the seat belt portion 441 results in locking cam 20 being pivoted into a first clamping position which is shown in
When the loads acting on the belt webbing reach a higher level, locking cam 20 is rotated beyond the first clamping position into the second clamping position shown in
In both the first and the second clamping positions shown in
When even higher forces act in the seat belt than in a condition which makes locking cam 20 assume the second clamping position, shear pin 82 is sheared off, and locking cam 20 is brought into a third locking position which is shown in
A locking tongue 10 according to a fourth embodiment is shown in
A cover 18 is directly molded onto and partially over base part 12. The cover 18 covers the edges of the slot 16 in base part 12. A locking cam 20 is mounted pivotably on cover 18 of locking tongue 10 by a pivot shaft 22. The locking cam 20 may be made of one-piece or a plurality of pieces connected together. The locking cam 20 may be formed of aluminum, steel, plastic, magnesium or any other desired material or combinations of material. The pivot shaft 22 extends through an opening 23 in the locking cam 20. A pivot axis of the locking cam 20 and the pivot shaft 22 extends parallel to the longitudinal direction of webbing slot 16.
The pivot shaft 22 extends into openings in flanges 24 of the base part 12. The flanges 24 extend from opposite sides of the webbing slot 16. Opposite ends of the pivot shaft 22 extend into openings in the cover to help retain the pivot shaft in the flanges 24. The flanges 24 support the pivot shaft 22 and the locking cam 20 for pivotal movement relative to the base part 12 and the cover 18.
The pivot shaft 22 includes a knurled surface 25 that prevents relative rotation between the pivot shaft 22 and the locking cam 20 and helps transfer torque between the locking cam 20 and the pivot shaft 22. The locking cam 20 may include a knurled surface that engages the knurled surface 25 on the pivot shaft 22. It is contemplated that the pivot shaft 22 and the locking cam 20 may be connected to each other in any desired manner. The pivot shaft 22 and the locking cam 20 may have mating splines or flat surfaces. It is also contemplated that the pivot shaft 22 may be press fit into the locking cam 20 or formed as one piece with the locking cam.
A biasing means, such as a spring 26 urges the locking cam into a rest position, shown in
The locking cam 20 is provided with a locking portion 40 which, in the rest position shown in
The ribs 45 or teeth may not extend the entire length of the locking cam 20. Also, the clamping edge 42 on the cover 18 may not extend the entire length of the slot. If the teeth or ribs 45 and/or the clamping edge 42 do not extend the entire length of the slot, the webbing 44 will not be clamped near the edges of the webbing when the locking cam 20 is in the clamping position.
The locking cam 20 includes a pressing portion 46. The pressing portion 46 is on an opposite side of the pivot axis from the locking portion 40. The pressing portion 46 extends from the pivot axis of locking cam 20 a greater distance than the locking portion. An opening 47 may extend through the pressing portion 46 to help reduce the weight of the locking cam 20. It is contemplated that each end of the pressing portion 46 may have an opening extending into the pressing portion instead of a single opening extending through the pressing portion.
When the seat belt is fastened and the locking tongue 10 is engaged into a seat belt buckle, belt webbing 44 extends in a U-shape along cover 18 through webbing slot 16 and back along the cover. The locking tongue then divides the seat belt into two portions, namely a first portion 441 and a second portion 442, with the first portion typically being a torso portion and the second portion typically being a lap portion.
When the belt webbing extends around locking cam 20, it contacts pressing portion 46. If a high load is exerted on the belt webbing in this condition, in particular on portion 442 of the seat belt, the frictional engagement between the belt webbing and pressing portion 46 in combination with the lever arm of pressing portion 46 results in locking cam 20 being pivoted against the action of spring 26 into the clamping position shown in
When the locking tongue is disengaged from the belt buckle such that the belt retractor can roll up the belt webbing, spring 26 returns locking cam 20 into the rest position shown in
This application corresponds to U.S. Provisional Application Ser. No. 61/384,448, filed Sep. 20, 2010, the subject matter of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4551889 | Narayan et al. | Nov 1985 | A |
5100176 | Ball et al. | Mar 1992 | A |
5138749 | McCune et al. | Aug 1992 | A |
5222278 | Ball et al. | Jun 1993 | A |
5806148 | McFalls et al. | Sep 1998 | A |
5870816 | McFalls et al. | Feb 1999 | A |
6390562 | Takamizu et al. | May 2002 | B1 |
7010836 | Acton et al. | Mar 2006 | B2 |
7185919 | Mather et al. | Mar 2007 | B2 |
7325280 | Ichida | Feb 2008 | B2 |
7404239 | Walton et al. | Jul 2008 | B1 |
7712194 | Fyhr | May 2010 | B2 |
20040158955 | Acton et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20120068520 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61384448 | Sep 2010 | US |