The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue. The surgical instruments may be configured for use in open surgical procedures, but have applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures and may include end effectors that are articulatable relative to a shaft portion of the instrument to facilitate precise positioning within a patient.
The novel features of the various aspects are set forth with particularity in the appended claims. The described aspects, however, both as to organization and methods of operation, may be best understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
The following U.S. Patent Applications were filed on Jun. 28, 2021 and are each incorporated by reference herein in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Feb. 21, 2019 which are each herein incorporated by reference in their respective entireties:
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating a handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
References to items in the singular should be understood to include items in the plural, and vice versa, unless explicitly stated otherwise or clear from the text. Grammatical conjunctions are intended to express any and all disjunctive and conjunctive combinations of conjoined clauses, sentences, words, and the like, unless otherwise stated or clear from the context. Thus, the term “or” should generally be understood to mean “and/or”, etc.
Recitation of ranges of values herein are not intended to be limiting, referring instead individually to any and all values falling within the range, unless otherwise indicated herein, and each separate value within such a range is incorporated into the disclosure as if it were individually recited herein. The words “about,” “approximately” or the like, when accompanying a numerical value, are to be construed as indicating a deviation as would be appreciated by one of ordinary skill in the art to operate satisfactorily for an intended purpose. Similarly, words of approximation such as “approximately” or “substantially” when used in reference to physical characteristics, should be construed to contemplate a range of deviations that would be appreciated by one of ordinary skill in the art to operate satisfactorily for a corresponding use, function, purpose or the like.
The use of any and all examples, or exemplary language (“e.g.,” “such as,” or the like) provided herein, is intended merely to better illuminate the embodiments and does not pose a limitation on the scope of the embodiments. No language in the specification should be construed as indicating any unclaimed element as essential to the practice of the embodiments.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
It is common practice during various laparoscopic surgical procedures to insert a surgical end effector portion of a surgical instrument through a trocar that has been installed in the abdominal wall of a patient to access a surgical site located inside the patient's abdomen. In its simplest form, a trocar is a pen-shaped instrument with a sharp triangular point at one end that is typically used inside a hollow tube, known as a cannula or sleeve, to create an opening into the body through which surgical end effectors may be introduced. Such arrangement forms an access port into the body cavity through which surgical end effectors may be inserted. The inner diameter of the trocar's cannula necessarily limits the size of the end effector and drive-supporting shaft of the surgical instrument that may be inserted through the trocar.
Regardless of the specific type of surgical procedure being performed, once the surgical end effector has been inserted into the patient through the trocar cannula, it is often necessary to move the surgical end effector relative to the shaft assembly that is positioned within the trocar cannula in order to properly position the surgical end effector relative to the tissue or organ to be treated. This movement or positioning of the surgical end effector relative to the portion of the shaft that remains within the trocar cannula is often referred to as “articulation” of the surgical end effector. A variety of articulation joints have been developed to attach a surgical end effector to an associated shaft in order to facilitate such articulation of the surgical end effector. As one might expect, in many surgical procedures, it is desirable to employ a surgical end effector that has as large a range of articulation as possible.
Due to the size constraints imposed by the size of the trocar cannula, the articulation joint components must be sized so as to be freely insertable through the trocar cannula. These size constraints also limit the size and composition of various drive members and components that operably interface with the motors and/or other control systems that are supported in a housing that may be handheld or comprise a portion of a larger automated system. In many instances, these drive members must operably pass through the articulation joint to be operably coupled to or operably interface with the surgical end effector. For example, one such drive member is commonly employed to apply articulation control motions to the surgical end effector. During use, the articulation drive member may be unactuated to position the surgical end effector in an unarticulated position to facilitate insertion of the surgical end effector through the trocar and then be actuated to articulate the surgical end effector to a desired position once the surgical end effector has entered the patient.
Thus, the aforementioned size constraints form many challenges to developing an articulation system that can effectuate a desired range of articulation, yet accommodate a variety of different drive systems that are necessary to operate various features of the surgical end effector. Further, once the surgical end effector has been positioned in a desired articulated position, the articulation system and articulation joint must be able to retain the surgical end effector in that locked position during the actuation of the end effector and completion of the surgical procedure. Such articulation joint arrangements must also be able to withstand external forces that are experienced by the end effector during use.
A variety of surgical end effectors exist that are configured to cut and staple tissue. Such surgical end effectors commonly include a first jaw feature that supports a surgical staple cartridge and a second jaw that comprises an anvil. The jaws are supported relative to each other such that they can move between an open position and a closed position to position and clamp target tissue therebetween. Many of these surgical end effectors employ an axially moving firing member. In some end effector designs, the firing member is configured to engage the first and second jaws such that as the firing member is initially advanced distally, the firing member moves the jaws to the closed position. Other end effector designs employ a separate closure system that is independent and distinct from the system that operates the firing member.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The staple drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a camming member or “sled”. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces (cams) that are configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, in these surgical end effectors, the sled is moved distally by the firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
Many surgical end effectors employ an axially movable firing beam that is attached to the firing member and is used to apply axial firing and retraction motions to the firing member. Many of such firing beams comprise a laminated construction that affords the firing beam with some degree of flexure about the articulation joint. As the firing beam traverses the articulation joint, the firing beam can apply de-articulation forces to the joint and can cause the beam to buckle. To prevent the firing beam from buckling under pressure, the articulation joint is commonly provided with lateral supports or “blow-out” plate features to support the portion of the beam that traverses the articulation joint. To advance the firing beam through an angle of greater than sixty degrees, for example, a lot of axial force is required. This axial force must be applied to the firing member in a balanced manner to avoid the firing member from binding with the jaws as the firing member moves distally. Any binding of the firing member with the jaws can lead to component damage and wear as well as require an increased amount of axial drive force to drive the firing member through the clamped tissue.
Other end effector designs employ a firing member that is rotary powered. In many of such designs, a rotary drive shaft extends through the articulation joint and interfaces with a rotatable firing member drive shaft that is rotatably supported within one of the jaws. The firing member threadably engages the rotatable firing member drive shaft and, as the rotatable firing member drive shaft is rotated, the firing member is driven through the end effector. Such arrangements require the supporting jaw to be larger to accommodate the firing member drive shaft. In such devices, a lower end of the firing member commonly operably interfaces with the drive shaft which can also result in an application of forces that can tend to unbalance the firing member as it is driven distally.
In one form, the surgical end effector 26000 comprises a first jaw 26100 and a second jaw 26200. In the illustrated arrangement, the first jaw 26100 comprises an elongate channel 26110 that comprises a proximal end 26112 and a distal end 26114 and is configured to operably support a surgical staple cartridge 10300 therein. The surgical staple cartridge 10300 comprises a cartridge body 10302 that has an elongate slot 10304 therein. A plurality of surgical staples or fasteners are stored therein on drivers (not shown) that are arranged in rows on each side of the elongate slot 10304. The drivers are each associated with corresponding staple cavities 10308 that open through a cartridge deck surface 10306. The surgical staple cartridge 10300 may be replaced after the staples/fasteners have been discharged therefrom.
The second jaw 26200 comprises an anvil 26210 that comprises an elongate anvil body 26212 that has a proximal end 26214 and a distal end 26216. The anvil body 26212 comprises a staple-forming undersurface 26218 that faces the first jaw 26100 and may include a series of staple-forming pockets (not shown) that corresponds to each of the staples or fasteners in the surgical staple cartridge 10300. As can be seen in
In the illustrated arrangement, the elongate shaft assembly 28000 defines a shaft axis SA and comprises a shaft spine assembly 28100 that is received in a hollow outer shaft tube 28102. See
The elongate shaft assembly 28000 further comprises an articulation joint 28200 that may be attached to the distal spine segment 28140 as well as the surgical end effector 26000 to facilitate selective articulation of the surgical end effector 26000 relative to the elongate shaft assembly 28000 in multiple articulation planes. Turning now to
Also in the illustrated arrangement, an anvil mounting bracket 26240 is configured to operably interface with the articulation joint 28200. The anvil mounting bracket 26240 is attached to the proximal end 26112 of the elongate channel 26110 of the surgical end effector 26000 by welding, adhesive or other suitable fastener arrangements and comprises a proximal face 26244 that has a centrally-disposed spherical feature or protrusion 26246 protruding therefrom. See
In at least one embodiment, the articulation joint further comprises a series 28270 of elastomeric annular spacer members 28280 that serve to space and provide elastic support between each annular disc member 28210. The elastomeric annular spacer members 28280 define a spacer opening 28282 such that each elastomeric spacer member 28280 may be journaled on an annular hub portion 28232 of a corresponding annular disc member 28210. Each annular disc member 28210 is journaled on a central elastomeric support or continuum shaft 28300 that is mounted to the proximal attachment disc assembly 28240 and the anvil mounting bracket 26240. In one arrangement, the central continuum shaft 28300 is fabricated from an elastomeric material (e.g., rubber, polymer, etc.) and comprises a flanged proximal end 28302 and a cylindrical body portion 28304. The cylindrical body portion 28304 comprises a series of annular grooves 28306 therein. Each annular groove 28306 corresponds to one of the annular disc members 28210. The annular disc members 28210 and annular spacer members 28280 are journaled on the central continuum shaft 28300 as shown in
Still referring to
In at least one arrangement, to limit pivotal travel of the annular disc members 28210P, 28210A, 28210B, 28210C to a range of relative pivotal travel and prevent complete relative rotation of the annular disc members relative to each other, the centrally-disposed spherical feature or protrusion 28222 of each of the annular disc member 28210P, 28210A, 28210B, 28210C, as well as the distal spherical feature or protrusion 26246 of the anvil mounting bracket 26240, includes a pair of arcuate pin grooves 28226 therein. As can be seen in
Returning to
The proximal cable portions 28412, 28422, 28432, 28442 may operably interface with a portion of a cable control system 25030 that is supported within or is otherwise associated with a housing of the surgical instrument 25010. The cable control system 25030 may comprise a plurality of cable support members/capstans, pulleys, etc. that are controlled by one or more corresponding motors that are controlled by a control circuit portion of the surgical instrument 25010. In various embodiments, the cable control system 25030 is configured to manage the tensioning (pulling) and paying out of cables at precise times during the articulation process. In addition, in at least one arrangement, the cable control system 25030 may be employed to control the opening and closing of the anvil 26210 as will be discussed in further detail below.
Turning now to
As can be seen in
Each of the first and second lateral alpha wrap pulleys 28520, 28530 also comprise a corresponding spiral closure cam that is configured to apply closure motions to the anvil 26210. As can be seen in
In the illustrated arrangement, the proximal attachment disc 28240, the proximal-most annular disc member 28210P, annular proximal disc members 28210A, 28210B, 28210C and anvil mounting bracket 26240 all include fourth articulation cable passages 28214 that are configured to permit each of the distal cable portions 28416, 28426, 28436, and 28446 to pass therethrough.
Referring now to
In the illustrated example, distal cable portion 28436 extends from the articulation rod 28434 through the articulation joint 28200 to be received within a corresponding circumferential groove 28534 in the second lateral alpha wrap pulley 28530 where it is secured therein. In addition, the distal cable portion 28446 extends from the articulation rod 28444 through the articulation joint 28200 to be received within a corresponding circumferential groove 28532 in the second lateral alpha wrap pulley 28530 where it is secure therein.
In at least one example, to articulate the surgical end effector 26000 relative to the elongate shaft assembly 28000 through a first articulation plane, the cable control system 25030 is actuated to pull on the distal cable portion 28426 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28426, 28446. Because the distal cable portions 28426, 28446 apply equal amounts of tension on both sides of the pulley unit 28510, the pulley unit 28510 does not rotate. However, the pulling action of the distal cable portions 28426, 28446 is translated through the articulation joint 28200 to the surgical end effector 26000 which results in the articulation of the articulation joint 28200 through a first articulation plane. To articulate the surgical end effector 26000 through a second plane of articulation that is transverse to the first plane of articulation, the cable control system 25030 is actuated to pull the distal cable portion 28436 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28436, 28446. Because the distal cable portions 28436, 28446 apply equal amounts of tension on both sides of the second lateral alpha wrap pulley 25830 of the pulley unit 28510, the pulley unit 28510 does not rotate. However, the pulling action of the distal cable portions 28436, 28446 is translated through the articulation joint 28200 to the surgical end effector 26000 which results in the articulation of the articulation joint 28200 in a second articulation plane.
The cable control system 25030 may also be used to control the opening and closing of the anvil 26210 in the following manner. As indicated above, when the spiral closure cams 28526 on the first lateral alpha wrap pulley 28520 and the second lateral alpha wrap pulley 28530 are in a first position, the anvil 26210 may be pivoted to an open position by an anvil spring or springs (not shown) that are positioned in the proximal end 26112 of the elongate channel 26110 and are position to contact the anvil mounting portion 26230 or anvil closure arms 26234 to pivot the anvil 26210 to the open position. To close the anvil 26210 from that position, the cable control system 25030 is actuated to pull the distal cable portion 28416 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28416 and 28446. These distal cable portions 28416, 28446 will cause the pulley unit 28510 to rotate causing the spiral closure cams 28526, 28536 to contact the anvil closure arms 26234 and cam the anvil 26210 to a closed position. It will be appreciated that by applying equal amounts of tension into the distal cable portions 28416, 28446, no moment is applied to the articulation joint 28200 because there are equal amounts of tension being applied on each side of the shaft axis SA. Such arrangement allows the jaw closure to be profiled as desired. This cable-control system 25030 may allow for a faster closure when the anvil 26210 is fully open. The cable-control system 25030 can also function as a lower speed/higher force generating closure mechanism for clamping onto tissue. The present cable controlled system 25030 may not produce the backlash that commonly occurs with other cable-controlled systems and thus can also be used to control the articulation position of the end effector. The above-described articulation joint 28200 and cable controlled system 25030 can facilitate multiple plane articulation while also supplying an additional actuation motion to the surgical end effector 26000.
As was discussed above, many surgical end effectors employ a firing member that is pushed distally through a surgical staple cartridge by an axially movable firing beam. The firing beam is commonly attached to the firing member in the center region of the firing member body. This attachment location can introduce an unbalance to the firing member as it is advanced through the end effector. Such unbalance can lead to undesirable friction between the firing member and the end effector jaws. The creation of this additional friction may require an application of a higher firing force to overcome such friction as well as can cause undesirable wear to portions of the jaws and/or the firing member. An application of higher firing forces to the firing beam may result in unwanted flexure in the firing beam as it traverses the articulation joint. Such additional flexure may cause the articulation joint to de-articulate—particularly when the surgical end effector is articulated at relatively high articulation angles. The surgical instrument 25010 employs a firing system 27000 that may address many if not all of such issues.
Referring now to
In the illustrated arrangement, the firing system 27000 comprises an upper firing assembly 27200 that operably interfaces with the top firing member feature 27120. The upper firing assembly 27200 includes an upper flexible outer tube or conduit 27210 that has a proximal end 27212 that is fixed to an upper insert 27214 that is non-movably attached to the shaft spine assembly 28100. For example, the upper insert 27214 may be welded to the shaft spine assembly 28100 or otherwise be attached thereto by adhesive or other appropriate fastening means. The flexible outer tube or conduit 27210 extends through upper passages 28216 provided through the proximal attachment disc assembly 28240, the proximal-most annular disc member 28210P, the annular disc members 28210A, 28210B, 28210C and the anvil mounting bracket 26240. A distal end 27216 of the flexible outer tube or conduit 27210 may be affixed to the anvil mounting bracket 26240.
In the illustrated embodiment, the upper firing assembly 27200 further includes an upper push rod 27220 that is slidably supported in a corresponding axial passage in the shaft spine assembly 28100. The upper firing assembly 27200 further comprises an upper push coil 27230 that is supported in an inner flexible upper sleeve 27240 which extends through the upper flexible outer tube or conduit 27210. A proximal end 27232 of the upper push coil 27230 and a proximal end 27242 of the inner flexible upper sleeve 27240 abut a distal end 27222 of the upper push rod 27220. The upper push coil 27230 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the upper push coil 27230 comprises a laser cut “hypotube” that essentially comprises a hollow tubular member with offset laser cuts therein which enable the hypotube to flex and bend while being capable of transmitting axial forces or motions. The inner flexible upper sleeve 27240 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the upper push coil 27230 which may hamper its ability to flex and bend during articulation of the surgical end effector relative to the elongate shaft assembly.
As can be seen in
In the illustrated example, the firing system 27000 further comprises a lower firing assembly 27300 that operably interfaces with the bottom firing member feature 27130. The lower firing assembly 27300 includes a lower flexible outer tube or conduit 27310 that has a proximal end 27312 that is fixed to a lower insert 27314 that is non-movably attached to the shaft spine assembly 28100. For example, the lower insert 27314 may be welded to the shaft spine assembly 28100 or otherwise be attached thereto by adhesive or other appropriate fastening means. The lower flexible outer tube or conduit 27310 extends through lower passages 28218 provided in each of the proximal attachment disc assembly 28240, the proximal-most annular disc member 28210P, annular disc members 28210A, 28210B, 28210C and anvil mounting bracket 26240. A distal end 27316 of the flexible outer tube or conduit 27310 is affixed to the anvil mounting bracket 26240.
In the illustrated embodiment, the lower firing assembly 27300 further includes a lower push rod 27320 that is slidably supported in a corresponding axial passage in the shaft spine assembly 28100. The lower firing assembly 27300 further comprises a lower push coil 27330 that is supported in an inner flexible lower sleeve 27340 which extends through the lower flexible outer tube or conduit 27310. A proximal end 27332 of the lower push coil 27330 and a proximal end 27342 of the inner flexible lower sleeve 27340 abut a distal end 27322 of the lower push rod 27320. The lower push coil 27330 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the lower push coil 27330 comprises a laser cut hypotube that essentially comprises a hollow tubular member with offset laser cuts therein which enable the hypotube to flex and bend. The inner flexible lower sleeve 27340 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the lower push coil 27330 which may hamper its ability to flex during articulation.
As can be seen in
In the illustrated arrangement, the firing system 27000 further comprises a differential drive assembly 27400 that is configured to axially drive the upper firing assembly 27200 and the lower firing assembly 27300. Turning to
Still referring to
As can be seen in
Surgical stapling devices need to apply a high force on the firing member over a long displacement to form the staples and cut tissue. Transmitting that force through an articulated joint is especially challenging because it is difficult to redirect the forces in the desired direction and withstand the loads applied to it. The differential drive assembly 27400 described herein addresses and solves many, if not all, of such challenges by employing two flexible outer tubes or conduits 27210, 27310 to constrain the paths of the flexible push coils 27230, 27330, respectively. As described herein, the upper flexible outer tube or conduit 27210 surrounds a portion of the upper push coil 27230 and the upper flexible outer tube or conduit 27310 surrounds a portion of the lower push coil 27330. Each of the outer tubes or conduits 27210, 27310 can bend but they also can resolve an axial tensile load. The ability to bend allows for the firing member force to be redirected through the articulated joint, and the ability to resolve tension allows for it to change the direction in which the push coil goes. When the push coil 27230, 27330 is put in compression, the flexible outer tube or conduit 27210, 27310 is put in tension. The outer tubes or conduits 27210, 27310 prevent the push coils 27230, 27330 from buckling. The outer tubes 27210, 27310 are terminated in a manner to resolve the tensile loads.
As described above, the distal end 27216 of the flexible outer tube or conduit 27210 and the distal end 27316 of the flexible outer tube or conduit 27310 are both affixed to the anvil mounting bracket 26240. The proximal end 27212 of the flexible outer tube or conduit 27210 and the proximal end 27312 of the flexible outer tube or conduit 27310 are both affixed to the shaft spine assembly 28100. The pinion gear 27432 is in meshing engagement with the first or upper gear rack 27410 and the second or lower gear rack 27420 such that when one of the racks 27410, 27420 moves in one axial direction, the other rack 27410, 27420 axially moves in an opposite direction. As can be seen in
In accordance with one general aspect, the upper passages 28216 form an upper pathway 28221 (
When the surgical end effector 26000 is in the unarticulated position, the firing system 27000 may be actuated to drive the firing member 27100 from a starting position within the proximal end 26112 of the elongate channel 26100 to an ending position within the distal end 26114 of the elongate channel 26110. When the surgical end effector 26000 is in the unarticulated position, and the firing system 27000 is actuated, the differential drive assembly 27400 drives the upper firing assembly 27200 and the lower firing assembly 27300 equal axial distances in a same axial direction (i.e., the distal direction DD) to apply an upper axial drive motion and a lower axial drive motion to the firing member 27100. The upper axial drive motion and the lower axial drive motion are substantially equal in magnitude which serves to distally advance the firing member 27100 through the surgical end effector 26000 without binding which might otherwise occur should the upper axial drive motion and the lower axial drive motions be different in magnitude. Similarly, when the surgical end effector 26000 is in an articulated position relative to the elongate shaft assembly 28000, the firing system 27000 may be actuated to drive the firing member 27100 from the starting position to the ending position. In such instances, the differential drive assembly 27400 is configured to permit the upper firing assembly 27200 and the lower firing assembly 27300 to move in substantially equal distances in opposite axial directions to accommodate the articulated position. The differential drive assembly 27400 may then apply an upper axial drive motion and a lower axial drive motion that are equal to each other to the firing member 27100. For example, depending upon the articulated position of the surgical end effector 26000 relative to the elongate shaft assembly 28000, the upper firing assembly 27200, upon articulation of the surgical end effector 26000, may be moved proximally a first distance and the lower firing assembly 27300 may be positioned relative thereto distally a second distance that is substantially equal to the first distance by the pinion gear 27432. Thereafter, distal actuation of the firing drive actuator 27440 will cause the upper firing assembly 27200 and the lower firing assembly 27300 to apply an upper axial drive motion and a lower axial drive motion that are equal to each other to the firing member 27100. As used herein, when the carrier is moved distally, the carrier may apply “axial control motions” to the upper firing assembly 27200 and the lower firing assembly 27300. Thus, when the surgical end effector 26000 is in an unarticulated configuration, the carrier may apply equal amounts of axial control motions to the upper firing member 27200 and the lower firing member 27300 in the same axial direction (distal direction DD) and when the surgical end effector 26000 is in an articulated configuration, the carrier may apply “other equal amounts” of axial control motions to the upper firing member 27200 and the lower firing member 27300 in the same axial direction (distal direction DD) to move the firing member 27100 from the starting position to the ending position.
In one form, the surgical end effector 31000 comprises a first jaw 31100 and a second jaw 31200. In the illustrated arrangement, the first jaw 31100 comprises an elongate channel 31110 that comprises a proximal end 31112 and a distal end 31114 and is configured to operably support a surgical staple cartridge 10300 therein. The second jaw 31200 comprises an anvil 31210 that comprises an elongate anvil body 31212 that has a proximal end 31214 and a distal end 31216. The anvil body 31212 comprises a staple-forming underside 31218 that faces or “confronts” the first jaw 31100 and may include a series of staple-forming pockets (not shown) that correspond to each of the staples or fasteners in the surgical staple cartridge 10300.
In at least one arrangement, an anvil mounting bracket 31240 that is attached to the proximal end 31112 of the elongate channel 31110. See
As can be seen in
In the illustrated arrangement, the elongate shaft assembly 32000 defines a shaft axis SA and comprises a shaft spine assembly 32100 that is received in a hollow outer shaft tube 32102. See
Turning now to
The articulation joint 32200 operably interfaces with and is coupled to the anvil mounting bracket 31240. See
As can be seen in
In at least one arrangement, to limit pivotal travel of the annular disc members 32210 to a range of relative pivotal travel and prevent complete relative rotation of the annular disc members 32210 relative to each other, the centrally-disposed spherical feature or protrusion 32222 of each of the annular disc member 32210, as well as the centrally-disposed spherical feature or protrusion 32266 of the distal attachment disc 32260 include a pair of diametrically opposed pins 32227 that are pressed into or otherwise attached thereto. Each pin 32227 is configured to be movably received in corresponding open-ended slot 32226 in each annular hub portion 32232.
In at least one arrangement, the articulation joint 32200 also comprises a flexible, elastomeric joint cover assembly 32259 that is configured to prevent infiltration of fluids and debris into the articulation joint 32200. See
Returning to
In at least one example, the surgical instrument 30010 further comprises a firing system 33000 that is in most if not all aspects very similar or identical to firing system 27000 described in detail above. As can be seen in
In at least one embodiment, anvil body 31212 comprises a centrally-disposed axially extending anvil slot 31300 that is configured to permit the firing member body 33112 to pass therethrough during firing and retraction strokes. Similarly, the elongate channel 32110 comprises an axially extending channel slot 31111 that is configured to permit the firing member body 33112 to pass therethrough. See
In the illustrated arrangement, the firing system 33000 comprises an upper firing assembly 33200 that operably interfaces with the top firing member feature 33120 and in many aspects is similar to the upper firing assembly 27200. The upper firing assembly 33200 includes an upper flexible outer tube or conduit 33210 that has a proximal end that is fixed to an upper insert 33214 that is non-movably attached to the shaft spine assembly 32100 in the various manner described in detail above. The flexible outer tube or conduit 33210 extends through upper passages 32216 provided through the articulation joint 32200. See
As was discussed above, a distal end of the upper push coil 33230 as well as a distal end of the inner flexible upper sleeve abut a proximal end of the top firing member feature 33120. Also in the illustrated arrangement, the upper firing assembly 33200 may further comprise an upper push coil cable that extends through the hollow upper push coil. The upper push coil cable comprises an upper cable proximal end that is secured to the distal end of the upper push rod 33220 and an upper cable distal end that is secured within the top axial passage in the top firing member feature 33120 by an upper attachment lug. The upper push coil and inner sleeve arrangement of this embodiment is essentially identical to the upper push coil and inner sleeve arrangement depicted in
In addition, the firing system 33000 further comprises a lower firing assembly 33300 that operably interfaces with the bottom firing member feature 33130. The lower firing assembly 33300 includes a lower flexible outer tube or conduit 33310 that has a proximal end that is fixed to a lower insert 33314 that is non-movably attached to the shaft spine assembly 32100. The lower flexible outer tube or conduit 33310 extends through lower passages 32218 provided in each of the proximal attachment disc assembly 32240, the annular disc members 32210 and the anvil mounting bracket 31240. A distal end of the flexible outer tube or conduit 33310 may be affixed to the anvil mounting bracket 31240. In the illustrated embodiment, the lower firing assembly 33300 further includes a lower push rod 33320 that is slidably supported in a corresponding axial passage in the shaft spine assembly 32100. See
As can be seen in
As indicated above, the anvil 31210 is pivotally coupled to the proximal end 31112 of the elongate channel 31110 by a pin 31232 that defines the fixed pivot axis PA. See
In at least one arrangement, the anvil 31210 is moved from the fully open position (
Thus, in one arrangement, the surgical instrument 30010 may be operated as follows. For example, to insert the surgical end effector 31000 through a cannula of a trocar that has been installed in the patient, the clinician must first close the anvil 31210. To accomplish that task, the clinician may actuate the differential drive assembly 27400 in the various manners described herein to cause the upper push coil 33230 and the lower push coil 33330 to distally drive the firing member 33100 from the beginning position to an “intermediate closure position” (
Once the surgical end effector 31000 has completely entered the patient and is moved to the desired area, the differential drive assembly is activated to return the firing member 33100 to the beginning position to move the anvil 31210 to the fully open position. At this time or prior to the moving of the anvil 31210 to the fully open position, the clinician may activate the cable control system 25030 in the various manners described herein to apply tension and relieve tension in the various cable assemblies 32410, 32420, 32430, 32440 that are attached to the anvil mounting bracket 31240 to cause the surgical end effector 31000 to articulate into a desired orientation in which the target tissue may be clamped between the anvil 31210 and the surgical staple cartridge 10300 that is supported in the surgical end effector 31000. Once the surgical end effector 31000 has been articulated into the desired position, the cable control system 25030 may be deactivated.
After the clinician (or robotic system) has positioned the surgical end effector 31000 in a desired orientation, the clinician (or robotic system) may once again activate the differential drive assembly 27400 to drive the firing member 33100 distally from the beginning position. The firing member 33100 may be stopped in the intermediate closure position to enable the clinician to assess whether the target tissue has been properly clamped in the surgical end effector 31000 before proceeding to cut and staple the tissue or the clinician may permit the firing member 33100 to continue moving distally until the firing member 33100 has reached the ending position within the surgical end effector 31000 wherein the target tissue has been fully cut and stapled. Stated another way, when the firing member 33100 has reached a distal-most position within the surgical end effector 31000 wherein all of the surgical staples stored in the surgical staple cartridge 10300 have been forced through the target tissue into forming contact with the staple-forming underside 31218 of the anvil 31210, the distal advancement of the firing member 33100 is discontinued.
Referring to
The surgical staple cartridge 10300 further includes a camming assembly 10330 also known as a “sled” that is movably supported within the cartridge body 10312. See
Once the target tissue has been cut and stapled, the clinician (or robotically-controlled system) may then activate the differential drive assembly 27400 to retract the firing member 33100 from the fully-fired position back to the beginning position wherein the anvil 31210 is moved to the open position to release the stapled target tissue from the surgical end effector 31000. Thereafter, the clinician may again activate the differential drive assembly 24700 to move the anvil 31210 to the closed position to permit the surgical end effector 31000 to exit back through the trocar cannula. Of course, the surgical instrument 30010 may also be effectively employed in a similar manner in “open” surgical applications wherein trocars are not employed to access the surgical area within the patient.
As described above, the upper firing assembly 33200 comprises an upper push coil 33230 that may be supported in an inner flexible upper sleeve 33231 which extends through the upper flexible outer tube or conduit 33210. The lower firing assembly 33300 comprises a lower push coil 33330 that is supported in an inner flexible lower sleeve 33341 which extends through the lower flexible outer tube or conduit 27310. In the embodiment depicted in
In the example illustrated in
In the various embodiments described above, the push cables may comprise a Nitinol material, titanium, stainless steel or other suitable material. Other numbers of push cables and sizes of push cables having different cross-sectional shapes may be employed, provided that the overall width of the support cable or support cable arrangement is greater than the width of the anvil slot and the channel slot while also being sized to pass through the various openings in the various components of the surgical instrument 30010 in the manners disclosed herein. It will be further appreciated that the cross-sectional shapes, sizes, and compositions of the lower push cable(s) and lower push cable arrangements may differ from the cross-sectional shapes, sizes, and compositions of the upper push cable(s) and upper push cable arrangements.
In the embodiments illustrated in
Also in the example depicted in
Turning to
In this example, the lower firing assembly 33300′ is similar to lower firing assembly 33300 described above and comprises a lower push coil 33330 that is supported in an inner flexible lower sleeve 33341 which extends through the lower flexible outer tube or conduit 27310. The lower push coil 33330 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the lower push coil 33330 comprises a laser cut hypotube that essentially comprises a hollow tubular member with offset laser cuts therein which enable the hypotube to flex and bend. The inner flexible lower sleeve 33341 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the lower push coil 33330 which may hamper its ability to flex during articulation. The lower push coil 33330 is attached to the bottom firing member feature 33130 of the firing member 33100 and operably interfaces with the differential drive assembly 27400 for actuation thereof in the various manners described herein.
In the illustrated embodiment, the upper firing assembly 33200′ includes an upper stabilizing assembly 33500 that comprises a right upper cable or flexible member 33510 and a left upper cable or flexible member 33520. A distal end of the right upper cable 33510 and a distal end of the left upper cable 33520 are each attached to the top firing member feature 33120 of the firing member 33100. Similarly, the proximal end of the right upper cable 33510 and the proximal end of the left upper cable 33520 each operably interface with a portion of a cable control system of the various types described herein that is configured to manage the tensioning (pulling) and paying out of the cables 33510 and 33520 during operation of the surgical instrument. As can also be seen in
Still referring to
Referring now to
Still referring to
When the firing member 33100 is distally advanced through the surgical end effector during a “firing” stroke, the upper right spring members 33514 on the right upper cable or flexible member 33510 flex outward to provide additional support within the upper right axial passage 31305. Likewise, the upper left spring members 33524 on the left upper cable or flexible member 33520 flex outward to provide additional support with the upper left axial passage 31307. Similarly, the lower right spring members 33614 on the right lower cable or flexible member 33610 flex outward to provide additional support within the lower right axial passage 31154 and the lower left spring members 33624 on the left lower cable or flexible member 33620 flex outward to provide additional support within the lower left axial passage 31156. Such arrangement serves to minimize or prevent buckling of the upper firing assembly 33200′ in the anvil 31210 and the lower firing assembly 33300′ in the elongate channel 32110 during the firing stroke. The firing member 33100 is retracted back to the beginning position by pulling on the cables 33510, 33520, 33610, 33620 in the proximal direction. As can be seen in
Turning to
As can be seen in
Once the firing member 33730 has reached the ending position within the surgical end effector 33700, the firing member 33700 may be retracted back to its beginning position within the surgical end effector 33700 by pulling on the cable 33830. Again, as the ovoid members 33810 exit the passage 33712 in the surgical end effector 33700, their ovoid shape will cause them to turn into and enter the passage 33742 in the articulation joint 33740. As can be appreciated from the foregoing, such firing assembly arrangement may successfully be employed to pass through a narrower first opening or passage in an instrument and then provide a pushing action to a member constrained to move within a second opening or passage that is larger than the first opening or passage.
In those embodiments wherein the firing member 33100 includes a tissue cutting surface or blade, it may be desirable for the surgical end effector to be configured in such a way so as to prevent the inadvertent advancement of the firing member unless an “unspent” surgical staple cartridge 10300 is properly supported in the elongate channel 31110 of the surgical end effector 31000. If, for example, no staple cartridge is present at all and the firing member 33100 is distally advanced through the surgical end effector 31000, the tissue would be severed, but not stapled. Similarly, if a spent staple cartridge (i.e., a staple cartridge wherein at least some of the surgical staples have already been fired therefrom) is present in the surgical end effector 31000 and the firing member is advanced, the tissue would be severed, but may not be completely stapled, if at all. It will be appreciated that such occurrences could lead to undesirable catastrophic results during the surgical procedure. U.S. Pat. No. 6,988,649 entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, U.S. Pat. No. 7,044,352 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, U.S. Pat. No. 7,380,695 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, U.S. Pat. No. 10,154,841, entitled SURGICAL STAPLING INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION WHEN A CARTRIDGE IS SPENT OR MISSING, and U.S. Pat. No. 10,980,536, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS, each disclose various firing member lockout arrangements. Each of those references is hereby incorporated by reference in its entirety herein.
Conventional lockout arrangements employ a firing member that is biased downward into contact with a ledge on the channel unless an unspent cartridge has been loaded or seated in the channel. When the unspent cartridge is seated in the channel, the camming member or sled engages the firing member and lifts it out of alignment with the channel ledge so the firing member may thereafter be advanced distally to fire (drive the staples from) the staple cartridge. The various firing member arrangements disclosed herein may be driven by push cables or push coils that interface with a top portion and a bottom of the firing member. In such arrangements, the firing member is not well-suited to be biased downwardly making such conventional firing member lock arrangements unsuited for these surgical end effectors.
In the illustrated example, the firing member lockout system 34000 comprises a firing member lock 34020 that is configured to block the distal movement of the firing member 33100 from the intermediate closure position to the ending position unless the axially movable camming assembly 10330 in the surgical staple cartridge 10300 that is supported in the elongate channel 31110 is in the starting position. Turning to
As can be further seen in
As can be seen in
As can be seen in
As can be seen in
An alternative firing member lockout system 40200 that is configured to prevent a firing member 40100 of surgical end effector 40020 of a surgical instrument 40000 from distally advancing from an intermediate closure position to an ending position unless an unspent staple cartridge has been seated in the surgical end effector 40000 is depicted in
Turning to
The firing member lockout systems described above are configured to prevent distal movement of the firing member from an intermediate closure position unless an unspent staple cartridge is operably seated in the surgical end effector. In such embodiments, the firing member is selectively movable from a beginning position which enables the anvil to pivot or otherwise move to an open position to the intermediate closure position. As the firing member is distally advanced from the beginning position, in various embodiments, the firing member applies closure motions to the anvil to move the anvil to a closed position. When the firing member has been distally moved to the intermediate closure position, the anvil has been moved to the closed position. Such arrangements enable the surgical end effector to be employed as a grasping instrument for grasping and positioning tissue without cutting and stapling the tissue by moving the firing member between the beginning position to the intermediate closure position. In various embodiments, the anvil may be configured with tissue stops to prevent the target tissue from infiltrating proximally beyond the proximal-most staples in the surgical staple cartridge. When the firing member is in the intermediate closure position, the firing member is proximal to the tissue and proximal-most staples in the surgical staple cartridge such that the firing member is unable to cut the tissue and fire staples. The firing member must be distally advanced from the intermediate closure position to cut tissue and fire staples. Other configurations are contemplated, however, wherein independently actuatable closure member(s) are employed to apply closure motions to the anvil. Such arrangements facilitate movement of the anvil between open and closed positions without moving the firing member from the beginning position. In such applications, the firing member may be positioned to cut tissue and fire staples when the firing member is distally advanced from the beginning position and not an intermediate closure position, for example. In such applications, the firing lockout systems disclosed herein are configured to prevent distal movement of the firing member from the beginning position unless an unspent staple cartridge is operably seated in the surgical end effector.
Example 1—A surgical instrument configured for use in connection with a staple cartridge comprising a plurality of surgical staples stored therein and an axially movable camming member that is configured to eject the surgical staples therefrom when the axially movable camming member is moved from a starting position to a fully fired position in the staple cartridge. The surgical instrument comprises a surgical end effector comprising a first jaw that is configured to operably support the staple cartridge therein and a second jaw that is movable between an open position and a closed position relative to the first jaw. The surgical instrument further comprises an axially movable firing member that is configured to move between a beginning position in the surgical end effector and an ending position in the surgical end effector. A first flexible drive member operably interfaces with a first portion of the axially movable firing member to apply first axial drive motions thereto and a second flexible drive member operably interfaces with a second portion of the axially movable firing member to apply second axial drive motions thereto. A firing member lock is supported in the surgical end effector and is configured to prevent the firing member from moving distally from the beginning position to the ending position unless the axially movable camming member in the staple cartridge is in the starting position in engagement with the firing member lock.
Example 2—The surgical instrument of Example 1, wherein the axially movable firing member is configured to move the second jaw from the open position to the closed position when the axially movable firing member is distally moved from the beginning position to an intermediate closure position, and wherein the firing member lock is configured to prevent the axially movable firing member from moving distally from the intermediate closure position to the ending position unless the axially movable camming member is in the starting position in engagement with the firing member lock.
Example 3—The surgical instrument of Examples 1 or 2, wherein the firing member lock comprises a lock member movably supported in the first jaw. The lock member is movable between a locked position wherein the lock member blocks distal movement of the axially movable firing member from the intermediate closure position and an unlocked position wherein the axially movable firing member is distally movable from the intermediate closure position to the ending position. A biaser arrangement is configured to bias the lock member into the locked position.
Example 4—The surgical instrument of Example 3, wherein the first jaw defines a first jaw axis, and wherein the biaser arrangement comprises a first lock spring located on a first lateral side of the first jaw axis and a second lock spring located on a second lateral side of the first jaw axis.
Example 5—The surgical instrument of Examples 1, 2, 3 or 4, wherein the axially movable firing member comprises a firing member body that comprises a first lateral body side and a second lateral body side. A first firing member bottom tab protrudes from the first lateral body side and a second firing member bottom tab protrudes from the second lateral body side. The lock member comprises a first lateral channel portion that is configured to permit the first firing member bottom tab to pass therethrough when the firing member is in the unlocked position. A second lateral channel portion is configured to permit the second firing member bottom tab to pass therethrough when the firing member is in the unlocked position.
Example 6—The surgical instrument of Examples 1, 2, 3, 4 or 5, wherein the first flexible drive member operably interfaces with a top portion of the axially movable firing member to apply top axial drive motions thereto, and wherein the second flexible drive member operably interfaces with a bottom portion of the axially movable firing member to apply bottom axial drive motions thereto.
Example 7—The surgical instrument of Example 1, wherein the firing member lock comprises a friction-generating spring arrangement that is supported in the surgical end effector. The friction-generating spring arrangement is movable between a locked position wherein the friction-generating spring arrangement is in confronting alignment with a portion of the axially movable firing member and an unlocked position wherein the friction-generating spring arrangement is not in confronting alignment with the portion of the axially movable firing member. The axially movable camming member in the starting position is configured to move the friction-generating spring arrangement into the unlocked position.
Example 8—The surgical instrument of Example 7, wherein the axially movable firing member comprises a firing member body that comprises a first lateral body side and a second lateral body side. A firing member first lateral tab protrudes from the first lateral body side and a firing member second lateral tab protrudes from the second lateral body side. The friction-generating spring arrangement comprises a first retention tab that is configured to engage the firing member first lateral tab when the friction-generating spring arrangement is in the locked position. A second retention tab is configured to engage the firing member second lateral tab when the friction-generating spring arrangement is in the locked position.
Example 9—The surgical instrument of Examples 7 or 8, further comprising a firing drive motor that operably interfaces with the first flexible drive member and the second flexible drive member to apply first axial drive motions to the first flexible drive member and second axial drive motions to the second flexible drive member to drive the axially movable firing member between the beginning position and the ending position. A control circuit operably interfaces with the firing drive motor and is configured to deactivate the firing drive motor when an amount of current drawn by the firing drive motor exceeds a predetermined amount.
Example 10—The surgical instrument of Example 9, wherein when the friction-generating spring arrangement is in the locked position, the amount of current drawn by the firing drive motor exceeds the predetermined amount.
Example 11—A surgical instrument configured for use in connection with a staple cartridge comprising a plurality of surgical staples stored therein and an axially movable camming member that is configured to eject the surgical staples therefrom when the axially movable camming member is moved from a starting position to a fully fired position in the staple cartridge. The surgical instrument comprises a surgical end effector comprising a first jaw that operably supports the staple cartridge therein and a second jaw that is movable between an open position and a closed position relative to the first jaw. The surgical instrument further comprises an axially movable firing member that is configured to move between a beginning position in the surgical end effector and an ending position in the surgical end effector. An electrical drive arrangement operably interfaces with the axially movable firing member to apply axial drive motions thereto. A controller operably interfaces with the electrical drive arrangement and is configured to monitor an amount of electrical current drawn by the electrical drive arrangement required to drive the axially movable firing member from the beginning position to the ending position. The controller is further configured to cause the electrical drive arrangement to discontinue applying the axial drive motions to the axially movable firing member when the amount of electrical current exceeds a predetermined threshold. A firing member lock arrangement is operably supported in the surgical end effector and is configured to move between a locked position in which the firing member lock arrangement applies an amount of frictional resistance to the axially movable firing member to cause the amount of electrical current drawn by the electrical drive arrangement to exceed the predetermined threshold and an unlocked position wherein the firing member lock arrangement discontinues the application of the frictional resistance to the axially movable firing member. The firing member lock arrangement is biased into the locked position unless the axially movable camming member in the staple cartridge is in the starting position.
Example 12—The surgical instrument of Example 11, wherein the firing member lock arrangement comprises a lock member that is movably supported in the first jaw. The lock member is movable between the locked position in which the lock member frictionally contacts a corresponding portion of the axially movable firing member and the unlocked position. A biaser arrangement is configured to bias the lock member into the locked position.
Example 13—The surgical instrument of Example 12, wherein the lock member is configured to be moved from the locked position to the unlocked position by the axially movable camming member in the staple cartridge when the axially movable camming member is in the starting position.
Example 14—The surgical instrument of Examples 12 or 13, wherein the axially movable firing member comprises a firing member body and wherein the corresponding portion of the axially movable firing member is on a first lateral side of the firing member body. The firing member lock arrangement further comprises another lock member that is movably supported in the first jaw and is movable between another locked position wherein the another lock member frictionally contacts another corresponding portion on a second lateral side of the axially movable firing member and another unlocked position. Another biaser arrangement is configured to bias the another lock member into the another locked position.
Example 15—The surgical instrument of Example 14, wherein the lock member is configured to be moved from the locked position to the unlocked position and the another lock member is configured to be moved from the another locked position to the another unlocked position by the axially movable camming member in the staple cartridge when the axially movable camming member is in the starting position.
Example 16—The surgical instrument of Examples 14 or 15, wherein the axially movable firing member comprises a first locking tab and a second locking tab. The lock member is configured to engage the first locking tab when the lock member is in the locked position and the another lock member is configured to engage the second locking tab when the another lock member is in the another locked position.
Example 17—The surgical instrument of Examples 11, 12, 13, 14 15 or 16, further comprising an upper flexible drive member that operably interfaces with the electrical drive arrangement and a top portion of the axially movable firing member to apply top axial drive motions thereto. A lower flexible drive member operably interfaces with the electrical drive arrangement and a bottom portion of the axially movable firing member to apply bottom axial drive motions thereto.
Example 18—The surgical instrument of Example 17, wherein the upper flexible drive member comprises an upper hollow coil member that operably interfaces with the top portion of the axially movable firing member. An upper cable arrangement extends through the upper hollow coil member and is attached to the top portion of the axially movable firing member. A lower hollow coil member operably interfaces with the bottom portion of the axially movable firing member. A lower cable arrangement extends through the lower hollow coil member and is attached to the bottom portion of the axially movable firing member.
Example 19—A surgical instrument configured for use in connection with a staple cartridge comprising a plurality of surgical staples stored therein and an axially movable camming member that is configured to eject the surgical staples therefrom when the axially movable camming member is moved from a starting position to a fully fired position in the staple cartridge. The surgical instrument comprises a surgical end effector that comprises a first jaw that operably supports the staple cartridge therein. A second jaw is movable between an open position and a closed position relative to the first jaw. The surgical instrument further comprises an axially movable firing member that is configured to move between a beginning position in the surgical end effector and an ending position in the surgical end effector. An upper flexible drive member operably interfaces with a top portion of the axially movable firing member to apply axial drive motions thereto. A lower flexible drive member operably interfaces with a bottom portion of the axially movable firing member to apply other axial drive motions thereto. The surgical instrument further comprises means for preventing the axially movable firing member from moving from the beginning position to the ending position unless the axially movable camming member in the staple cartridge is in the starting position.
Example 20—The surgical instrument of Example 19, wherein the axially movable firing member is configured to move the second jaw from the open position to the closed position when the axially movable firing member is distally moved from the beginning position to an intermediate closure position, and wherein the means for preventing is configured to prevent the axially movable firing member from moving distally from the intermediate closure position to the ending position unless the axially movable camming member in the staple cartridge is in the starting position.
As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor including one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
While several forms have been illustrated and described, it is not the intention of Applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
The entire disclosures of:
Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one or more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
Number | Name | Date | Kind |
---|---|---|---|
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3643851 | Green et al. | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3717294 | Green | Feb 1973 | A |
3819100 | Noiles et al. | Jun 1974 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4272002 | Moshofsky | Jun 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4331277 | Green | May 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4383634 | Green | May 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4530453 | Green | Jul 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4896678 | Ogawa | Jan 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395384 | Duthoit et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5715604 | Lanzoni | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782748 | Palmer et al. | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5830598 | Patterson | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5893506 | Powell | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5988479 | Palmer | Nov 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6050172 | Corves et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6171330 | Benchetrit | Jan 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
RE37814 | Allgeyer | Aug 2002 | E |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6488659 | Rosenman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6558379 | Batchelor et al. | May 2003 | B1 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
6644532 | Green et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723109 | Solingen | Apr 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7121446 | Arad et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7199537 | Okamura et al. | Apr 2007 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419321 | Tereschouk | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708182 | Viola | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918845 | Saadat et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954686 | Baxter et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7976563 | Summerer | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988779 | Disalvo et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016849 | Wenchell | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8033438 | Scirica | Oct 2011 | B2 |
8033440 | Wenchell et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8113405 | Milliman | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8377029 | Nagao et al. | Feb 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8408439 | Huang et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8439246 | Knodel | May 2013 | B1 |
8444036 | Shelton, IV | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8470355 | Skalla et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475454 | Alshemari | Jul 2013 | B1 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8550984 | Takemoto | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8590760 | Cummins et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8608043 | Scirica | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636191 | Meagher | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8672209 | Crainich | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679154 | Smith et al. | Mar 2014 | B2 |
8679156 | Smith et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8708210 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8727199 | Wenchell | May 2014 | B2 |
8733612 | Ma | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8770458 | Scirica | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795308 | Valin | Aug 2014 | B2 |
8800837 | Zemlok | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800840 | Jankowski | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8808325 | Hess et al. | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858538 | Belson et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8920435 | Smith et al. | Dec 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8956390 | Shah et al. | Feb 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
8968310 | Twomey et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8998058 | Moore et al. | Apr 2015 | B2 |
9005230 | Yates et al. | Apr 2015 | B2 |
9005238 | DeSantis et al. | Apr 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044229 | Scheib et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060894 | Wubbeling | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9089326 | Krumanaker et al. | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9089352 | Jeong | Jul 2015 | B2 |
9095339 | Moore et al. | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149274 | Spivey et al. | Oct 2015 | B2 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9179911 | Morgan et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9198661 | Swensgard | Dec 2015 | B2 |
9198662 | Barton et al. | Dec 2015 | B2 |
9204878 | Hall et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204880 | Baxter, III et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9220500 | Swayze et al. | Dec 2015 | B2 |
9220501 | Baxter, III et al. | Dec 2015 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9241714 | Timm et al. | Jan 2016 | B2 |
9271799 | Shelton, IV et al. | Mar 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277919 | Timmer et al. | Mar 2016 | B2 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9289210 | Baxter, III et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9289225 | Shelton, IV et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295464 | Shelton, IV et al. | Mar 2016 | B2 |
9301752 | Mandakolathur Vasudevan et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9307965 | Ming et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9307988 | Shelton, IV | Apr 2016 | B2 |
9307989 | Shelton, IV et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314247 | Shelton, IV et al. | Apr 2016 | B2 |
9320518 | Henderson et al. | Apr 2016 | B2 |
9320521 | Shelton, IV et al. | Apr 2016 | B2 |
9320523 | Shelton, IV et al. | Apr 2016 | B2 |
9326767 | Koch, Jr. et al. | May 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326769 | Shelton, IV et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9326771 | Baxter, III et al. | May 2016 | B2 |
9332974 | Henderson et al. | May 2016 | B2 |
9332984 | Weaner et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9345477 | Anim et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351730 | Schmid et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9364219 | Olson et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364233 | Alexander, III et al. | Jun 2016 | B2 |
9370358 | Shelton, IV et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9393015 | Laurent et al. | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402626 | Ortiz et al. | Aug 2016 | B2 |
9408604 | Shelton, IV et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9414838 | Shelton, IV et al. | Aug 2016 | B2 |
9427223 | Park et al. | Aug 2016 | B2 |
9433419 | Gonzalez et al. | Sep 2016 | B2 |
9439649 | Shelton, IV et al. | Sep 2016 | B2 |
9439651 | Smith et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9480476 | Aldridge et al. | Nov 2016 | B2 |
9486213 | Altman et al. | Nov 2016 | B2 |
9486214 | Shelton, IV | Nov 2016 | B2 |
9492167 | Shelton, IV et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9510925 | Hotter et al. | Dec 2016 | B2 |
9517063 | Swayze et al. | Dec 2016 | B2 |
9517068 | Shelton, IV et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9549732 | Yates et al. | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9561032 | Shelton, IV et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9566061 | Aronhalt et al. | Feb 2017 | B2 |
9572577 | Lloyd et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9585660 | Laurent et al. | Mar 2017 | B2 |
9592050 | Schmid et al. | Mar 2017 | B2 |
9592052 | Shelton, IV | Mar 2017 | B2 |
9592053 | Shelton, IV et al. | Mar 2017 | B2 |
9592054 | Schmid et al. | Mar 2017 | B2 |
9597075 | Shelton, IV et al. | Mar 2017 | B2 |
9597080 | Milliman et al. | Mar 2017 | B2 |
9603595 | Shelton, IV et al. | Mar 2017 | B2 |
9603598 | Shelton, IV et al. | Mar 2017 | B2 |
9603991 | Shelton, IV et al. | Mar 2017 | B2 |
9615826 | Shelton, IV et al. | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9629814 | Widenhouse et al. | Apr 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9655614 | Swensgard et al. | May 2017 | B2 |
9655624 | Shelton, IV et al. | May 2017 | B2 |
9675355 | Shelton, IV et al. | Jun 2017 | B2 |
9675372 | Laurent et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9681873 | Smith et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9687231 | Baxter, III et al. | Jun 2017 | B2 |
9687236 | Leimbach et al. | Jun 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700315 | Chen et al. | Jul 2017 | B2 |
9700317 | Aronhalt et al. | Jul 2017 | B2 |
9700321 | Shelton, IV et al. | Jul 2017 | B2 |
9706991 | Hess et al. | Jul 2017 | B2 |
9724091 | Shelton, IV et al. | Aug 2017 | B2 |
9730692 | Shelton, IV et al. | Aug 2017 | B2 |
9743928 | Shelton, IV et al. | Aug 2017 | B2 |
9757123 | Giordano et al. | Sep 2017 | B2 |
9757130 | Shelton, IV | Sep 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9775613 | Shelton, IV et al. | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9788834 | Schmid et al. | Oct 2017 | B2 |
9795382 | Shelton, IV | Oct 2017 | B2 |
9795384 | Weaner et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9833236 | Shelton, IV et al. | Dec 2017 | B2 |
9839420 | Shelton, IV et al. | Dec 2017 | B2 |
9839427 | Swayze et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844373 | Swayze et al. | Dec 2017 | B2 |
9848873 | Shelton, IV | Dec 2017 | B2 |
9848875 | Aronhalt et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9861359 | Shelton, IV et al. | Jan 2018 | B2 |
9861361 | Aronhalt et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9883860 | Leimbach et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888924 | Ebersole et al. | Feb 2018 | B2 |
9980630 | Larkin et al. | May 2018 | B2 |
9999408 | Boudreaux et al. | Jun 2018 | B2 |
10004498 | Morgan et al. | Jun 2018 | B2 |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10039529 | Kerr et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10052099 | Morgan et al. | Aug 2018 | B2 |
10052100 | Morgan et al. | Aug 2018 | B2 |
10058963 | Shelton, IV et al. | Aug 2018 | B2 |
10071452 | Shelton, IV et al. | Sep 2018 | B2 |
10123798 | Baxter, III et al. | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136890 | Shelton, IV et al. | Nov 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159482 | Swayze et al. | Dec 2018 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10188393 | Smith et al. | Jan 2019 | B2 |
10213198 | Aronhalt et al. | Feb 2019 | B2 |
10335144 | Shelton, IV et al. | Jul 2019 | B2 |
10342533 | Shelton, IV et al. | Jul 2019 | B2 |
10390823 | Shelton, IV et al. | Aug 2019 | B2 |
10405854 | Schmid et al. | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441369 | Shelton, IV et al. | Oct 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10492787 | Smith et al. | Dec 2019 | B2 |
10660640 | Yates et al. | May 2020 | B2 |
10695057 | Shelton, IV et al. | Jun 2020 | B2 |
10729441 | Cropper et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
11006951 | Giordano et al. | May 2021 | B2 |
11083458 | Harris et al. | Aug 2021 | B2 |
11096688 | Shelton, IV et al. | Aug 2021 | B2 |
11129611 | Shelton, IV et al. | Sep 2021 | B2 |
11166716 | Shelton, IV et al. | Nov 2021 | B2 |
11197668 | Shelton, IV et al. | Dec 2021 | B2 |
11207067 | Shelton, IV et al. | Dec 2021 | B2 |
11213294 | Shelton, IV et al. | Jan 2022 | B2 |
11219453 | Shelton, IV et al. | Jan 2022 | B2 |
11259806 | Shelton, IV et al. | Mar 2022 | B2 |
11278280 | Shelton, IV et al. | Mar 2022 | B2 |
11406382 | Shelton, IV et al. | Aug 2022 | B2 |
11471156 | Shelton, IV et al. | Oct 2022 | B2 |
11547410 | Cropper et al. | Jan 2023 | B2 |
11589865 | Shelton, IV et al. | Feb 2023 | B2 |
11638582 | Bakos et al. | May 2023 | B2 |
11660090 | Bakos et al. | May 2023 | B2 |
11737748 | Witte | Aug 2023 | B2 |
20020117534 | Green et al. | Aug 2002 | A1 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040102783 | Sutterlin et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040225186 | Horne et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050080342 | Gilreath et al. | Apr 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070134251 | Ashkenazi et al. | Jun 2007 | A1 |
20070170225 | Shelton et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090188964 | Orlov | Jul 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110024477 | Hall | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110091515 | Zilberman et al. | Apr 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150272576 | Cappola | Oct 2015 | A1 |
20160174969 | Kerr et al. | Jun 2016 | A1 |
20160345971 | Bucciaglia | Dec 2016 | A1 |
20190137349 | Collins | May 2019 | A1 |
20190192161 | Leimbach et al. | Jun 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20200222044 | Baxter, III | Jul 2020 | A1 |
20220031315 | Bakos et al. | Feb 2022 | A1 |
20220031319 | Witte et al. | Feb 2022 | A1 |
20220031320 | Hall et al. | Feb 2022 | A1 |
20220031322 | Parks | Feb 2022 | A1 |
20220031323 | Witte | Feb 2022 | A1 |
20220031324 | Hall et al. | Feb 2022 | A1 |
20220031346 | Parks | Feb 2022 | A1 |
20220031350 | Witte | Feb 2022 | A1 |
20220031351 | Moubarak et al. | Feb 2022 | A1 |
20220133299 | Baxter, III | May 2022 | A1 |
20220133300 | Leimbach et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2012200178 | Jul 2013 | AU |
2488482 | May 2002 | CN |
1634601 | Jul 2005 | CN |
201949071 | Aug 2011 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
20016423 | Feb 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314072 | Oct 2004 | DE |
202007003114 | Jun 2007 | DE |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0129442 | Nov 1987 | EP |
0169044 | Jun 1991 | EP |
0594148 | Apr 1994 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0705571 | Apr 1996 | EP |
0528478 | May 1996 | EP |
0770355 | May 1997 | EP |
0625335 | Nov 1997 | EP |
0879742 | Nov 1998 | EP |
0650701 | Mar 1999 | EP |
0923907 | Jun 1999 | EP |
0484677 | Jul 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1053719 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
0806914 | Sep 2001 | EP |
1284120 | Feb 2003 | EP |
0869742 | May 2003 | EP |
1374788 | Jan 2004 | EP |
1407719 | Apr 2004 | EP |
0996378 | Jun 2004 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
1632191 | Mar 2006 | EP |
1082944 | May 2006 | EP |
1253866 | Jul 2006 | EP |
1285633 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1767163 | Mar 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1330201 | Jun 2008 | EP |
2039302 | Mar 2009 | EP |
1719461 | Jun 2009 | EP |
1769754 | Jun 2010 | EP |
1627605 | Dec 2010 | EP |
2517638 | Oct 2012 | EP |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2765794 | Jan 1999 | FR |
2815842 | May 2002 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2336214 | Oct 1999 | GB |
930100110 | Nov 1993 | GR |
S5033988 | Apr 1975 | JP |
H0584252 | Apr 1993 | JP |
H05130998 | May 1993 | JP |
H0630945 | Feb 1994 | JP |
H06237937 | Aug 1994 | JP |
H07124166 | May 1995 | JP |
H07255735 | Oct 1995 | JP |
H07285089 | Oct 1995 | JP |
H0833642 | Feb 1996 | JP |
H08164141 | Jun 1996 | JP |
H08182684 | Jul 1996 | JP |
H08507708 | Aug 1996 | JP |
H08229050 | Sep 1996 | JP |
H10118090 | May 1998 | JP |
2000014632 | Jan 2000 | JP |
2000033071 | Feb 2000 | JP |
2000112002 | Apr 2000 | JP |
2000166932 | Jun 2000 | JP |
2000171730 | Jun 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001087272 | Apr 2001 | JP |
2001514541 | Sep 2001 | JP |
2002051974 | Feb 2002 | JP |
2002143078 | May 2002 | JP |
2002528161 | Sep 2002 | JP |
2003135473 | May 2003 | JP |
2003521301 | Jul 2003 | JP |
2004147702 | May 2004 | JP |
2004162035 | Jun 2004 | JP |
2004229976 | Aug 2004 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005328882 | Dec 2005 | JP |
2005335432 | Dec 2005 | JP |
2005342267 | Dec 2005 | JP |
2006187649 | Jul 2006 | JP |
2006281405 | Oct 2006 | JP |
2006346445 | Dec 2006 | JP |
2009189838 | Aug 2009 | JP |
2009539420 | Nov 2009 | JP |
2010098844 | Apr 2010 | JP |
1814161 | May 1993 | RU |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
2098025 | Dec 1997 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2161450 | Jan 2001 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
61114 | Feb 2007 | RU |
61122 | Feb 2007 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
674747 | Jul 1979 | SU |
1009439 | Apr 1983 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO-9315648 | Aug 1993 | WO |
WO-9420030 | Sep 1994 | WO |
WO-9517855 | Jul 1995 | WO |
WO-9520360 | Aug 1995 | WO |
WO-9623448 | Aug 1996 | WO |
WO-9635464 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9639088 | Dec 1996 | WO |
WO-9724073 | Jul 1997 | WO |
WO-9734533 | Sep 1997 | WO |
WO-9903407 | Jan 1999 | WO |
WO-9903409 | Jan 1999 | WO |
WO-9948430 | Sep 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0053112 | Sep 2000 | WO |
WO-0057796 | Oct 2000 | WO |
WO-0105702 | Jan 2001 | WO |
WO-0154594 | Aug 2001 | WO |
WO-0158371 | Aug 2001 | WO |
WO-0162164 | Aug 2001 | WO |
WO-0162169 | Aug 2001 | WO |
WO-0191646 | Dec 2001 | WO |
WO-0219932 | Mar 2002 | WO |
WO-0226143 | Apr 2002 | WO |
WO-0236028 | May 2002 | WO |
WO-03055402 | Jul 2003 | WO |
WO-03094747 | Nov 2003 | WO |
WO-03079909 | Mar 2004 | WO |
WO-2004019803 | Mar 2004 | WO |
WO-2004032783 | Apr 2004 | WO |
WO-2004047626 | Jun 2004 | WO |
WO-2004047653 | Jun 2004 | WO |
WO-2004056277 | Jul 2004 | WO |
WO-2004078050 | Sep 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004096015 | Nov 2004 | WO |
WO-2006044581 | Apr 2006 | WO |
WO-2006051252 | May 2006 | WO |
WO-2006059067 | Jun 2006 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2007142625 | Dec 2007 | WO |
WO-2008021969 | Feb 2008 | WO |
WO-2008089404 | Jul 2008 | WO |
WO-2009067649 | May 2009 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2012044606 | Apr 2012 | WO |
Entry |
---|
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
D. Tuite, Ed., “Get The Lowdown On Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20230120209 A1 | Apr 2023 | US |