The present technique relates generally to a system and method of operating a compression-ignition engine and, more specifically, to a system and method for controlling a diesel engine operated at extreme ambient conditions.
Compression-ignition engines, such as diesel engines, operate by directly injecting a fuel (e.g., diesel fuel) into compressed air in one or more piston-cylinder assemblies, such that the heat of the compressed air lights the fuel-air mixture. The direct fuel injection atomizes the fuel into droplets, which evaporate and mix with the compressed air in the combustion chambers of the piston-cylinder assemblies. Typically, compression-ignition engines operate at a relatively higher compression ratio than spark ignition engines. The compression ratio directly affects the engine performance, efficiency, exhaust pollutants, and other engine characteristics. In addition, the fuel-air ratio affects engine performance, efficiency, exhaust pollutants, and other engine characteristics. Exhaust emissions generally include pollutants such as carbon oxides (e.g., carbon monoxide), nitrogen oxides (NOx), unburnt hydrocarbons (HC), particulate matter (PM), and smoke. The amount and relative proportion of these pollutants varies according to the fuel-air mixture, compression ratio, injection timing, conditions of oxidizing air coming from atmosphere (i.e., atmospheric pressure, temperature, etc.), and so forth.
In certain applications, the compression-ignition engines are used in relatively extreme environmental conditions, such as high altitudes. For example, diesel powered locomotives can travel through a wide range of environmental conditions, particularly in mountainous regions. These environmental conditions can adversely affect engine performance, efficiency, exhaust pollutants, and other engine characteristics. For example, diesel engines operating in mountainous regions are subject to greater loads due to higher gradients, lower atmospheric pressures due to higher altitudes, lower temperatures due to colder climate or higher altitude, higher air density due to lower atmospheric temperature, and so forth.
The various engine parameters are particularly susceptible to exceed engine design limits when the engine is operating at a full load at extreme ambient temperature and/or altitude conditions. For example, these engine parameters may include in-cylinder peak firing pressure (PFP), pre-turbine temperature (PTT), and turbocharger speed (e.g., turbospeed). Also, engine operation at very high altitudes (e.g., greater than 4000 meters) and very low ambient temperatures (e.g., less than about −20 degrees Fahrenheit) causes the compressor of the turbocharger to operate in a choke region. A choke line often represents a threshold limit in the air flow rate or pressure ratio between the compressor inlet and exit due to design constraints in the size of inlets, outlets, passages, and so forth. This operation may result in failure of the engine power assembly and/or the turbocharger.
These engine parameters (e.g., PFP, PTT, turbocharger speed) should be maintained within design limits to avoid failure of the engine power assembly and turbocharger. Also, the compressor choke condition should be avoided to reduce the possibility of turbocharger failure. Typically, all of these problems are eliminated by derating the engine, i.e., reducing the power output of the engine. The reduction in power output can be achieved by reducing the fueling rate. This brings the PFP, PTT and turbocharger speed within design limits. Unfortunately, reducing the power output of the engine at higher altitudes results in a reduction in the hauling capacity of the engine. The engine deration also leads to an increase in fuel consumption.
A system, in certain embodiments, includes a low pressure exhaust gas recirculation (EGR) system configure to route exhaust gas upstream of a compressor coupled to an intake of an engine in a low temperature environment. The system also includes a high pressure EGR system configure to route exhaust gas downstream of the compressor and upstream of the intake at a high altitude and/or in a low pressure environment. The system, in some embodiments, also may include a flow control configured to change flow of the exhaust gas of the low pressure and high pressure EGR systems based on operating limits and environmental conditions including temperature and pressure.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments.
As discussed in detail below, various configurations of exhaust gas recirculation (EGR) may be employed to reduce or eliminate power deration, reduce or improve specific fuel consumption (SFC), and maintain the various engine parameters within acceptable limits. For example, the embodiments discussed below may employ low pressure (LP) exhaust gas recirculation, high pressure (HP) exhaust gas recirculation, air preheating, or a combination thereof, relative to a compressor of a turbocharger coupled to an engine (e.g., a compression ignition engine). Specifically, the low pressure EGR introduces part of the engine exhaust upstream or into an intake of the compressor of the turbocharger coupled to the engine (i.e., on a low pressure side of the compressor). The high pressure EGR introduces part of the engine exhaust downstream of the compressor of the turbocharger coupled to the engine (i.e., on the high pressure side of the compressor). One or both of these types of EGR may be used depending on the atmospheric conditions. For example, the low pressure EGR may be used in low or high altitude environments with a low temperature, and the high pressure EGR may be used in high altitude environments with a low ambient pressure. By further example, the air preheating may be used alone or in combination with the low pressure EGR in low or high altitude environments with a low temperature. Thus, depending on the atmospheric conditions, a control system may employ the low pressure EGR, the high pressure EGR, air intake heating upstream of the compressor, or a combination thereof, to maintain engine operating parameters within acceptable limits without engine deration and with an improvement in the specific fuel consumption.
As illustrated, the system 10 includes a turbocharger 16, an intercooler 18, a fuel injection system 20, an intake manifold 22, and an exhaust manifold 24. The illustrated turbocharger 16 includes a compressor 26 coupled to a turbine 28 via a drive shaft 30. The low pressure EGR system 12 includes an EGR valve 32 disposed downstream from the exhaust manifold 24 and upstream from the compressor 26. In addition, the system 10 includes a controller 34, e.g., an electronic control unit (ECU), coupled to various sensors and devices throughout the system 10. For example, the illustrated controller 34 is coupled to the EGR valve 32 and the fuel injection system 20. However, the controller 34 may be coupled to sensors and control features of each illustrated component of the system 10 among many others. The sensors may include atmospheric and engine sensors, such as pressure sensors, temperature sensors, speed sensors, and so forth. For example, the sensors may include an atmospheric temperature sensor, an atmospheric pressure sensor, an atmospheric humidity sensor, and an altitude sensor. By further example, the sensors may include an engine air intake temperature, an engine air pressure intake pressure, an engine exhaust temperature sensor, and an engine exhaust pressure sensor. The sensors also may include compressor inlet and outlet sensors for temperature and pressure.
In the illustrated embodiment of
The intake manifold 22 then routes the compressed gas into the engine 14. The engine 14 then compresses this gas within various piston cylinder assemblies, e.g., 4, 6, 8, 10, 12, or 16 piston cylinder assemblies. Fuel from the fuel injection system 20 is injected directly into engine cylinders. The controller 34 may control the fuel injection timing of the fuel injection system 20, such that the fuel is injected at the appropriate time into the engine 14. The heat of the compressed air ignites the fuel as each piston compresses a volume within its corresponding cylinder.
In turn, the engine 14 exhausts the products of combustion from the various piston cylinder assemblies through the exhaust manifold 24. The exhaust from the engine 14 then passes through a conduit 44 from the exhaust manifold 24 to the turbine 28. In addition, a portion of the exhaust may be routed from the conduit 44 to the EGR valve 32 as illustrated by arrow 46. At this point, a portion of the exhaust passes to the air intake of the compressor 26 as illustrated by the arrow 38 as mentioned above. The controller 34 controls the EGR valve 32, such that a suitable portion of the exhaust is passed to the compressor 26 depending on various operating parameters and/or environmental conditions of the system 10. In addition, the exhaust gas drives the turbine 28, such that the turbine rotates the shaft 30 and drives the compressor 26. The exhaust gas then passes out of the system 10 and particularly the turbine 28 as indicated by arrow 48.
As mentioned above, the low pressure EGR system 12 of
For these reasons, the increased air temperature and reduced speed of the turbocharger 16 enables the engine 14 to operate at higher power levels or at least maintain the present power level. For these reasons, the low pressure EGR system 12 is able to reduce the PFP to a level within design limits, while also enabling the engine 14 to operate at the desired power (e.g., without engine deration) and with an improvement in the specific fuel consumption (SFC). In alternative embodiments, the heat provided by the exhaust passing through the EGR valve 32 to the intake of the compressor 26 may be supplemented or replaced with another form of heat exchanger or heater, thereby providing the desired heat to maintain the PFP within acceptable limits.
The illustrated low pressure EGR system 12 also may be used to substantially reduce or eliminate engine deration otherwise used to eliminate compressor choke at very high altitudes, such as a very low ambient pressure (e.g., 0.57 bar) and cold ambient temperatures (e.g., less than about minus twenty degrees Fahrenheit). For example, at low atmospheric pressures and low atmospheric temperatures, the controller 34 may employ the EGR valve 32 to control (e.g., enable, disable, increase, or decrease) the amount of exhaust diverted from the conduit 44 to the intake of the compressor 26. In response to sensed low ambient pressures and/or a choke condition in the turbocharger 16, the low pressure EGR system 12 may be employed to divert some of the exhaust gas away from the turbine 28 and increase the temperature of the air intake entering the compressor 26 to eliminate the choke condition. In certain embodiments, the compressor choke may correspond to a corrected turbocharger speed exceeding a critical limit. The corrected turbocharger speed may be defined as: turbocharger speed*[ambient temperature in degrees Kelvin/298]̂0.5.
In the illustrated embodiment, the EGR valve 32 adds the exhaust gas to the intake of the compressor 26 and/or heats the air intake of the compressor 26 to reduce the corrected turbocharger speed and help eliminate the choke condition. Again, as discussed above, by reducing the amount of exhaust gas passing to the turbine 28, the speed of the turbocharger 16 can be reduced to acceptable levels, while the diverted portion of the exhaust gas passes from the EGR valve 32 to the intake of the compressor 26 to heat and reduce the density of the intake air entering the compressor 26. For these reasons, the low pressure EGR system 12 is able to eliminate a choke condition, while also enabling the engine 14 to operate at the desired power (e.g., without engine deration) and with an improvement in the specific fuel consumption (SFC).
Accordingly, as illustrated, the controller 34 may start, stop, or vary the EGR valve 32, such that exhaust gas recirculation starts, stops, or varies depending on various operating parameters and environmental conditions of the system 10. The pump 102 may be used to ensure sufficient pressure to flow the diverted exhaust gas from the valve 32 into the compressed gas downstream of the compressor 26. In other words, given that the intake air has been compressed to a higher pressure by the compressor 26, the pump 102 provides the pressure suitable to overcome the pressure differential and flow the exhaust gas into the intake manifold 22. In addition, the intercooler 104 may be used to reduce the temperature of the exhaust gas prior to entry into the intake manifold 22 as indicted by arrow 106.
As mentioned above, the high pressure EGR system 100 of
In the illustrated embodiment, the multi-way valve 202 (e.g., 3-way valve) is controlled by the controller 34 to pass the exhaust gas to upstream and/or downstream sides of the compressor 26 as indicated by arrows 208 and 210. Thus, if the valve 202 is positioned to direct all of the exhaust gas from the EGR valve 32 to the downstream side of the compressor 26 as indicated by arrow 210, then the EGR system 200 functions as the high pressure EGR system 100 illustrated and described above with reference to
For example, in low ambient temperature conditions, the controller 34 may adjust the valve 202 to route at least part or all of the exhaust gas from the EGR valve 32 to the valve 204. In turn, the controller 34 may adjust the valve 204 to route the exhaust gas directly into the compressor 26 without the pre-heater 206 as indicated by arrow 212 or the valve 204 may direct all or part of the exhaust gas into the pre-heater 206 as indicated by arrow 214. In some conditions, it is desirable to route the exhaust gas directly into the intake air 36 as indicated by arrow 212, for example, to provide greater NOx reduction. In other conditions, it is desirable to route the exhaust gas through the pre-heater 206 and out of the system 10 as indicated by arrow 214, for example, to provide some degree of heating while also venting the exhaust gas out of the system 10 rather than passing through the compressor 26 and the turbine 28.
The controller 34 adjusts the position of the valve 204 to vary the amount of pre-heating by the pre-heater 206 and direct exhaust gas directly into the compressor 26 based on various sensed parameters/conditions. In this manner, the controller 34 controls the intake temperature, which affects the intake density and boost pressure provided by the compressor 26 into the intake manifold 22. Given that low temperature air has a high density, the compressor 26 is able to provide a greater boost pressure with such low temperature, high density air. If the speed of the turbocharger 16 and/or the peak firing pressure (PFP) is exceeding or approaching design limits, then the valve 202 is adjusted to vary the ratio or portion of the exhaust gas passing to the upstream or low pressure side of the compressor 26. In turn, the valve 204 is varied to adjust whether the exhaust gas is passed directly into the intake air 36 or into the pre-heater 206 as indicated by arrows 212 and 214. In this manner, the air intake density can be reduced to reduce the pressure boost provided by the compressor 26, thereby reducing the PFP to a level within design limits.
Again, the EGR valve 32 is adjusted to vary a portion of the exhaust gas flowing or diverted from the conduit 44 away from the turbine 28, thereby reducing the speed of the turbine 28 and the driven compressor 26. Each of these elements 32, 202, and 204 can be adjusted to reduce the speed of the turbocharger 16, reduce the peak firing pressure (PFP), reduce the pre-turbine temperature (PTT), and eliminate a choke condition in response to extreme environmental conditions. In certain conditions, the EGR system 200 employs at least some low pressure EGR and high pressure EGR via the valves 202 and 204. Such a configuration may be desirable with environmental conditions not entirely suitable for one or the other of the two EGR systems as discussed in detail above with reference to
As discussed above, the EGR systems 12, 100, and 200 of
Deration due to Peak Firing Pressure (PFP)
Deration due to Turbocharger Speed
Deration due to Pre-Turbine Temperature (PTT)
In some embodiments, although Table 1 provides a good guide for the various operational limits and desired EGR, it may be desirable to employ either the LP EGR system 12 or the HP EGR system 100 (e.g., using EGR system 200) based on some specific ranges of environmental conditions and/or engine operating parameters. For example, LP EGR system 12 may be employed at low environmental temperatures of less than 40, 30, 20, 10, 0, −10, −20, −30, or some other temperature limit that is fixed or varies with other conditions, such as pressure. By further example, the LP EGR 12 may be employed for all ranges of environmental pressures at the foregoing environmental temperatures. However, in some embodiments, the HP EGR system 100 may be employed at lower environmental pressures and/or higher altitudes in combination or instead of the LP EGR system 12. For example, the HP EGR system 100 may be employed at high altitudes of greater than 2000 meters, 2500 meters, 3000 meters, 3500 meters, 4000 meters, 4500 meters, 5000 meters, or higher above sea level. Similarly, the HP EGR system 100 may be employed at low environmental pressures of less than 0.9 bar, 0.85 bar, 0.8 bar, 0.75 bar, 0.7 bar, 0.65 bar, 0.6 bar, or lower. These various environmental conditions may be employed alone or in combination with one another.
As discussed in further detail below, the low pressure EGR 12 of
As shown in Tables 2, 3, 4, the first row includes labels for the various columns of data, which include a percentage power (% Power) corresponding to a ratio of actual engine power output versus peak power output (e.g., actual/peak horsepower), a percentage of EGR diverted from the exhaust and turbine into the compressor (% EGR), a percentage peak firing pressure (PFP) corresponding to a ratio of actual PFP versus a PFP limit (Tables 2 and 3), a percentage turbospeed corresponding to a ratio of actual turbospeed versus a turbospeed limit (Table 4), and a percent reduction in specific fuel consumption (SFC) relative to the engine deration. The first column includes labels for the various rows of data, which include a) as is condition i.e. without any deration, EGR, or preheating (AS IS), b) engine deration (DERATION), c) low pressure exhaust gas recirculation (LP EGR) upstream of the compressor, and d) intake air preheating (PREHEAT) upstream of the compressor. As illustrated in each of the Tables 2, 3, and 4, the LP EGR and preheating maintain the engine power as compared to a drastic drop in engine power associated with derating the engine. In addition, the LP EGR and preheating provide a reduction in specific fuel consumption (SFC) as compared to the engine deration. Furthermore, the LP EGR and preheating provide a reduction in the peak firing pressure (PFP).
In addition, the LP EGR can limit the turbocharger speed to avoid a choke condition of the compressor, as illustrated in Table 5. The labels in Table 5 are identical to those shown in Tables 2, 3, and 4, with the addition of a corrected speed of the compressor in rpm. As discussed above, the corrected turbocharger speed may be defined as: turbocharger speed*[ambient temperature in degrees Kelvin/298]̂0.5. Table 5 corresponds to environmental conditions of −40 degrees Fahrenheit atmospheric temperature and 0.6773 bar atmospheric pressure as shown in Table 1. As illustrated, the LP EGR maintains the engine power as compared to a drastic drop in engine power associated with derating the engine. In addition, the LP EGR provides a reduction in specific fuel consumption (SFC) as compared to the engine deration. Furthermore, the LP EGR provides a reduction in the speed of the turbocharger, thereby avoiding a choke condition of the compressor.
Similarly, the following Table 6 shows the results of high pressure exhaust gas recirculation (HP EGR) as shown in
In turn, the process 300 queries whether or not the peak firing pressure (PFP) is greater than a limit or whether the corrected turbocharger speed (Corr_TrbSp) is greater than a limit at block 312. These limits may correspond to pre-selected limits or design limits of the engine 14 and the turbocharger 16. If one of these limits is exceeded at block 312, then the process 300 proceeds to increase the low pressure (LP) exhaust gas recirculation (EGR) through a 3-way valve as indicated by block 314. For example, the process 300 may utilize the valve 202 as illustrated in
The process 300 then proceeds to another query block 318 to evaluate whether or not the turbocharger speed exceeds a limit. If the turbocharger speed exceeds the limit at block 318, then the process 300 proceeds to increase a high pressure (HP) exhaust gas recirculation (EGR) through a 3-way valve as indicated by block 320. Again, the process 300 may adjust the valve 202 as indicated in
Subsequently, the process 300 evaluates whether NOx levels exceed a limit at block 324. If the NOx level exceeds the limit at block 324, then the process 300 proceeds to retard the injection timing at block 326. However, if the NOx level does not exceed the limit at block 324, then the process 300 proceeds to advance the injection timing at block 328. For example, the process 300 may vary the advancement angle (AA) of the injection provided by the fuel injection system 20 of
As illustrated by
In turn, the process 340 queries whether or not the peak firing pressure (PFP) is greater than a limit or whether the corrected turbocharger speed (Corr_TrbSp) is greater than a limit at block 352. These limits may correspond to pre-selected limits or design limits of the engine 14 and the turbocharger 16. If one of these limits is exceeded at block 352, then the process 340 proceeds to increase the low pressure (LP) exhaust gas recirculation (EGR) and/or increase intake air heating without derating the engine to limit peak firing pressure (PFP) and reduce specific fuel consumption (SFC) as indicted by block 354. For example, the process 340 may utilize the valves 32, 202, and 204 as illustrated in
The process 340 then proceeds to another query block 358 to evaluate whether or not the turbocharger speed exceeds a limit. If the turbocharger speed exceeds the limit at block 358, then the process 340 proceeds to increase a high pressure (HP) exhaust gas recirculation (EGR) and/or increase intake air heating without derating the engine to limit peak firing pressure (PFP) and reduce specific fuel consumption (SFC) as indicated by block 360. Again, the process 340 may adjust the valves 32, 202, and 204 as indicated in
Subsequently, the process 340 evaluates whether NOx levels exceed a limit at block 364. If the NOx level exceeds the limit at block 364, then the process 340 proceeds to retard the injection timing at block 366. However, if the NOx level does not exceed the limit at block 364, then the process 340 proceeds to advance the injection timing at block 368. For example, the process 340 may vary the advancement angle (AA) of the injection provided by the fuel injection system 20 of
In turn, the process 380 queries whether or not the peak firing pressure (PFP) is greater than a limit or whether the corrected turbocharger speed (Corr_TrbSp) is greater than a limit at block 392. These limits may correspond to pre-selected limits or design limits of the engine 14 and the turbocharger 16. If one of these limits is exceeded at block 392, then the process 380 proceeds to increase the low pressure (LP) exhaust gas recirculation (EGR) and/or increase intake air heating without derating the engine to prevent a choke condition (e.g., limit speed of the turbocharger) and reduce specific fuel consumption (SFC) as indicted by block 394. For example, the process 380 may utilize the valves 32, 202, and 204 as illustrated in
The process 380 then proceeds to another query block 398 to evaluate whether or not the turbocharger speed exceeds a limit. If the turbocharger speed exceeds the limit at block 398, then the process 380 proceeds to increase a high pressure (HP) exhaust gas recirculation (EGR) and/or increase intake air heating without derating the engine to prevent a choke condition (e.g., limit speed of the turbocharger) and reduce specific fuel consumption (SFC) as indicated by block 400. Again, the process 380 may adjust the valves 32, 202, and 204 as indicated in
Subsequently, the process 380 evaluates whether NOx levels exceed a limit at block 404. If the NOx level exceeds the limit at block 404, then the process 380 proceeds to retard the injection timing at block 406. However, if the NOx level does not exceed the limit at block 404, then the process 380 proceeds to advance the injection timing at block 408. For example, the process 380 may vary the advancement angle (AA) of the injection provided by the fuel injection system 20 of
For example, as illustrated in
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.