This disclosure generally relates to locomotive trucks, and more particularly, relates to a locomotive truck steering system.
Rail transportation is commonly used to move people and cargo. Trains of wheeled vehicles often provide a more efficient and timely means of travel than other forms of transportation. Material can be moved solely via rail, or can use rail transportation as a segment within an inter-modal system. Trains generally travel on one or more rails, but can also use other stabilization and directional devices, including electromagnetics.
Trains are powered by one or more locomotives or powered cars, and are usually controlled by an operator. The operator is generally present on board the train, although other arrangements are possible. Propulsion can be provided by a variety of on-board motors, including reciprocating engines, turbines, electric motors, diesel-electric systems or electromagnetic systems. The energy source can be carried on board the train in the form of fuel or battery power. Alternatively, the train can draw power from an external system, such as overhead power lines or an additional electrified rail near ground level.
The operator may control the train by manipulating manual controls or issuing vocal or electronic signals in a cab or a remote location. Trains may have a manual control mode where the train can directly respond to operator inputs regarding commands for applied throttle or other systems. Such a manual control mode may receive operator commands through a hand throttle, or other manual control. The operator may be located within the locomotive, or remotely relative to the locomotive.
As a locomotive operates, it may pull the train along curved track sections. The locomotive may provide tractive power by powering wheels attached to trucks or bogies provided at the bottom of the locomotive. Each truck may have more than one axle, and each axle may include two wheels. As the locomotive negotiates a curved track section, the trucks may pivot relative to the orientation of the locomotive. In a traditional truck arrangement, each axle within each truck may pivot to the same degree as the truck. However, allowing leading and trailing axles to radially steer within each bogie provides efficiency and tractive benefits.
Ahmadian (U.S. Pat. No. 6,006,674) discloses a “Self-Steering Railway Truck.” Ahmadian describes a system for coordinating yaw angles between leading and trailing axles. However, the described system may not operate in conjunction with existing trucks, including those with pedestals. Further, the system described in Ahmadian incorporates a connection between the leading and trailing axles, adding weight, costs and complexity.
Accordingly, there is a need for an improved steering system for a locomotive truck.
In one aspect, a steering system for a locomotive truck is disclosed. The steering system may include a first axle and a plurality of primary bearing adapter assemblies, each bearing adapter assembly may include a bearing adapter and a swiveling back plate, wherein each bearing adapter may be disposed around the first axle.
In another aspect, a locomotive truck is disclosed. The locomotive truck may include a frame, a first axle supported by the frame, and a plurality of bearing adapter assemblies, each bearing adapter assembly may include a bearing adapter and a swiveling back plate, wherein each bearing adapter may be disposed around the first axle.
In another aspect, a method for radially steering a first axle of a locomotive truck is disclosed. The method may include providing a first axle, positioning the first axle within a plurality of primary bearing adapter assemblies, each bearing adapter assembly including a bearing adapter and a swiveling back plate, wherein each bearing adapter is disposed around the first axle, and linking the bearing adapters through a mechanical linkage, wherein the mechanical linkage enables each bearing adapter to rotate by the same degree, and in the same direction, relative to each respective swiveling back plate.
These, and other aspects and features of the present disclosure, will be better understood upon reading the following detailed description when taken in conjunction with the accompanying drawings.
Referring now to the drawings, and with specific reference to
The locomotive 10 may power one or more of the wheels 12 in contact with the one or more rails 17, propelling the train 14 along the rail 17. One or more rails 17 may also be known as a track. An operator may be located within the cab 11, train 14 or remotely relative to the train 14 in a remote operator station. The operator may issue commands to influence the performance of the train 14.
Turning to
The truck 20 further includes a frame 40 supporting the locomotive 10 and transmitting the locomotive 10 weight to the wheels 12. One or more axles 28, 32, 36 may be powered by a traction motor 44. The traction motors 44 may be powered by the engine 13 and may mechanically rotate an axle 28, 32, 36 or a wheel 12.
Turning now to
A side frame 84 of frame 40 is shown in
Turning now to
As best seen in
In operation, the locomotive 10 may travel around a curved section of track. The trucks 20 may pivot accordingly. The disclosed steering system 48 allows the first and secondary axles 28, 32 to yaw relative to the truck 20 while the one or more intermediate axles 36 do not yaw relative to the truck 20. More specifically, the steering system 48 and mechanical linkage 50 may enable the first and secondary axles 28, 32 to yaw by equal degrees in opposite directions. In terms of the steering system 48, the mechanical linkage 50 may enable each bearing adapter 76 to rotate by the same degree, and in the same direction, relative to each respective swiveling back plate 80. Further, the mechanical linkage 50 may enable each bearing adapter 76 to longitudinally translate in opposite directions, and by the same degree, relative to each respective swiveling back plate 80. How the steering system 48 enables these properties will now be described.
As mentioned, the bearing adapters 76 may be disposed around the first and secondary axles 28, 32. The bearing adapters 76 may also provide for the rotation of a respective axle 28, 32 and may yaw, or pivot, with the axles 28, 32. In this manner, the yaw angle of the axle 28, 32 may equal the rotational degree of an associated bearing adapter 76.
The bearing adapter 76 may be pivotably connected to the traction rod 60, as best shown in
A longitudinal translation of corresponding bearing adapters 76, which may be necessary to accommodate axle 28, 32 yaw, may also be achieved through the disclosed steering system 48. When a traction rod 60 moves in a first longitudinal direction, the above-described process may cause a corresponding traction rod 60 movement in the opposite longitudinal direction. Further, a longitudinal traction rod 60 movement in a first direction will correspond to a connected bearing adapter 76 longitudinal movement in the same first direction, as the traction rod 60 and corresponding bearing adapter 76 are pivotably connected. Accordingly, through the steering system 48 and mechanical linkage 50, a longitudinal movement of one bearing adapter 76 in a first direction may coincide with a longitudinal movement of equal degree and opposite longitudinal direction of a corresponding bearing adapter 76.
While the bearing adapters 76 may rotate, as described above, they may also rotate relative to a pivotably attached swiveling back plate 80. As best shown in
The yaw dampers 64 may be used to dampen yaw, or other motion, of the axles 28, 32 or other members of the mechanical linkage 50. This damping may be effective beyond the maximum operating speed of the locomotive 10.
Additionally, as the bellcranks 52 rotate due to axle 28, 32 yaw, the one or more bellcrank bumpers 68 may define rotational limits of the bellcranks 52, and thus the yaw degree of the axle 28, 32 as the traction rod 60 connects to both the bellcrank 52 and the bearing adapter 76. This may be accomplished by contact between the bellcrank bumper 68 and the bellcrank bumper stop bracket 104. Further, the bellcrank bumper 68 may progressively increase resistance to bellcrank 52 rotation, and thus bearing adapter 76 rotation, as the bellcrank bumper 68 compresses against the bellcrank bumper stop bracket 104. The bellcrank bumper 68 may be constructed of a polymer, or other wearing or compressible material. Additionally, each bellcrank 52 may also have two bellcrank bumpers 68, to limit bellcrank 52 and bearing adapter 76 rotation in two directions, as each bellcrank bumper 68 contacts the bellcrank bumper stop bracket 104.
The steering system 48 may be constructed around the first axle 28. Alternatively, the steering system 48 may incorporate a first and a secondary axle 28, 32. In such an embodiment, as shown, in
Additionally, the steering system 48 may be used to retrofit trucks 20 to a configuration that allows axle 28, 32 yaw. In such a case, the steering system 48 may be attached to a traditional locomotive truck having pedestals and multiple axles 28, 32 that maintain the same yaw angle as the truck 20 negotiates a curved track section. After the addition of the steering system 48, the traditional locomotive truck may now allow axle 28, 32 yaw. Alternatively, the steering system 48 may be incorporated into the construction of a new truck 20. Employing the disclosed steering system 48 may increase locomotive 10 traction and decrease costs associated with new or upgraded locomotives 10.
In operation, the present disclosure sets forth a steering system which can find industrial applicability in a variety of settings. For example, the disclosure may be advantageously employed in the operation of locomotives, or other vehicles. More specifically, the disclosed steering system allows the first and secondary axles to yaw relative to the truck while one or more intermediate axles do not yaw relative to the truck.
A method for radially steering a first axle of a locomotive truck can best be understood by referencing the flowchart in
The steering system and mechanical linkage may enable the first and secondary axles to yaw by equal degrees in opposite directions. In terms of the steering system, the mechanical linkage may enable each bearing adapter to rotate by the same degree, and in the same direction, relative to each respective swiveling back plate. Further, the mechanical linkage may enable each bearing adapter to longitudinally translate in opposite directions, and by the same degree, relative to each respective swiveling back plate. Further, this functionality is enabled by the use of a novel bearing adapter assembly including a bearing adapter and a swiveling back plate.
The steering system may provide axle yaw properties to traditional trucks as a retrofit. Alternatively, the steering system may be incorporated into the construction of new trucks. Employing the disclosed steering system may increase locomotive traction and decrease wheel wear and costs associated with new or upgraded locomotives by improved alignment of the wheels to the rails.