This disclosure relates generally to power systems and, more specifically, to a locomotive having a variable number of power modules.
Mobile machines, like locomotives, are known to include a power system for generating power. For example, a power system may include one or more electric motors, one or more generator units, and a power-transfer system for transferring power from the one or more generator units to the one or more electric motors. A generator unit may include an engine driving a generator to produce electricity for the power system, for example, to provide power to be transferred to the one or more electric motors through the power-transfer system.
At least a portion of the power system (e.g., a generator unit) may be enclosed within a housing of the mobile machine, for example, to protect the power system from environmental factors. At least a portion of the power system (e g., a generator unit) may be in an interchangeable power module. In such a power module, the power system may be positioned within a container and provide connection lines (e.g., mechanical and electrical lines) to connect the power module to the mobile machine.
As the physical load a mobile machine is transporting may vary, the power requirements of the machine may also change as a result. As the weight and size constraints of the mobile machine may limit the size available for power modules, it may be desirable to provide a design that may be quickly tailored to the power requirements of a particular mobile machine.
One solution for accommodating multiple power systems on a locomotive is described in U.S. Pat. No. 6,474,242 (“the '242 patent”). The '242 patent is directed to a rail vehicle system that has connecting bogies, supply units, control units, and transportation units, which can be placed on the connecting bogies in order to form a train with a modular construction. The connecting bogies contain at least two axles, one of which is equipped with an electrical drive/brake unit, and which are configured to be separable. The supply units may contain vital devices such as current collectors, transformers, and power converters for extracting power from a contact line and feeding it back into the contact line or converters of mechanical energy into electrical energy. The control units can be configured to be independent of current and load. The transportation units may differ according to whether they are for transporting passengers or goods and according to the type of good being transported. The interfaces of all of the units are uniform and can be interchanged.
The solution provided by the '242 patent may suffer from a number of possible drawbacks. For example, while the '242 patent discloses arranging the engine in a modular power module, the '242 patent does not provide for a mobile machine that can operate with a variable number of power modules. Thus, locomotives according to the '242 patent would still be required to carry multiple power modules, even if only one power module was needed to power locomotive (and its load) for a particular trip.
The present disclosure may be directed to mitigating or overcoming one or more of the problems set forth above and/or other problems in the art.
According to one aspect, the disclosure is directed to a locomotive including a plurality of axles and a plurality of pairs of wheels, each pair of wheels being connected to one of said axles. The locomotive may also include a plurality of traction motors, each traction motor operably attached to at least one of the axles. The locomotive may also include a power system including at least one power module, the power system being configured to provide power to the traction motors. The locomotive may also include a controller configured to receive a control signal indicative of a locomotive powering mode and determine a number of power modules operably connected to the power system and, based on the number of power modules operably connected to the power system and the control signal, send a command signal to the power system for operating the power system.
In accordance with another aspect, the disclosure is directed to a computer-implemented method of controlling a locomotive having a power system including at least one power module. The method may include receiving, via a controller, a control signal indicative of a locomotive powering mode and determining a number of power modules operably connected to the power system. The method may also include, based on the number of power modules operably connected to the power system and the locomotive powering mode, sending, via the controller, a command signal to the power system configured to operate the power system.
According to another aspect, the disclosure is directed to a power system. The power system may include a power connector configured to be able to operably connect a maximum number of power modules, wherein the maximum number is greater than one. The power system may also include at least one power module operably connected to the power connector. The power system may also include a controller configured to receive a control signal indicative of a locomotive powering mode and determine how many power modules are operably connected to the power connector. The controller may also be configured to, based on the number of power modules operably connected to the power connector and the control signal, control the power system.
In the exemplary embodiment shown in
According to some embodiments, power module 160 may include one or more power connectors 180 capable of being connected to locomotive 100 to transmit energy, material, and/or other information between power module 160 and locomotive 100. For example, power connector 180 may include connection lines from locomotive 100 that may pass through chassis 140 and enter power module 160 through a bottom portion of power module 160. Power connector 180 may be configured to connect a maximum number of power modules 160 to power system 150. According to some embodiments, the number of power modules 160 may be less than the number of power modules 160 required to operate locomotive 100. In addition locomotive 100 may also include one or more fasteners configured to removably connect power modules 160 to chassis 140, thereby facilitating addition or removal of power modules 160 from chassis 140.
Power connector 180 may include all the necessary connection lines for operably coupling each power module 160 to other subsystems of locomotive 100. According to some embodiments, a locomotive fuel supply line may be provided to connect to a power module fuel supply line via a fuel supply line connecter. Additionally or alternatively, a locomotive air supply line may be provided to connect to a power module air supply line via an air supply line connector, and/or a locomotive traction power line (e.g., a direct current power line) may be provided to connect to a power module traction power line via a traction power connector. A locomotive accessory power line may be provided to connect to a power module accessory power line via an accessory power line connector. A locomotive battery power line may be provided to connect to a power module battery power line via a battery power line connector. A locomotive control wiring line may be provided to connect to a power module control wiring line via a control wiring connector. Any number of power lines may be included on power connector 180 for connecting power modules 160 to locomotive 100.
Power connectors 180 may include various types of connectors including, for example, a hose quick disconnect connector (e.g., connecting fuel supply lines), a hose screw-on connector (e.g., connecting air supply lines), a bolt-on cable lug connector (e.g., connecting traction power lines, accessory power lines, and battery power lines), and a wiring connector (e.g., connecting control wiring lines). While the above-listed connector types may be implemented in the some embodiments, it is contemplated that the connection of lines of power module 160 may include any type or number of connectors sufficient to connect power module 160 to locomotive 100. During installation of power module 160 on locomotive 100, one or more of the connection lines of power connectors 180 may be connected via a corresponding connector between power module 160 and locomotive 100. Likewise, during removal of power module 160 from locomotive 100, one or more of the connection lines may be disconnected.
As shown in
In some embodiments, the powering configuration and/or the command signal may be based on other or additional data. For example, controller 170 may determine a power characteristic of each of power modules 160. According to some embodiments, this may include a maximum power output (or maximum output voltage or current), and/or a power rating. Based on the power characteristics, controller 170 may identify a primary power module of a plurality of power modules.
At step 510, controller 170 may determine a number of power modules in locomotive 100 (and/or its power system 150). According to some embodiments, controller 170 may include one or more sensors or data input signals that indicate the number of power modules 160 that are operably connected to power connector 180. Determining the number of power modules 160 may include checking multiple signals, such as confirming that power lines as well as communication lines for each power module 160 are operating and/or connected. For some embodiments, confirming one aspect (e.g., that power is being output by each power module 160) may be sufficient.
Based on the number of power modules 160 and the control signal, controller 170 may determine a powering configuration of power system 150 to output power to satisfy the power requirements of locomotive 100. The powering configuration may be based on additional characteristics of power system 150 and/or power modules 160, including the power ratings of power modules 160. The powering configuration may include a set of one or more instructions or modes regarding how power system 150 should operate. At step 520, controller 170 may send a command signal to power system 150 to operate power system 150 according to the powering configuration. The command signal may be indicative of the powering configuration and/or the locomotive powering mode.
During operation, controller 170 may also be configured to detect a power module failure. For example, controller 170 may detect that one or more power modules 160 is no longer connected and/or no longer outputting power. Controller 170 may be further configured to re-determine the powering configuration for the power system to provide power required by the locomotive, taking into account the power module failure.
The disclosed system and methods may provide an ability to quickly tailor the power capacity of a locomotive to the load or weight characteristics of the locomotive. For example, locomotives can be built in a modular fashion for quick tailoring to satisfy the particular weight and power requirements of a particular use. Some or all of the power components may be contained in a modular and removable system, such as a power module.
The presently disclosed locomotive may have several advantages. For example, a locomotive using the disclosed power system can be quickly tailored to operate using greater or fewer power modules, depending on the requirements of a particular application. This customization process may be greatly simplified, as removing the power module may simply involve disconnecting the cables and lifting the module off the chassis of the locomotive. Furthermore, the removal or addition of a power module may be performed without the disruption of other portions of the locomotive, as the power module may be lifted upwards and placed on (or removed) from the locomotive, unlike other systems that would require the placement of components to be rearranged, thus requiring the movement of rail components across the tracks, which adds to the complexity (and time) of reconfiguring the locomotive.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed power modules and locomotive design and associated methods. Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure. It is intended that the specification and examples be considered as exemplary only, with a true scope of the present disclosure being indicated by the following claims and their equivalents.