1. Field of the Invention
The present invention relates to function generators, and particularly to a logarithmic and exponential function generator for analog signal processing.
2. Description of the Related Art
Logarithmic and exponential function generators are widely used in analog signal processing. An exponential function generator circuit produces an output waveform (current/voltage) that is an exponential function of the input waveform (current/voltage). Such a circuit is widely used in numerous applications, such as disk drives, variable gain amplifiers, automatic gain control circuits, medical equipment, hearing aids, and other analog signal processing and telecommunication applications.
On the other hand, a logarithmic function generator circuit produces an output waveform (current/voltage) that is a logarithmic function of the input waveform (current/voltage). Such a circuit is widely used in numerous applications, such as automatic-gain control loops, and in the design of analog-to-digital converters. Moreover, combining a number of exponential and logarithmic function generators, it is possible to design a multiplier circuit. Multipliers are versatile circuits with applications in signal processing, such as adaptive filters, modulators and neural networks. Inspection of the available exponential/logarithmic function generators shows that each circuit suffers from disadvantages, e.g., very limited input range, increased complexity, and the like.
Thus, a logarithmic and exponential function generator for analog signal processing solving the aforementioned problems is desired.
The logarithmic and exponential function generator for analog signal processing is implemented with CMOS circuits operating in current mode and includes current mirrors connected to a square root function circuit and two current amplifiers. A third current amplifier utilizes a constant current input. The outputs of the current amplifiers are combined to provide the logarithmic and exponential functions.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The logarithmic and exponential function generator for analog signal processing includes current mirrors connected to a square root function circuit and two current amplifiers. A third current amplifier utilizes a constant current input. The outputs of the current amplifiers are combined to provide the logarithmic and exponential functions.
The logarithmic and exponential function generator 100, shown in the block diagram of
The proposed implementations are based on the assumption that the logarithmic and exponential functions can be approximated by equations (1) and (2).
|ln(x)|6.529√{square root over (x)}−2.51x−3.947 (1)
exp(−x)≈−0.2657√{square root over (x)}+0.2657x+1.311 (2)
Plots 200 and 300 of
Inspection of equations (1) and (2) clearly shows that the proposed realizations of the logarithmic and exponential functions use only a square root function, a linear term and a constant term.
In order to implement the logarithmic and exponential function generator 100, a current-mode square root circuit is required. In the open literature, there exist a large number of current-mode square root circuits. An exemplary current-mode CMOS square root circuit 400 is shown in
Iold=Iy√{square root over (Ix/Iy)} (3)
The circuit 400 was optimized for realizing the logarithmic function of equation (1) and the exponential function of equation (2). A first plurality of MOSFET pairs (M7/M15, M8/M16, M9/M17, M10/M18, M11/M19, M12/M20, M13/M21, M14/M22) is configured with their sources connected to the VDD rail, and a second plurality of MOSFET pairs (M5/M6) is configured with their sources connected to the VSS rail. Interconnecting first and second pluralities of MOSFET pairs is a third plurality of MOSFET pairs (M1/M2 and M3/M4). The transistor sizes used are shown in Tables 4 and 5, respectively. In addition to the optimized square root function, the realization of equations (1) and (2) using
The present circuits were simulated using Tanner simulation software from Tanner EDA in 0.35 micron standard CMOS technology with Iy=10 μA, VDD=−VSS=1.65 V. Tables 4 and 5 show the dimensions used for realizing the logarithmic and exponential functions.
The results are shown in plots 700 through 1000 of
In order to investigate the feasibility of integrated circuit fabrication of the present circuit, MAGIC editor has been used for obtaining the physical layout of the proposed logarithmic function. The resulting dimensions of this physical layout are about 135 um for the width and 104 um for the height.
Logarithmic and exponential function generators have been disclosed. Contrary to available realizations, the present function generators use only a square root function, a linear function and a constant value. Thus, their realization in current-mode CMOS is simple and straightforward using available square root circuit realizations. Simulation results obtained from the current-mode realizations of the present function generators show good agreement with the theoretical values over a wide range of the normalized input current.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5585757 | Frey | Dec 1996 | A |
6744319 | Kim | Jun 2004 | B2 |
7395308 | Gilbert | Jul 2008 | B1 |
8098102 | Hase et al. | Jan 2012 | B2 |
8207776 | Gilbert | Jun 2012 | B1 |
8446994 | Rawlins et al. | May 2013 | B2 |
8521802 | Abuelma'atti | Aug 2013 | B1 |
8698545 | Larson | Apr 2014 | B2 |
9288952 | Sisson | Mar 2016 | B2 |
Entry |
---|
Moshfe et al., “Design of a programmable analog CMOS rational-powered membership function generator in current mode approach,” 2011 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 29-32, Dec. 11-14, 2011 (abstract). |