The invention relates generally to Wavelength Modulation Spectroscopy (WMS), and more particularly to demodulation of WMS signals.
Modulation techniques may be based on a decrease in technical noise with a corresponding increase in frequency (often referred to as a 1/f noise). Signal contrast may be improved by encoding and detecting the absorption signal at a high frequency where the noise level may be low. One such modulation technique is wavelength modulation spectroscopy (WMS). WMS rapidly scans the frequency of the light across the absorbing transition. The demodulated signal in WMS may be low in the absence of absorbers and limited by residual amplitude modulation. Tunable diode laser absorption spectroscopy (TDLAS) may utilize WMS to measure the concentration of certain species of gasses using tunable diode lasers and laser absorption spectrometry. The typical sensitivity of WMS may be in the 10−5 range.
A system embodiment may include: a first band-pass filter, where the first band-pass filter may be configured to receive and filter a detector signal; a second band-pass filter, where the second band-pass filter may be configured to receive and filter the detector signal; a first logarithmic amplifier (Log Amp), where the first Log Amp may be configured to apply a first filtered detector signal from the first band-pass filter; a second Log Amp, where the second Log Amp may be configured to apply a second filtered detector signal from the second band-pass filter; a differential amplifier, where the differential amplifier may be configured to subtract a first applied signal from the first Log Amp from a second applied signal from the second Log Amp; and an Anti-Log Amplifier, where the Anti-Log Amplifier may be configured to determine an inverse logarithm of a subtracted signal from the differential amplifier.
In additional system embodiments, the first band-pass filter has a central frequency of 2f. In additional system embodiments, the second band-pass filter has a central frequency of 1f. In additional system embodiments, the first band-pass filter has a central frequency of one of an integer order harmonic frequency greater than two.
Additional system embodiments may include a single power supply. In additional system embodiments, the single power supply does not comprise differential supply voltages. Additional system embodiments may include a first low-pass filter, where the first low-pass filter applies a low-pass filter to the first applied signal from the first Log Amp. Additional system embodiments may include a second low-pass filter, where the second low-pass filter applies a low-pass filter to the second applied signal from the second Log Amp.
In additional system embodiments, the determined inverse logarithm may be not influenced by a phase of the detector signal.
A method embodiment may include: filtering a detector signal at a first band-pass filter; filtering the detector signal at a second band-pass filter; applying a first filtered detector signal from the first band-pass filter to a first logarithmic amplifier (Log Amp); applying a second filtered detector signal from second first band-pass filter to a second Log Amp; subtracting the first applied signal from the first Log Amp from the second applied signal from the second Log Amp by a differential amplifier; and determining an inverse logarithm of the subtracted signal from the differential amplifier by an Anti-Log Amplifier.
In additional method embodiments, the first band-pass filter has a central frequency of 2f. In additional method embodiments, the second band-pass filter has a central frequency of 1f. In additional method embodiments, the first band-pass filter has a central frequency of one of: 3f and 4f.
Additional method embodiments may include: powering, via a single power supply, a circuit comprising the first band-pass filter, the second band-pass filter, the first Log Amp, the second Log Amp, the differential amplifier, and the Anti-Log Amplifier. In additional method embodiments, the single power supply does not comprise differential supply voltages.
Additional method embodiments may include: applying a low-pass filter to the first applied signal from the first Log Amp. Additional method embodiments may include: applying a low-pass filter to the second applied signal from the second Log Amp. In additional method embodiments, the determined inverse logarithm may be not influenced by a phase of the detector signal.
Another system embodiment may include: a first band-pass filter, where the first band-pass filter may be configured to receive and filter a detector signal, and where the first band-pass filter has a central frequency of 2f; a second band-pass filter, where the second band-pass filter may be configured to receive and filter the detector signal, and where the second band-pass filter has a central frequency of 1f; a first logarithmic amplifier (Log Amp), where the first Log Amp may be configured to apply the filtered detector signal from the first band-pass filter; a second Log Amp, where the second Log Amp may be configured to apply the filtered detector signal from the second band-pass filter; a differential amplifier, where the differential amplifier may be configured to subtract the applied signal from the first Log Amp from the applied signal from the second Log Amp; and an Anti-Log Amplifier, where the Anti-Log Amplifier may be configured to determine an inverse logarithm of the subtracted signal from the differential amplifier.
Additional system embodiments may include: a first low-pass filter applied to the first applied signal from the first Log Amp; and a second low-pass filter applied to the second applied signal from the second Log Amp.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principals of the invention. Like reference numerals designate corresponding parts throughout the different views. Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:
The following description is made for the purpose of illustrating the general principles of the embodiments discloses herein and is not meant to limit the concepts disclosed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation, including meanings implied from the description as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
Two techniques can be employed for Tunable Diode Laser Absorption Spectroscopy (TDLAS). The Direct Absorption Spectroscopy (DAS) is based on the measurement of the absorption graph while scanning the laser wavelength. The Wavelength Modulation Spectroscopy (WMS) is based on the measurement of gas absorption harmonics while scanning the laser wavelength and simultaneously modulating it (at 1f frequency). Even though in the examples disclosed herein the first frequency harmonic (1f) and second frequency harmonic (2f) are described, other embodiments of the invention are equally applicable to any harmonic nf, where f is a frequency harmonic such as 1f, 2f, 3f, 4f, and the like. While the disclosed systems and methods use WMS, these principles may also be applied to systems and methods for TDLAS.
The sensitivity of laser spectroscopy systems is increased by employing the modulation techniques compared to direct absorption (DA) methods. Modulation allows for precise filtering of the undesired noises due to shifting the measurement into a known frequency, resulting in a larger signal-to-noise ratio for WMS compared to the DAS technique. In WMS, the second harmonic signal, 2f, is often employed to extract the gas concentration. To compensate for the laser intensity dependency, the 2f signal is normalized by DA or 1f.
For demodulation of the WMS signal on the output of the optical detector, lock-in amplifiers can be employed to extract the amplitude of the modulated signal. In its simplest form, the modulated signal is mixed (multiplied) into the modulation clock signal. The output of the mixer, after low-pass filtering, returns the 2f scan pattern. A lock-in amplifier with a single built-in analog multiplier is phase-dependent. To make the process independent from the effect of phase, the detector signal can be multiplied into both Sine and Cosine components of the modulation oscillator at the same time (or multiplied into the modulation oscillator signal and its 90-degree phase shifted signal). This process requires two analog multipliers. With the same logic, to extract the 1f data, 2 more analog multipliers are required.
According to an embodiment of a logarithmic-based demodulator for Laser Wavelength-Modulation Spectroscopy disclosed herein, a demodulator for laser WMS employs a phase-independent WMS technique with 2f/1f signal recovery. In one example implementation, said logarithmic demodulator comprises two band-pass filters, one allows the 2f signal to pass through, and the second one allows the 1f signal to pass through. In a logarithmic-based demodulator system, according to an embodiment of the invention, the signals on the output of the two band-pass filters are then applied into separate logarithmic amplifiers (Log Amps) and differentiated employing a differential amplifier. The inverse logarithm of the differential signal, presented on the output of the anti-log amplifier, returns the 2f/1f signal. The logarithmic-based demodulator system is intrinsically phase independent. Phase adjustment or extra calculations are not required for phase compensation in a preferred embodiment.
Compared to lock-in amplifiers, in one embodiment, the logarithmic-based demodulator system requires a single power supply, requires a reduced number of components, is more compact, and is cost-effective. In one embodiment, the logarithmic-based demodulator system results in a higher dynamic range as compared to analog multiplier-based circuits.
There may be several ways to build different elements (103, 104, 114, 119, 126, 128, 130, 131, 133) of the lock-in demodulator or Log-demodulator system. In one embodiment, active or passive electronic components may be employed to build these elements. In the case of using active electronic components to build any of these elements, a power source is needed to energize the active electronic parts. In the case of lock-in demodulator, some elements such as multiplier elements require a differential power source. The differential power source may be a 3-wire source including 1 negative voltage, 1 positive voltage, and 1 ground wire.
Accordingly, a logarithmic-based demodulator system embodiment may include: a first band-pass filter, where the first band-pass filter is configured to receive and filter a detector signal, and wherein the first band-pass filter has a central frequency of 2f; a second band-pass filter, where the second band-pass filter is configured to receive and filter the detector signal, and wherein the second band-pass filter has a central frequency of 1f; a first logarithmic amplifier (Log Amp), wherein the first Log Amp is configured to apply the filtered detector signal from the first band-pass filter; a second Log Amp, wherein the second Log Amp is configured to apply the filtered detector signal from the second band-pass filter; a differential amplifier, where the differential amplifier is configured to subtract the applied signal from the first Log Amp from the applied signal from the second Log Amp; and an Anti-Log Amplifier, where the Anti-Log Amplifier is configured to determine an inverse logarithm of the subtracted signal from the differential amplifier.
A logarithmic-based demodulation process embodiment may include: filtering a detector signal at a first band-pass filter, where the first band-pass filter has a central frequency of 2f; filtering the detector signal at a second band-pass filter, where the second band-pass filter has a central frequency of 1f; applying the filtered detector signal from the first band-pass filter to a first logarithmic amplifier (Log Amp); applying the filtered detector signal from the second first band-pass filter to a second Log Amp; subtracting the applied signal from the first Log Amp from the applied signal from the second Log Amp by a differential amplifier; and determining an inverse logarithm of the subtracted signal from the differential amplifier by an Anti-Log Amplifier.
Additional method embodiments may include: applying a low-pass filter to the applied signal from the first Log Amp and the applied signal from the second Log Amp.
Referring to the system in
The oscillator signal from the first oscillator 102 is 90-degree phase-shifted using a first phase shifter 104. The signal is then multiplied into the detector signal 101 using a first 4-quadrant analog multiplier 105. The mixer output after a second low-pass filter 108 results in an imaginary-component 109 of the 2f signal. The cut-off frequency of the second low-pass filter 108 is designed to block the 4f frequency and any frequencies above the 4f frequency.
The optical detector signal 101 is mixed with a second oscillator 110, which generates a cosine-wave signal with 1f frequency. A second mixer 111 is a 4-quadrant analog multiplier. The mixer output, after a third low-pass filter 114 results in the real-component 116 of the 1f scan signal. The cut-off frequency of the third low-pass filter 114 is designed to block the 2f frequency and any frequencies above that.
The oscillator signal of the second oscillator 110 is 90-degree phase-shifted using a second phase shifter 112. The signal is then multiplied into the detector signal 101 using a second 4-quadrant analog multiplier 113. The mixer output after a fourth low-pass filter 115 results in the imaginary-component 117 of the 1f signal. The cut-off frequency of the fourth low-pass filter 115 is designed to block the 4f frequency and any frequencies above the 4f frequency.
Referring to the system in
The squared signals after summation by 120 are passed through a first square root calculator 121 to result in an amplitude of the 2f signal. To calculate the amplitude of the 1f signal, the real-component of the 1f signal 116 is squared using a fifth multiplier 122. The imaginary-component of the 1f signal 117 is also squared using a sixth multiplier 123. The squared signals after summation by 124 are passed through a second square root calculator 125 to result in the amplitude of the 1f signal. The amplitude signals are finally divided by a divider 126 to result in the 2f/1f signal 127.
The depicted circuit 200 may require a differential power supply to operate. In some embodiments, additional filtering, biasing, and decoupling components may need to be added to the depicted circuit 200. In some embodiments, the depicted circuit 200 may have a large power consumption and required board size due to the required components. In addition, the dynamic range of the depicted circuit 200 may be affected by the performance of the analog multipliers.
Referring to the system in
The output signals 306, 308 of the Log Amps 129, 131 present the logarithm of the input signal's envelope. The output signals 306, 308 of the first Log Amp 129 and the second Log Amp 131, after an optional low-pass filtering, are subtracted using a differential amplifier 132. The optional low-pass filter may reduce the noise on the output of the Log-Demod, improving the precision of the entire system. The 2f/1f signal 127 is achieved by calculating an inverse logarithm of the differential signal 310, presented on the output of the anti-log amplifier 133. In some embodiments, the anti-log amplifier 133 may be replaced with a processor in order to process the 2f/1f signal 127 digitally instead of analog.
The performance and functionality of Log Amps are not influenced by the phase of the input signal. Hence, the depicted circuit 300 is phase independent. In one embodiment, the components of the depicted circuit 300 can be implemented on a single power supply 301 without a need for differential supply voltages. For a Log-demodulator system, the electronic components that do not require differential power source may be employed. These components may be powered using the single power supply 301. This single power supply 301 may be a 2-wire source including one positive voltage and one ground wire. The power supply 301 may be connected to one or multiple elements of the lock-in demodulator or Log-demodulator system. Differential power supplies are larger, heavier, more complex, and more costly compared to the single power supply 301. In most cases, differential power supplies are made of two single power supplies connected in series, which may require double the electronic parts needed.
This structure of the depicted circuit 300, as compared to lock-in amplifiers, may require a lower number of components, may be more compact, and may be more cost-effective. Furthermore, circuit 300 utilizing Log Amps results in a higher dynamic range as compared to an analog multiplier-based circuit.
In
Referring to
The method 400 may then include applying the filtered detector signal from the first band-pass filter to a first logarithmic amplifier (Log Amp) (step 406). The method 400 may then include applying the filtered detector signal from the second first band-pass filter to a second Log Amp (step 408). In some embodiments, the method 400 may then include optionally applying a low-pass filter to the applied signal from the first Log Amp and the applied signal from the second Log Amp (step 410).
The method 400 may then include subtracting the applied signal from the first Log Amp from the applied signal from the second Log Amp by a differential amplifier (step 412). The method 400 may then include determining an inverse logarithm of the subtracted signal from the differential amplifier by an Anti-Log Amplifier (step 414). In some embodiments, the first Log Amp and the second Log Amp may be replaced with peak or amplitude detector circuits and logarithm function converters.
System embodiments include computing devices such as a server computing device, a buyer computing device, and a seller computing device, each comprising a processor and addressable memory and in electronic communication with each other. The embodiments provide a server computing device that may be configured to: register one or more buyer computing devices and associate each buyer computing device with a buyer profile; register one or more seller computing devices and associate each seller computing device with a seller profile; determine search results of one or more registered buyer computing devices matching one or more buyer criteria via a seller search component. The service computing device may then transmit a message from the registered seller computing device to a registered buyer computing device from the determined search results and provide access to the registered buyer computing device of a property from the one or more properties of the registered seller via a remote access component based on the transmitted message and the associated buyer computing device; and track movement of the registered buyer computing device in the accessed property via a viewer tracking component. Accordingly, the system may facilitate the tracking of buyers by the system and sellers once they are on the property and aid in the seller's search for finding buyers for their property. The figures described below provide more details about the implementation of the devices and how they may interact with each other using the disclosed technology.
Information transferred via communications interface 1712 may be in the form of signals such as electronic, electromagnetic, optical, or other signals capable of being received by communications interface 1712, via a communication link 1716 that carries signals and may be implemented using wire or cable, fiber optics, a phone line, a cellular/mobile phone link, an radio frequency (RF) link, and/or other communication channels. Computer program instructions representing the block diagram and/or flowcharts herein may be loaded onto a computer, programmable data processing apparatus, or processing devices to cause a series of operations performed thereon to produce a computer implemented process.
Embodiments have been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments. Each block of such illustrations/diagrams, or combinations thereof, can be implemented by computer program instructions. The computer program instructions when provided to a processor produce a machine, such that the instructions, which execute via the processor, create means for implementing the functions/operations specified in the flowchart and/or block diagram. Each block in the flowchart/block diagrams may represent a hardware and/or software module or logic, implementing embodiments. In alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures, concurrently, etc.
Computer programs (i.e., computer control logic) are stored in main memory and/or secondary memory. Computer programs may also be received via a communications interface 1712. Such computer programs, when executed, enable the computer system to perform the features of the embodiments as discussed herein. In particular, the computer programs, when executed, enable the processor and/or multi-core processor to perform the features of the computer system. Such computer programs represent controllers of the computer system.
The server 1830 may be coupled via the bus 1802 to a display 1812 for displaying information to a computer user. An input device 1814, including alphanumeric and other keys, is coupled to the bus 1802 for communicating information and command selections to the processor 1804. Another type or user input device comprises cursor control 1816, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to the processor 1804 and for controlling cursor movement on the display 1812.
According to one embodiment, the functions are performed by the processor 1804 executing one or more sequences of one or more instructions contained in the main memory 1806. Such instructions may be read into the main memory 1806 from another computer-readable medium, such as the storage device 1810. Execution of the sequences of instructions contained in the main memory 1806 causes the processor 1804 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in the main memory 1806. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the embodiments. Thus, embodiments are not limited to any specific combination of hardware circuitry and software.
The terms “computer program medium,” “computer usable medium,” “computer readable medium”, and “computer program product,” are used to generally refer to media such as main memory, secondary memory, removable storage drive, a hard disk installed in hard disk drive, and signals. These computer program products are means for providing software to the computer system. The computer readable medium allows the computer system to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium. The computer readable medium, for example, may include non-volatile memory, such as a floppy disk, ROM, flash memory, disk drive memory, a CD-ROM, and other permanent storage. It is useful, for example, for transporting information, such as data and computer instructions, between computer systems. Furthermore, the computer readable medium may comprise computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network that allow a computer to read such computer readable information. Computer programs (also called computer control logic) are stored in main memory and/or secondary memory. Computer programs may also be received via a communications interface. Such computer programs, when executed, enable the computer system to perform the features of the embodiments as discussed herein. In particular, the computer programs, when executed, enable the processor multi-core processor to perform the features of the computer system. Accordingly, such computer programs represent controllers of the computer system.
Generally, the term “computer-readable medium” as used herein refers to any medium that participated in providing instructions to the processor 1804 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as the storage device 1810. Volatile media includes dynamic memory, such as the main memory 1806. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise the bus 1802. Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to the processor 1804 for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to the server 1830 can receive the data on the telephone line and use an infrared transmitter to convert the data to an infrared signal. An infrared detector coupled to the bus 1802 can receive the data carried in the infrared signal and place the data on the bus 1802. The bus 1802 carries the data to the main memory 1806, from which the processor 1804 retrieves and executes the instructions. The instructions received from the main memory 1806 may optionally be stored on the storage device 1810 either before or after execution by the processor 1804.
The server 1830 also includes a communication interface 1818 coupled to the bus 1802. The communication interface 1818 provides a two-way data communication coupling to a network link 1820 that is connected to the world wide packet data communication network now commonly referred to as the Internet 1828. The Internet 1828 uses electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link 1820 and through the communication interface 1818, which carry the digital data to and from the server 1830, are exemplary forms or carrier waves transporting the information.
In another embodiment of the server 1830, interface 1818 is connected to a network 1822 via a communication link 1820. For example, the communication interface 1818 may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line, which can comprise part of the network link 1820. As another example, the communication interface 1818 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, the communication interface 1818 sends and receives electrical electromagnetic or optical signals that carry digital data streams representing various types of information.
The network link 1820 typically provides data communication through one or more networks to other data devices. For example, the network link 1820 may provide a connection through the local network 1822 to a host computer 1824 or to data equipment operated by an Internet Service Provider (ISP). The ISP in turn provides data communication services through the Internet 1828. The local network 1822 and the Internet 1828 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link 1820 and through the communication interface 1818, which carry the digital data to and from the server 1830, are exemplary forms or carrier waves transporting the information.
The server 1830 can send/receive messages and data, including e-mail, program code, through the network, the network link 1820 and the communication interface 1818. Further, the communication interface 1818 can comprise a USB/Tuner and the network link 1820 may be an antenna or cable for connecting the server 1830 to a cable provider, satellite provider or other terrestrial transmission system for receiving messages, data and program code from another source.
The example versions of the embodiments described herein may be implemented as logical operations in a distributed processing system such as the system 1800 including the servers 1830. The logical operations of the embodiments may be implemented as a sequence of steps executing in the server 1830, and as interconnected machine modules within the system 1800. The implementation is a matter of choice and can depend on performance of the system 1800 implementing the embodiments. As such, the logical operations constituting said example versions of the embodiments are referred to for e.g., as operations, steps or modules.
Similar to a server 1830 described above, a client device 1801 can include a processor, memory, storage device, display, input device and communication interface (e.g., e-mail interface) for connecting the client device to the Internet 1828, the ISP, or LAN 1822, for communication with the servers 1830.
The system 1800 can further include computers (e.g., personal computers, computing nodes) 1805 operating in the same manner as client devices 1801, where a user can utilize one or more computers 1805 to manage data in the server 1830.
Referring now to
The one or more vehicles 2002, 2004, 2006, 2010 may include an unmanned aerial vehicle (UAV) 2002, an aerial vehicle 2004, a handheld device 2006, and a ground vehicle 2010. In some embodiments, the UAV 2002 may be a quadcopter or other device capable of hovering, making sharp turns, and the like. In other embodiments, the UAV 2002 may be a winged aerial vehicle capable of extended flight time between missions. The UAV 2002 may be autonomous or semi-autonomous in some embodiments. In other embodiments, the UAV 2002 may be manually controlled by a user. The aerial vehicle 2004 may be a manned vehicle in some embodiments. The handheld device 2006 may be any device having one or more trace gas sensors operated by a user 2008. In one embodiment, the handheld device 2006 may have an extension for keeping the one or more trace gas sensors at a distance from the user 2008. The ground vehicle 2010 may have wheels, tracks, and/or treads in one embodiment. In other embodiments, the ground vehicle 2010 may be a legged robot. In some embodiments, the ground vehicle 2010 may be used as a base station for one or more UAVs 2002. In some embodiments, one or more aerial devices, such as the UAV 2002, a balloon, or the like, may be tethered to the ground vehicle 2010. In some embodiments, one or more trace gas sensors may be located in one or more stationary monitoring devices 2026. The one or more stationary monitoring devices may be located proximate one or more potential gas sources 2020, 2022. In some embodiments, the one or more stationary monitoring devices may be relocated.
The one or more vehicles 2002, 2004, 2006, 2010 and/or stationary monitoring devices 2026 may transmit data including trace gas data to a ground control station (GCS) 2012. The GCS may include a display 2014 for displaying the trace gas concentrations to a GCS user 2016. The GCS user 2016 may be able to take corrective action if a gas leak 2024 is detected, such as by ordering a repair of the source 2020 of the trace gas leak. The GCS user 2016 may be able to control movement of the one or more vehicles 2002, 2004, 2006, 2010 in order to confirm a presence of a trace gas leak in some embodiments.
In some embodiments, the GCS 2012 may transmit data to a cloud server 2018. In some embodiments, the cloud server 2018 may perform additional processing on the data. In some embodiments, the cloud server 2018 may provide third party data to the GCS 2012, such as wind speed, temperature, pressure, weather data, or the like.
A detector signal 1100 may correspond to the signal (101,
An analog bandpass filter or lock-in amplifier tuned to 1f 1104 also receives the detector signal 1100. 1f is the first harmonic, which is the modulation frequency. A second log base b amplifier 1108 receives the processed signal from the analog bandpass filter or lock-in amplifier tuned to 1f 1104. The second log base b amplifier 1108 outputs a 1f log demodulation signal 1112.
A differential amplifier 1114 subtracts the 2f log demodulation signal 1110 and the 1f log demodulation signal 1112 to output a 2f/1f log demodulation signal 1116. The 2f/1f log demodulation signal 1116 is processed by bx 1118 where X is the input signal and b is the base of a log amplifier. The output signal 1120 of bx is a 2f/1f log demodulation signal.
It is contemplated that various combinations and/or sub-combinations of the specific features and aspects of the above embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments may be combined with or substituted for one another in order to form varying modes of the disclosed invention. Further, it is intended that the scope of the present invention herein disclosed by way of examples should not be limited by the particular disclosed embodiments described above.
This application is a 35 U.S.C. § 371 National Stage Entry of International Application No. PCT/US21/24177, filed Mar. 25, 2021, which claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/994,680 filed Mar. 25, 2020, all of which are incorporated herein by reference in their entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/024177 | 3/25/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/195394 | 9/30/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3780566 | Smith et al. | Dec 1973 | A |
4135092 | Milly | Jan 1979 | A |
4233564 | Kerbel | Nov 1980 | A |
4507558 | Bonne | Mar 1985 | A |
4988833 | Lai | Jan 1991 | A |
5047639 | Wong | Sep 1991 | A |
5075619 | Said | Dec 1991 | A |
5173749 | Tell et al. | Dec 1992 | A |
5291265 | Kebabian | Mar 1994 | A |
5317156 | Cooper et al. | May 1994 | A |
5822058 | Adler-Golden et al. | Oct 1998 | A |
6064488 | Brand et al. | May 2000 | A |
6509566 | Wamsley et al. | Jan 2003 | B1 |
6549630 | Bobisuthi | Apr 2003 | B1 |
7800751 | Silver et al. | Sep 2010 | B1 |
7833480 | Blazewicz et al. | Nov 2010 | B2 |
8294899 | Wong | Oct 2012 | B2 |
8451120 | Johnson, Jr. et al. | May 2013 | B2 |
8730461 | Andreussi | May 2014 | B2 |
9183371 | Narendra et al. | Nov 2015 | B2 |
9183731 | Bokhary | Nov 2015 | B1 |
9235974 | Johnson, Jr. et al. | Jan 2016 | B2 |
9250175 | McManus | Feb 2016 | B1 |
9494511 | Wilkins | Nov 2016 | B2 |
9599529 | Steele et al. | Mar 2017 | B1 |
9599597 | Steele et al. | Mar 2017 | B1 |
10023311 | Lai et al. | Jul 2018 | B2 |
10023323 | Roberts et al. | Jul 2018 | B1 |
10126200 | Steele et al. | Nov 2018 | B1 |
10268198 | Mantripragada et al. | Apr 2019 | B2 |
10325485 | Schuster | Jun 2019 | B1 |
10365646 | Farnsworth et al. | Jul 2019 | B1 |
10429546 | Ulmer | Oct 2019 | B1 |
10830034 | Cooley et al. | Nov 2020 | B2 |
10962437 | Nottrott et al. | Mar 2021 | B1 |
11299268 | Christensen et al. | Apr 2022 | B2 |
11519855 | Black et al. | Dec 2022 | B2 |
20020005955 | Kramer et al. | Jan 2002 | A1 |
20030160174 | Grant et al. | Aug 2003 | A1 |
20030189711 | Orr et al. | Oct 2003 | A1 |
20030230716 | Russell et al. | Dec 2003 | A1 |
20040012787 | Galle et al. | Jan 2004 | A1 |
20040017762 | Sogawa et al. | Jan 2004 | A1 |
20040212804 | Neff et al. | Oct 2004 | A1 |
20060015290 | Warburton et al. | Jan 2006 | A1 |
20060044562 | Hagene et al. | Mar 2006 | A1 |
20060232772 | Silver | Oct 2006 | A1 |
20060234621 | Desrochers et al. | Oct 2006 | A1 |
20070137318 | Desrochers et al. | Jun 2007 | A1 |
20080169934 | Lang et al. | Jul 2008 | A1 |
20080243372 | Bodin et al. | Oct 2008 | A1 |
20090201507 | Kluczynski et al. | Aug 2009 | A1 |
20090263286 | Isomura et al. | Oct 2009 | A1 |
20090326792 | McGrath | Dec 2009 | A1 |
20100004798 | Bodin et al. | Jan 2010 | A1 |
20100131207 | Lippert et al. | May 2010 | A1 |
20100140478 | Wilson et al. | Jun 2010 | A1 |
20100147081 | Thomas | Jun 2010 | A1 |
20110074476 | Heer et al. | Mar 2011 | A1 |
20110150035 | Hanson et al. | Jun 2011 | A1 |
20110164251 | Richter | Jul 2011 | A1 |
20110242659 | Eckles et al. | Oct 2011 | A1 |
20110257944 | Du et al. | Oct 2011 | A1 |
20120120397 | Furtaw et al. | May 2012 | A1 |
20130044314 | Koulikov et al. | Feb 2013 | A1 |
20130076900 | Mrozek et al. | Mar 2013 | A1 |
20130208262 | Andreussi | Aug 2013 | A1 |
20140172323 | Marino | Jun 2014 | A1 |
20140204382 | Christensen | Jul 2014 | A1 |
20140236390 | Mohamadi | Aug 2014 | A1 |
20140336957 | Hanson et al. | Nov 2014 | A1 |
20150072633 | Massarella | Mar 2015 | A1 |
20150275114 | Tumiatti et al. | Oct 2015 | A1 |
20150295543 | Brown et al. | Oct 2015 | A1 |
20150316473 | Kester et al. | Nov 2015 | A1 |
20160018373 | Pagé et al. | Jan 2016 | A1 |
20160104250 | Allen et al. | Apr 2016 | A1 |
20160146696 | Steele et al. | May 2016 | A1 |
20160161456 | Risk et al. | Jun 2016 | A1 |
20160202225 | Feng et al. | Jul 2016 | A1 |
20160214715 | Meffert | Jul 2016 | A1 |
20160307447 | Johnson et al. | Oct 2016 | A1 |
20160357192 | McGrew et al. | Dec 2016 | A1 |
20170003684 | Knudsen | Jan 2017 | A1 |
20170057081 | Krohne et al. | Mar 2017 | A1 |
20170089829 | Bartholomew et al. | Mar 2017 | A1 |
20170093122 | Bean et al. | Mar 2017 | A1 |
20170097274 | Thorpe et al. | Apr 2017 | A1 |
20170115218 | Huang et al. | Apr 2017 | A1 |
20170134497 | Harter et al. | May 2017 | A1 |
20170158353 | Schmick | Jun 2017 | A1 |
20170199647 | Richman et al. | Jul 2017 | A1 |
20170206648 | Marra et al. | Jul 2017 | A1 |
20170235018 | Foster et al. | Aug 2017 | A1 |
20170259920 | Lai et al. | Sep 2017 | A1 |
20170307519 | Black et al. | Oct 2017 | A1 |
20170336281 | Waxman et al. | Nov 2017 | A1 |
20170339820 | Foster et al. | Nov 2017 | A1 |
20180023974 | Otani et al. | Jan 2018 | A1 |
20180045561 | Leen et al. | Feb 2018 | A1 |
20180045596 | Prasad et al. | Feb 2018 | A1 |
20180050798 | Kapuria | Feb 2018 | A1 |
20180059003 | Jourdainne | Mar 2018 | A1 |
20180067066 | Giedd et al. | Mar 2018 | A1 |
20180109767 | Li et al. | Apr 2018 | A1 |
20180127093 | Christensen et al. | May 2018 | A1 |
20180188129 | Choudhury et al. | Jul 2018 | A1 |
20180209902 | Myshak et al. | Jul 2018 | A1 |
20180259955 | Noto | Sep 2018 | A1 |
20180266241 | Ferguson et al. | Sep 2018 | A1 |
20180266946 | Kotidis et al. | Sep 2018 | A1 |
20180284088 | Verbeck, IV | Oct 2018 | A1 |
20180292374 | Dittberner et al. | Oct 2018 | A1 |
20180321692 | Castillo-Effen et al. | Nov 2018 | A1 |
20180322699 | Gray et al. | Nov 2018 | A1 |
20190011920 | Heinonen et al. | Jan 2019 | A1 |
20190011935 | Ham et al. | Jan 2019 | A1 |
20190025199 | Koulikov | Jan 2019 | A1 |
20190033194 | DeFreez et al. | Jan 2019 | A1 |
20190049364 | Rubin | Feb 2019 | A1 |
20190077506 | Shaw et al. | Mar 2019 | A1 |
20190086202 | Guan et al. | Mar 2019 | A1 |
20190095687 | Shaw et al. | Mar 2019 | A1 |
20190154874 | Shams et al. | May 2019 | A1 |
20190178743 | McNeil | Jun 2019 | A1 |
20190195789 | Pan et al. | Jun 2019 | A1 |
20190204189 | Mohr, Jr. et al. | Jul 2019 | A1 |
20190212419 | Jeong et al. | Jul 2019 | A1 |
20190220019 | Tan et al. | Jul 2019 | A1 |
20190228573 | Sen et al. | Jul 2019 | A1 |
20190234868 | Tanomura et al. | Aug 2019 | A1 |
20190331652 | Ba et al. | Oct 2019 | A1 |
20200109976 | Ajay et al. | Apr 2020 | A1 |
20200249092 | Podmore et al. | Aug 2020 | A1 |
20200400635 | Potyrailo et al. | Dec 2020 | A1 |
20210017926 | Alkadi et al. | Jan 2021 | A1 |
20210109074 | Smith et al. | Apr 2021 | A1 |
20210140934 | Smith et al. | May 2021 | A1 |
20210190745 | Buckingham et al. | Jun 2021 | A1 |
20210190918 | Li et al. | Jun 2021 | A1 |
20210199565 | John et al. | Jul 2021 | A1 |
20210247369 | Nottrott et al. | Aug 2021 | A1 |
20210255158 | Smith et al. | Aug 2021 | A1 |
20210300591 | Tian | Sep 2021 | A1 |
20210321174 | Sun et al. | Oct 2021 | A1 |
20210364427 | Smith et al. | Nov 2021 | A1 |
20210382475 | Smith et al. | Dec 2021 | A1 |
20220113290 | Smith et al. | Apr 2022 | A1 |
20220268952 | Liang et al. | Aug 2022 | A1 |
20220341806 | Miller et al. | Oct 2022 | A1 |
20230194487 | Buckingham et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
3401499 | Nov 1999 | AU |
104458588 | Mar 2015 | CN |
205749271 | Nov 2016 | CN |
106769977 | May 2017 | CN |
107703075 | Feb 2018 | CN |
109780452 | May 2019 | CN |
211508182 | Sep 2020 | CN |
112213443 | Jan 2021 | CN |
29601472 | May 1996 | DE |
69333010 | Apr 2004 | DE |
102014013822 | Mar 2016 | DE |
1371962 | Jul 2011 | EP |
3047073 | Aug 2019 | FR |
2538563 | Nov 2016 | GB |
200975823 | Apr 2009 | JP |
20170062813 | Jun 2017 | KR |
101770254 | Aug 2017 | KR |
522226 | Mar 2003 | TW |
1999054700 | Oct 1999 | WO |
02066950 | Aug 2002 | WO |
2008021311 | Feb 2008 | WO |
2015073687 | May 2015 | WO |
2016045791 | Mar 2016 | WO |
2016162673 | Oct 2016 | WO |
2017069979 | Apr 2017 | WO |
2018121478 | Jul 2018 | WO |
2018227153 | Dec 2018 | WO |
2019246280 | Dec 2019 | WO |
2020007684 | Jan 2020 | WO |
2020028353 | Feb 2020 | WO |
2020086499 | Apr 2020 | WO |
2020206006 | Oct 2020 | WO |
2020206020 | Oct 2020 | WO |
2021055902 | Mar 2021 | WO |
2021158916 | Aug 2021 | WO |
2022093864 | May 2022 | WO |
2022211837 | Oct 2022 | WO |
Entry |
---|
U.S. Appl. No. 62/687,147, Issue Date Jun. 19, 2018, Brendan James Smith. |
“Safesite Multi-Threat Detection System”, Jul. 11, 2012 (Jul. 11, 2012), pp. 1-6, XP055245980. |
International Search Report and Written Opinion for PCT/US19/38011 dated Sep. 9, 2019. |
International Search Report and Written Opinion for PCT/US19/38015, dated Oct. 18, 2019. |
International Search Report and Written Opinion for PCT/US19/44119, dated Oct. 17, 2019. |
International Search Report and Written Opinion for PCT/US20/26228 dated Jul. 1, 2020. |
International Search Report and Written Opinion for PCT/US20/26232 dated Jun. 26, 2020. |
International Search Report and Written Opinion for PCT/US20/26246 dated Jun. 29, 2020. |
International Search Report and Written Opinion for PCT/US20/51696, dated Feb. 3, 2021. |
International Search Report and Written Opinion for PCT/US2020/044978, dated Oct. 26, 2020. |
International Search Report and Written Opinion for PCT/US2021/016821 dated Apr. 26, 2021. |
International Search Report and Written Opinion for PCT/US2021/024177, dated Jun. 23, 2021. |
International Search Report and Written Opinion for PCT/US2021/056708, dated Jan. 27, 2022. |
International Search Report and Written Opinion for PCT/US21/42061, dated Nov. 26, 2021. |
International Search Report and Written Opinion for PCT/US21/44532, dated Jan. 11, 2022. |
International Search Report and Written Opinion for PCT/US21/56710, dated Feb. 23, 2022. |
International Search Report and Written Opinion of PCT/US19/57305, dated Jan. 2, 2020. |
International Search Report and Written Opinion of PCT/US20/54117, dated Dec. 22, 2020. |
Joly, “Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) Dedicated to Vertical Profile In Situ Measurements of Carbon Dioxide (CO2) Under Weather Balloons: Instrumental Development and Field Application,” Sensors 2016, 16, 1609. |
Khan, “Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles”, Remote Snse. 2012, 4, 1355-1368. |
Villa. “An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives”. Sensors. Web . Jul. 12, 2016. |
White, “Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer”, Atmosphere, v.8, issue 10, 195, pp. 1-25. |
International Search Report and Written Opinion for PCT/US2023/023933 dated Sep. 26, 2023. |
IEEE Conference Paper, “Research of the high pressure jet performance of small size nozzle,” ISBN :978-1-5090-1087-5, Publication Date : Oct. 1, 2016, Conference dates Oct. 10, 2016 thru Oct. 12, 2016.[retrieved from the Internet] on Sep. 1, 2023 at 4:14pm. |
International Search Report and Written Opinion for PCT/US22/38951, dated Nov. 28, 2022. |
Kelly J F et al. “A capillary absorption spectrometer for stable carbon isotope ratio (C/C) analysis in very small samples”, Review of Scientific Instruments, American Institute of Physics, 2 Huntington Quadrangle, Melville, NY 11747, vol. 83, No. 2, Feb. 1, 2012 (Feb.1, 2012), pp. 23101-23101, XP012161835, ISSN: 0034-6748, DOI: 10.1063/1.3680593. |
Krings et al., Atmos. Meas. Tech., 11, 721-739, Feb. 7, 2018. |
Clilverd, Mark A. et al., Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15, Journal of Geophysical Research, vol. 117, A12213, doi: 10.1029/2012JA018175, 2012, pp. 1-16 (Year:2012). |
Kem, Christoph et al., Spatial Distribution of Halogen Oxides in the Plume of Mount Pagan Volcano, Mariana Islands, Geophysical Research Letters 10.1029/2018GL079245, Sep. 27, 2018, pp. 9588-9596 (Year:2018). |
Liao, J. et al. Observations of Inorganic bromine(HOBr, BrO, and Br2) speciation at Barrow, Alaska in spring 2009, Journal of Geophysical Research, vol. 117, D00R16, doi:10.1029/2011JD016641, 2012, pp. 1-11 (Year:2012). |
Liu, Siwen et al., Development of a UAV-Based System to Monitor Air Quality over an Oil Field, Montana Technological University, Montana tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses, Fall 2018, pp. 1-85 (Year:2018). |
Miyama, Toru et al., Estimating allowable carbon emission for CO2 concentration stabilization using a GCM-based Earth system model, Geophysical Research Letters, vol. 36,L19709, doi:10.1029/2009GL039678, 2009, pp. 0094-8276 (Year:2009). |
Oppenheimer Clive et al., Ultraviolet Sensing of Volcanic Sulfur Emissions, Elements (An Internatioknal Magazine of Mineralogy, Geochemistry, and Petrology), Apr. 2010, vol. 6, pp. 87-92 (Year: 2010). |
Parazoo, Nicholas C. et al., Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT, Geophysical Research Letters, vol. 40.2829-2833, doi: 10.1002/grl.50452, 2013 p. (s0 2829-2833 (Year:2013). |
Queiber, Manuel et al., A new frontier in CO2 flux measurements using a highly portable DIAL laser system, Scientific Reports, DOI: 10.1038/srep33834 1, Sep. 22, 2016, pp. 1-13(Year:2016). |
Queiber, Manuel et al., Large-area quantification of subaerial CO2 anomalies with portable laser remote sensing and 2d tomography, The Leading Edge Mar. 2018, pp. 306-313 (Year:2018). |
International Search Report and Written Opinion for PCT/US23/23905 dated Oct. 5, 2023. |
Lilian Joly, The evolution of AMULSE (Atmospheric Measurements by Ultra-Light Spectrometer) and its interest in atmospheric applications. Results of the Atmospheric Profiles of Greenhouse gasEs (APOGEE) weather balloon release campaign for satellite retrieval validation, p. 1-28, Sep. 25, 2019, Atmospheric Measurement Techniques Discussion (Joly). |
International Search Report and Written Opinion for PCT/US23/13893, dated Jun. 30, 2023. |
Development of a mobile tracer correlation method for assessment of air emissions from landfills and other area sources, Atmospheric Environment 102 (2015) 323-330. T.A. Foster-Wittig et. al. 2015. |
Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR Absorption Spectroscopy, Environ. Sci. Technol. 2001, 35, 21-25, B. Galle et al. 2001. |
Feng, Lingbing, Nowak, Gen, O'Neill, T.J., Welsh, A.H.“Cutoff; A spatio-temporal imputation method.” Journal of Hydrology 519 (2014) : 3591-3605 (Year:2014). |
Cabreira et al. “Survey on Coverage Path Planning with Unmanned Aerial Vehicles”, published: Drones, published: Jan. 2019, pp. 1-38, year 2019. |
Number | Date | Country | |
---|---|---|---|
20230353128 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
62994680 | Mar 2020 | US |